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Phase-dependent amplification of working memory
content and performance
Sanne ten Oever 1,2,3✉, Peter De Weerd1,4,5 & Alexander T. Sack 1,4,6

Successful working memory performance has been related to oscillatory mechanisms

operating in low-frequency ranges. Yet, their mechanistic interaction with the distributed

neural activity patterns representing the content of the memorized information remains

unclear. Here, we record EEG during a working memory retention interval, while a task-

irrelevant, high-intensity visual impulse stimulus is presented to boost the read-out of dis-

tributed neural activity related to the content held in working memory. Decoding of this

activity with a linear classifier reveals significant modulations of classification accuracy by

oscillatory phase in the theta/alpha ranges at the moment of impulse presentation. Addi-

tionally, behavioral accuracy is highest at the phases showing maximized decoding accuracy.

At those phases, behavioral accuracy is higher in trials with the impulse compared to no-

impulse trials. This constitutes the first evidence in humans that working memory information

is maximized within limited phase ranges, and that phase-selective, sensory impulse sti-

mulation can improve working memory.
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Successful working memory performance requires the
maintenance of information during a retention period.
Activity in the alpha (8–12 Hz) and theta (4–8 Hz) band can

be observed during retention in hippocampal1,2, sensory3,4, and
frontal regions5,6. Moreover, this activity has been related to
successful memory performance1,7. However, although measur-
ing the activity of ongoing oscillations is informative, it does not
provide strong evidence that the measured activity is functionally
related to the memory content being maintained. For example,
the oscillatory activity could represent a cognitive control
mechanism8, or a general vehicle for neural representations9, but
not the direct representation of the specific memory content. To
unravel the mechanistic role of oscillatory processing in working
memory, it is paramount to isolate processes related to the neural
representation of memory information itself.

Information can be represented in the distributed activity of a
neural ensemble10,11. The strength of information representation
in turn might be linked to the phase of theta and alpha oscilla-
tions. Specifically, it has been suggested that information is most
strongly represented at restricted phases for which excitability
levels are high12,13. This is corroborated by the clustering of
spiking and gamma activity at restricted phase ranges in many
animal recording studies14–18 and high gamma power in human
studies19,20. With respect to working memory, distributed activity
may shows increased information content within restricted phase
ranges of alpha and theta, thereby increasing the strength of the
representation at specific subranges of oscillatory alpha and theta
phases9,21. To the best of our knowledge, phase-clustered dis-
tributed activity has never been related to oscillatory fluctuations
in human working memory research (see ref. 18 for animal work
on this topic).

Recently, various human EEG studies have shown that after
the presentation of a high-intensity impulse stimulus (either
high-contrast visual stimulation or a TMS pulse) during a
working memory retention interval, the memorized information
can be decoded from EEG22–24. The success in decoding indi-
cates the impulse stimulus’ capacity to induce an amplification of
the read-out of the neural memory trace. While these results
illustrate improved read-out of the neuronal memory repre-
sentations, no behavioral improvements related to this increased
read-out were found. We expected that if the read-out of neu-
ronal representations of memorized information is enhanced, it
should be coupled with behavioral performance increases in the
working memory task. Given the proposed theoretical frame-
work suggesting that the phase of low-frequency oscillations
represents working memory content9,25, we additionally expec-
ted that the strength of distributed neural working memory
representation would show oscillatory modulations, paired with
corresponding oscillatory variations in behavioral measures of
working memory performance.

To test these hypotheses, we analyzed EEG from 19 partici-
pants who judged a test grating against a memorized sample
grating presented earlier in time (both presented for 200 ms).
Here, we consider the trials in which the sample and test items
were separated by an interval of 2.6 s during which the orienta-
tion of the grating had to be maintained in working memory.
Midway through the retention interval, a bullseye high-contrast
visual stimulus (impulse stimulation) was presented for 200 ms.
We find that strength of the neural representation held in
working memory as well as the accuracy of working memory
performance depends on the phase of ongoing alpha and theta
oscillations at which the impulse stimulation is applied. Previous
human memory research has focused on univariate phase-
dependent changes, demonstrating oscillatory modulations in
neuronal activity strength while items are held in working
memory13,19, a result that does not allow for an inference

regarding modulations of neuronal content. Instead, the current
study focuses on multivariate phase-dependent modulations of
the (distributed) neural representation, allowing for inferences
regarding the memory content and associated behavioral working
memory performance.

