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Abstract

Background: Depression during pregnancy and in the postpartum period is associated with poor outcomes for women and their
children. Although effective interventions exist for common mental disorders that occur during pregnancy and the postpartum
period, most cases in low- and middle-income countries go untreated because of a lack of trained professionals. Task-sharing
models such as the Thinking Healthy Program have shown potential in feasibility and efficacy trials as a strategy for expanding
access to treatment in low-resource settings; however, there are significant barriers to scale-up. We address this gap by adapting
Thinking Healthy for automated delivery via a mobile phone. This new intervention, Healthy Moms, uses an existing artificial
intelligence system called Tess (Zuri in Kenya) to drive conversations with users.

Objective: This prepilot study aims to gather preliminary data on the Healthy Moms perinatal depression intervention to learn
how to build and test a more robust service.

Methods: We conducted a single-case experimental design with pregnant women and new mothers recruited from public
hospitals outside of Nairobi, Kenya. We invited these women to complete a brief, automated screening delivered via text messages
to determine their eligibility. Enrolled participants were randomized to a 1- or 2-week baseline period and then invited to begin
using Zuri. We prompted participants to rate their mood via SMS text messaging every 3 days during the baseline and intervention
periods, and we used these preliminary repeated measures data to fit a linear mixed-effects model of response to treatment