Results
EEG decoding reveals phase-modulated information. To test
phase-dependencies of the strength of neural working memory
content representation, we first operationalized the strength of
information content as the multivariate classification success in
decoding the specific item held in working memory. The multi-
variate classifier was trained on the data collected during sample
item presentation to achieve maximally accurate discrimination
of the sample’s orientation as belonging to one of four equal 90°
bins (using LDA; see Supplementary Fig. 1 and Methods). The
training was performed in a time-resolved manner, using 12 ms
bins centered at time points ranging between 0 and 250 ms from
sample onset. Then, we tested whether the trained classifier could
identify the orientation of the working memory item in 12 ms
data bins collected 0–250 ms following impulse stimulus onset. In
each 12 ms time bin following impulse stimulus onset, classifier
performance was tested against the time-matched time bin fol-
lowing onset of the memory stimulus (see Supplementary Fig. 2a
for the weights). The time-resolved analysis of classifier perfor-
mance was necessary as we did not know in advance at which
delay the effect of the impulse stimulus would affect the content
information present in the EEG signal (which for example
depends on information processing delays in the brain).

In addition, to relate the strength of working memory content
to the phase of low-frequency oscillations, we tested the effect of
the alpha and theta phase at impulse stimulus onset on time-
resolved classification success of the working memory item. To
test phase-dependent modulation of classifier performance in the
different time bins, we first estimated phase at impulse onset (for
frequencies ranging from 4 to 15 Hz) by extracting the phase
from the FFT of data in a three-cycle time window preceding
impulse onset (Methods). We only included data preceding the
onset of the impulse stimulus to avoid effects of smearing the
post-stimulus window into the phase estimation (see refs. 26,27).
Note that alpha and theta phase just prior to impulse stimulus
onset can be expected to be random across trials, thus permitting
tests of phase-dependent classification accuracy. Secondly, we
then quantified the relationship between accuracy of classifier
performance in a given time bin and phase at impulse stimulus
onset. The accuracy-phase relationship was expressed by a vector
calculated from the phases of the correctly classified trials. This
vector has a vector angle (VA) and a vector length (VL). The VA
represents the circular mean of the phase distribution. The VL is
related to the width of the phase distribution and expresses how
systematically a correct classification is related the VA, with
values ranging from zero (no relation) to one (perfect relation; for
details see Methods).

For frequencies 4–15 Hz and for each time bin, the significance
of VL was evaluated using cluster statistics28. To this end, the
observed VL was compared to the median of a baseline VL
distribution generated by 1000 permutations with randomized
accuracy labels, calculated per individual (Methods). Note that
this analysis allows for multiple comparison correction, but not to
make direct conclusions on the onset of the time and frequency
point within the investigated data window28,29. Significant phase-
dependent modulation of the decoding accuracy was present at
two clusters overlapping in frequency content: (1) between 4 and
10 Hz, 0.19 and 0.22 s after impulse onset and (2) between 6.7 and
14.5 Hz, 0.13 and 0.14 s after impulse onset (see Fig. 1a; cluster
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statistics: 2.49; p= 0.016 and 2.03; p= 0.03 for cluster one and
two respectively). To test for the reliability of these clusters, we
correlated the VL calculated with the odd and even trials for each
data point over participants. Within the cluster an average
correlation of 0.168 was found, while outside of the cluster this
correlation was 0.004. This indicates that theta/alpha phases at
impulse onset influenced classification performance of the
memory item. This is an important result, as it supports the
idea that memory read-out amplification and consequent
classifier performance is phase-dependent.

The analysis of VL is blind to the values of VA in individual
participants. Therefore, we next explored whether the phase with
best memory amplification was consistent over participants.
While invasive recording data suggest a systematic relationship
between phase and the activity level across individuals (see e.g.16),
human electrophysiology has shown mixed results regarding the
phase consistency across participants for pre-stimulus effects. For
example, Mathewson et al.30 have found a systematic relationship,
whereas others found variations among participants31,32. To test
across-participant consistency of phases with maximized decod-
ing in our analysis, we extracted for per participant the VA at the
maximum VL-value of the two significant clusters. For these
phases, the vector showed different phase angles (VAs) across
participants, with a distribution that was not significantly
different from uniform (Supplementary Fig. 3; Cluster 1: Rayleigh
test Z= 0.945, p= 0.394; Cluster 2: Rayleigh test Z= 0.574, p=
0.566). This indicates that although phase modulated the decoder
performance for each participant, the phase of maximal decoding
performance was not consistent across participants. This may be
due to the fact that in EEG signal, the phase of oscillatory signals
measured at the scalp is determined by many factors, for example
volume conduction and the superposition of electric potentials,
that could reduce this phase consistency over participants.
Alternatively, the exact phase at which the most working memory
information (in contrast to the most activation) is present is not
identical over participants.

So far, we have shown that success of the linear classifier in
extracting working memory content (as indexed by VL) was
modulated by phase, but that the specific phase (VA) at which
classification was optimal differed across participants. This raised

the question whether the classifier performance around the
individual VA was higher than expected by chance classification
performance. To quantify and test the expected gain in classifying
accuracy, we extracted the mean classifier accuracy around the
VA (from −0.5π to 0.5π around the VA) and around the VA+ π
(from −0.5π to 0.5π around the VA). Note that this relates to a
post hoc analysis of the main effect. We maximized the bins
around VA and VA+ π to optimize statistical power, but in the
supplementary materials we also split the bins in smaller parts
(Supplementary Fig. 4a). We tested the observed classifier
accuracy to the median of the chance distributions of accuracies
obtained after 1000 permutations of correct/incorrect classifica-
tion labels at the stage of calculating the VL. Finally, the classifier
accuracy was also tested against null distributions achieved by
permuting the original labels (orientation labels) going into the
decoding. Initially, we entered the resulting values in a ANOVA
with factors phase bin (VA and VA+ π), cluster (cluster 1 and
cluster 2), and permutation type (original data, permutation at
VL stage, permutation at decoding stage). However, no main
difference was found between the two clusters shown in Fig. 1a
(F(1,18)= 2.048, p= 0.17; Supplementary Fig. 4b). Therefore, we
selected the maximum VL from the pooled data over clusters for
this and the following analyses. Also, no significant VL was found
for higher frequency ranges or using all channels or only frontal
channels (Supplementary Fig. 4c–f).

We found an accuracy of 28.2% and 21.5% at the VA and
VA+ π bin respectively (blue bars in Fig. 1b+ Supplementary
Fig. 2B for the full time course). Significant increases in the accuracy
for the observed VA bin compared to the correct/incorrect
label permutations were also found (t(18)= 10.07, p < 0.001;
t(18)=−9.94, p < 0.001). Finally, also the classifier accuracy was
significantly different from permutations based on the original
orientation labels for the decoding (t(18)= 4.35, p < 0.001; t(18)=
−6.12, p < 0.001). These analyses confirm that theta/alpha phase
modulated the performance of the memory item decoding and that
more information, i.e., a stronger neural representation, about the
memorized stimulus orientation was present in a broad range of
phases centered on the individual VA. Importantly, the average
event-related potentials associated with the VA bin and the opposite
bin did not significantly differ from each other for both training and
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Fig. 1 Phase-dependent decoding of working memory content by a classifier trained on the sample item. a Vector length (VL) results shown in time
frequency representations. Time zero represents impulse onset (impulse duration was 200ms). Top figure indicates the absolute VL. The bottom figure
represents the difference between the VL and the random VL based on permutations. The black contour indicates significant clusters at an alpha of 0.05.
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testing trials (Supplementary Fig. 5; cluster with lowest p-value
Memory item: clusterstatistics=−1.82, p= 0.112 at 0.128–0.140 s;
cluster with the lowest p-value Impulse item: clusterstatistics=
−0.81, p= 0.311 at 0.136–0.140 s). This excludes that classification
performance at the VA is solely due to stronger event-related
responses or better signal-to-noise ratios at the VA33. Instead, the
decoding finding can only be explained if the distributed response
profile evoked by the impulse more closely matches the response
profile of the memorized item when the impulse is presented within
a specific restricted phase range.

Impulse presentation at specific phases improves performance.
The previous analysis investigated whether phase influences the
content representation of memorized items. Next, we investigated
whether and how phase modulates behavioral working memory
performance. We selected trials with orientation differences
between the sample and test item corresponding to performance
levels below 80%. This selection of more difficult trials was neces-
sary because more easy trials (>80% correct performance) in which
performance would already be near ceiling preclude the detection of
phase-dependent performance benefits. Again, a VL analysis was
performed. This time, we extracted the phase at the impulse sti-
mulus onset for each behaviorally correct trial, weighting the trials
by the orientation difference between the test and sample item
(normalized weights using the mat2gray function in matlab on 34
[maximum orientation difference] minus the orientation difference;
see Methods). As in Fig. 1, the present analysis was centered at the
oscillation frequency showing the highest individual VL decoding
modulation. Oscillatory phase at impulse onset indeed modulated
the accuracies (Fig. 2a; t(18)= 2.64, p= 0.008; See Supplementary
Fig. 6 for the two clusters separately; no main difference between
the clusters t(18)= 0.65, p= 0.524).

The previous analysis showed that the phase at which an
impulse stimulus is presented influences subsequent behavioral
working memory performance. To expand on this finding, we
next investigated the memory performance around the VA
(+/−π) and the VA+ π (+/−π), as well as comparing these
performances to trials where the impulse stimulus was absent.
Therefore, we extracted the weighted accuracy (weighted by
difficulty, see Methods) for two phase bins and the respective
permutations, similar to the decoding analysis. Behavioral
accuracies at the phase bins centered on participants’ VA were

significantly higher than expected from permutation-based
distributions (VA bin: t(18)= 4.09, p < 0.001; VA+ π bin:
t(18)=−4.09, p < 0.001).

If neuronal working memory representations were activated by
presenting an impulse stimulus at specific phase ranges, memory
performance during these trials should be better compared to
trials of the same length without an impulse stimulus. To test this
hypothesis, we conducted a one-way ANOVA including the factor
trial type with the levels VA, VA+ π and noImpulse. This analysis
showed a main effect of trial type (Fig. 2b; F(2,36)= 17.43, p <
0.001). Follow-up test showed that the accuracy at the VA trials
was higher than the no impulse trials (t(18)= 4.21, p < 0.001), but
the accuracy in the VA+ π did not differ from the no impulse
trials (t(18)=−1.12, p= 0.276). To ensure that this effect was not
due to extracting the phases at the mean phase of the accurate
trials, we did the alignment for the noImpulse trials, using random
phase angles. Still, after controlling for this alignment, the VA was
significantly different from the no impulse trials (t(18)= 2.34, p=
0.031).

Finally, to obtain further support for the phase-dependency of
behavioral classification performance, we computed for each
participant the difference between the VA from classifier data
and the VA from behavioral data. This analysis revealed that the
VA differences were uniformly distributed on zero as shown by V-
statistics (Fig. 2c34; Z(19)= 12.10, p < 0.001) or by permutations of
the absolute phase difference (Fig. 2d; p= 0.017). This demon-
strates that the phases at which the behavioral accuracies and
classifier accuracies were highest converged to the same phase.

The results presented here are to our knowledge the first
demonstration in humans that neural memory content representa-
tion fluctuates in a phase-dependent manner at theta/alpha
frequencies, and that the read-out of the neural representation as
well as the corresponding working memory performance can be
enhanced by a phase-specific sensory impulse stimulus. Moreover,
the phase-dependent enhancements of working memory informa-
tion content as quantified here by decoder accuracy were mirrored
by corresponding enhancements of human working memory
performance. These findings show for the first time the interaction
between oscillation phase and information content during working
memory as postulated in some theoretical models (e.g.,9,35).
Remarkably, this interaction was also present in publicly available
EEG data from Wolff et al.23, who in their study focused
exclusively on the successful decoding of working memory content
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following an impulse stimulus without considering oscillatory
phase effects. Our re-analysis of the data set by Wolff et al.23

provided additional support for the main findings in the present of
our study (see Supplementary Figs. 7–10, Supplementary Notes 1
and 2, and Supplementary Discussion).

Discussion
Theoretical proposals on the function of working memory have
suggested that working memory content is represented in a dis-
tributed activity pattern across the brain, and that this repre-
sentation is maintained in a cyclical manner9. We have performed
a test of the phase-dependency of the representation of working
memory content in human participants. To this end, we analyzed
EEG data in which items had to be maintained in working
memory during a retention period. Using classifier performance to
probe and quantify working memory content representations in
the brain, we found that the read-out of retained information by a
memory-trace-boosting impulse stimulus was strongest for a
limited range of ongoing oscillatory theta/alpha phases. Behavioral
accuracies were also modulated by theta/alpha phase. Intriguingly,
the phase at which decoding performance was highest closely
matched the phase at which behavioral performance was at its
optimum. The behavioral accuracy at the optimal phase ranges
was also significantly higher compared to trials were the impulse
stimulus was absent. These results suggest a phase-dependent
representation of information content during working memory
maintenance. Accordingly, strengthening the memorized infor-
mation at the optimal phase of this cyclic representational
mechanism systematically improved decoding of its neural
representation and at the same time improved the accuracy of
human memory performance. In addition, memory performance
was better in trials with a memory-trace-boosting impulse sti-
mulus at the right phase than in trials without.

Theta phase has been proposed to influence memory
retention9,13,25. Specifically, it is suggested that neuronal activity at
specific theta phases retains content information of the memorized
item. In this way, relevant memory information can be grouped and
separated from other irrelevant information18,36,37. Indeed, it
has been shown that gamma power is strongest at specific
phases1,15,38,39, and that single neurons phase-lock to restricted
theta phases during working memory paradigms16,35. While these
studies show that neuronal activity centers around specific phases,
the current study exploited a multivariate approach to demonstrate
that it is the content of the information that is preferentially stored
at specific phases within the oscillatory cycle (see also refs. 19,40).
The extraction of this phase-dependence in the post-impulse win-
dow could be a results of differences in the evoked response or a
cross-talk between the impulse-evoked response and the ongoing
brain activity that preserves the pre-stimulus phase (see also the
Supplementary Discussion). The same research lines have suggested
distinct roles for theta and alpha in working memory9,25. However,
our study did not show this differentiation as the frequency bands
involved covered both the alpha and theta range.

The improved decoding for restricted alpha/theta phases mat-
ched modulations of behavioral performance. Specifically, the phase
of optimal behavioral performance mirrored the phase at which
decoding performance was highest. Moreover, performance at these
phases was higher compared to trials where no impulse stimulus
was presented. This suggests that memory can be improved by
activating the memory trace at the right moment in time. In line
with this, brain stimulation studies suggest that stimulation effects
depend on oscillatory phase41,42, and that memory performance
depends on the phase coherence between different regions43.
Oscillatory phase may be the relevant parameter to consider for
optimizing memory improvement interventions.

Previous studies have shown memory-related activity specific
to restricted phases16,19,39. The present report adds two new
insights to current knowledge. First, we demonstrated for the first
time in humans that it is also the information content, and not
only activity level, that is modulated by phase. This is compatible
with a monkey neurophysiological study showing higher infor-
mation content in spiking rates on distinct oscillatory phases in
neurons in the PFC18. Second, we demonstrated the behavioral
relevance of the phase-dependent coding of information content
in working memory. Not only did we show a correlation between
working memory performance and the low-frequency oscillation
phase at which the impulse stimulus was shown, the simple
intervention of presenting an impulse stimulus during the
working memory delay also enhanced working memory com-
pared to trials in which the impulse stimulus was absent. These
findings provide crucial support for influential theories of
working memory that more than two decades ago have proposed
the phase-dependence of working memory information content
and performance9,44.

It has been suggested that multivariate classification of mem-
orized information content after an impulse stimulus reflects the
read-out of latent representations that are only present in the
synaptic connectivity, without a level of ongoing neural
activity22,24,45. The impulse stimulus allows for this read-out,
similar to a sonar, but is hypothesized not to modulate the
representation45. In our measurements, we show that the electro-
physiological and behavioral effects of the impulse stimulus
depend upon the phase of ongoing theta activity. This suggests, in
line with a large body of evidence, that there is ongoing neural
activity of which the amplitude in a subpopulation representing the
memory trace is modulated by phase38,46,47. Considering this
increased memory performance, the working memory repre-
sentation was—at a minimum—maintained better following an
impulse stimulus at the right phase than by not presenting the
impulse stimulus (see also ref. 48). It is difficult to imagine the
impulse has a phase–dependent effect on decoding and working
memory success, while at the same time the working memory
neural trace would be latent and independent of phase. Of course it
is possible that part of a neuronal representation is latent, but the
part of the representation we probe in our study is most likely not.

Our findings are the first to show in human EEG a phase-
dependent modulation of neural representation strength of
memory content in the range of alpha and theta. We demon-
strated that the cyclic representation of memory content has
direct behavioral consequences for working memory perfor-
mance. In addition, strengthening the memorized information at
the optimal phase using an impulse stimulus not only system-
atically improved decoding of its neural representation, it also
improved the accuracy of human memory performance beyond
that observed without the impulse stimulus. Beyond their theo-
retical relevance, these novel mechanistic insights have direct
implications for future therapeutic protocols aimed at improving
human working memory.

Methods
Participants. In total 20 participants completed the experiment (mean age: 24.4,
range 18–45, 15 females). All had normal or corrected-to-normal vision. One
participant was excluded due to low behavioral performance. All participants were
informed about the study in advance and gave written informed consent prior to
participating. The study was approved by the local ethical committee of the faculty
of Psychology and Neuroscience at Maastricht University (ethical approval num-
ber: ECP-127 14_04_2013). Monetary compensation or participation credits were
given to the participants for their time.

Stimuli and procedure. During the experiment participants sat in a Faraday
shielded room at 60 cm distance from the monitor. Most procedures and stimuli
were similar to Wolf et al.23. During the trial two or three different stimuli were
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presented: a memory item, a target item, and potentially an impulse item. The
memory item consisted of Gabor patches presented at 2.88 visual angle, with 0.62
cycles per degree at a random phase, at 20% contrast, presented for 200 ms. The
orientation of the stimuli was randomly varied over all trials. The background was
gray (RGB values: 127.5, 127.5, 127.5). The target item was identical to the memory
item, except that the contrast was set at 100%. The target item had a specific angle
offset from the memory item and could be at a −2, −4, −5, −7, −9, −12, −15,
−20, −26, −34, 2, 4, 5, 7, 9, 12, 15, 20, 26, or 34 angle difference. The impulse
stimulus consisted of a bullseye stimulus at a 100% contrast, at 0.62 cycles per
degree, and was presented for 200 ms.

There were three different trial types: long impulse trials, short no-impulse
trials and long no-impulse trials. During long impulse trials first the memory item
was presented, the impulse stimulus was presented at a stimulus-onset asynchrony
of 1300–1500 ms (at a uniform distribution). The target item was always presented
at 2800 ms after the memory item onset. During the short and long no-impulse
trials, no impulse stimuli were presented and the stimulus-onset asynchrony
between the memory and target item was 1400 and 2800 ms respectively. The order
of the trial types and angle differences were randomized. In total there were 1600
trials (800 long impulse trials, 400 short no-impulse trials, 400 long no-impulse
trials). After the participants responded they heard a feedback sound monitoring
their performance (880 Hz for correct and 440 Hz for incorrect, 50 ms duration).
The next trial started after 1500 ms after the response of the participant. After every
24 trials the participant received feedback on their average performance of that
block and could take a small break. After every five mini-blocks the participant had
a longer break and allowed the experimenter to monitor the EEG signal.

EEG acquisition and pre-processing. Data was acquired with a 64-channel pas-
sive EEG system (Brain Products). Data was acquired at a 1000 Hz sampling rate
with online band pass filter of 0.01–200 Hz (BrainVision Recorder software) using
a BrainAmp Amplifier. Impedance was kept below 10 kiloOhm. The ground
electrode was placed at Afz, and the online reference at the right mastoid. Three
EOG were place at the outer canti of the eye and below the left eye to monitor eye
movements. Pre-processing consisted of epoching the data between −3 and +2
around stimulus onset (for memory and impulse items). Then data was re-
referenced to the average of all EEG channels, demeaned, resampled to 250 Hz, and
bad trials were removed via visual inspection. Eye movements and muscle artefacts
were corrected using ICA decomposition.

MVPA analysis. We trained a linear discriminant analysis (LDA) classifier using
data at the time point of memory item presentation to discriminate between four
90 degree phase bin categories (using the COSMO toolbox49). This training was
repeated twice for two different mean angle orientations per phase bin, similar as in
(Wolff et al.23; categories for training 1:0–45, 45–90, 90–135, 135–180. Categories
for training 2: −22.5–22.5, 22.5–67.5, 67.5–112.5, 112.5–157.5). We repeated the
training for different time bins, ranging from 0 to 300 ms in steps of 4 ms (in each
training three consecutive data points/12 ms were included in the analysis). Elec-
trodes included in this analysis were P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO3,
POz, PO4, PO8, O2, O1, and Oz. These electrodes were used as we expected the
strongest effects over occipital/parietal cortex in response to the visual impulse
stimulus. Moreover, these channels were identical to the analysis of Wolff et al.23.
We then tested whether the classifier could distinguish the orientation of the
memory item based on the data presented after impulse onset matching the
training and testing time. The results of this analysis is an accuracy for every single
trial per time point (zero or one), which was used for the subsequent VL analysis50.
Note that this memory-to-impulse cross-generalization did not result in significant
orientation decoding in Wolff et al.23. However, we choose for this memory-to-
impulse cross-generalization instead of any impulse-to-impulse decoding for two
reasons: (1) our training data was independent of phase and solely contained the
direct sensory response to the orientation stimulus. (2) We avoided splitting the
data into phase bins which would highly reduce the power of our analysis.
Moreover, we predicted modulations of orientation decoding and thus expected
significant decoding only for a restricted phase range.

VL analysis. In the VL analysis we investigated whether the accuracy of decoding
depends on the phase of ongoing oscillations at the time point of the impulse
presentation. To extract ongoing oscillatory phase we performed a fast-Fourier
transform (FFT) for frequencies ranging from 4 to 12 Hz in steps of 0.1 Hz with the
Fieldtrip toolbox51 using a Hanning taper. Data included three cycles of data prior
to the onset of the impulse (thus the time window was frequency dependent). This
entails repeating the FFT multiple times to ensure that for the estimated frequency
stationary within the included time window would hold. We extracted the esti-
mated phases for each trial which was correctly classified. Then, we calculated the
vector of all these phases. This vector has both a phase angle (VA) and a VL. The
length varies between 0 (uniform distribution of phases) and 1 (all phases centered
at one angle). Subsequently, we estimated for each data point what the expected
random VL would be by shuffling the accuracy labels and calculating the VL for
random phase-accuracy associations. We took as our random VL the median of
1000 repetitions. We calculated the difference of the VL with the random VL and
performed a non-parametric Monte Carlo test. We corrected for multiple

comparisons using cluster thresholding as implemented in Fieldtrip (clusteralpha:
0.05; maxsum as dependent variable of the clustering).

VA analysis. We extracted mean accuracy for −0.5π to 0.5π around the VA and for
−0.5π to 0.5π around the VA+ π per participant at the center of the VL analysis
effect (time/frequency point with significant cluster with the strongest effect). We
compared the two phases bins in two ways. First, we determined an empirical mean
accuracy per phase bin by calculating the mean accuracy per phase bin but centering
determining the VA with the vector for each permutation (calculated before in the VL
analysis). Each phase bin was then compared with its own empirical chance accuracy
with paired samples t-tests. This analysis was performed as it is possible that even by
picking the phase of a random vector higher mean accuracy for that phase bin are
acquired. In a second permutation round, the testing labels in the decoding stage were
randomized (n= 1000). The rest of the analysis was identical as for the original VA
analysis (but using the original time/frequency point per participant).

ERP analysis. ERPs were calculated for the trials+/− 0.5π around the mean phase
of the vector and around+/− 0.5π around the mean phase of the vector+ π. These
ERPs were calculated for both around the time of the Memory item and the
Impulse item. We compared for each frequency and item type the mean phase and
the mean phase+ π with each other for the interval between 0 and 0.15 s averaging
over the channels used for the decoding analysis using a non-parametric Monte
Carlo simulation of the mean difference as dependent variable. We corrected for
multiple comparison using cluster based thresholding (clusteralpha: 0.05; maxsum
as dependent variable of the clustering).

Behavioral VL analysis. We extracted the accuracies. We only included trials with
angle differences at which participants performed between 50 and 80% correct. The
50 and 80% thresholds were estimated by fitting a probit function to the data (using
the modelfree toolbox52). The probit function was fitted on angle difference, using
as dependent variable percentage leftward orientation responses (thus ranging from
0 to 100). Trials with angle differences between 20 and 80% leftward orientations
were used in subsequent analysis (corresponding to accuracies between 50 and
80%). On average 38.0% of the trials were removed (range: 25.3–55.4%). We
repeated the VL analysis for the accuracy using the frequencies with the most
significant effects but by using the angle differences as a weighting factor (so that
phases of more difficult trials had a higher influence). The factor was calculated by
normalizing the angle differences between the memory item and the probe between
0 and 1 (using the mat2gray function in matlab).

VA comparison. We calculated the difference between the VAs of the MVPA and
the behavioral analysis. A V-test was performed to identify whether the phase
differences were uniformly distributed on zero. This test is similar to the Rayleigh
test, but preferred when there is an expected phase direction. Moreover, the test
will be non-significant for data that is either not uniform or has a different mean
phase. Additionally, we tested via permutation tests whether the phase difference
was non-uniform around zero using the V-statistics as dependent variable (using
the VA of the permutation calculated in both VL analyses).

Behavioral VA analysis. Firstly, we repeated the VA analysis based on the
decoding for the behavior. Here, the dependent variable was the weighted accuracy
calculated by taking the sum of the weights for the accurate trials and dividing by
sum of all the weights. The permutation tests were based on random shuffling the
phase labels, recalculating the aligned weighted accuracies. In a second step we were
interested whether the impulse stimulus at the VA improved behavioral perfor-
mance relative to having no impulse stimulus at all (i.e., the long no-impulse trials).
Therefore, we recalculated the weighted accuracies including all trials (as we wanted
to directly compare accuracies over different trial types, we could not restrict the
analysis to a relevant optimized range). As the long no-impulse trials had half the
trials, the VA analysis was repeated 1000 times using the same amount of trials as
present in the no-impulse trials. The average weighted accuracies were used. Then a
repeated measures ANOVA was used including the factor item condition (levels:
VA, VA+ π, no-impulse) was performed. Pairwise comparisons followed this
analysis, using Bonferonni correction. Finally, the original behavioral VA condition
was compared to the median of 1000 arbitrarily calculated weighted accuracies of
the VA of the no-impulse trials (using the phases of the impulse trials).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The EEG data and behavioural logfiles related to the figures are available in the repository
of Maastricht University (https://hdl.handle.net/10411/NUNJML).

Code availability
The code related to the figures are available in the repository of Maastricht University
(https://hdl.handle.net/10411/NUNJML).
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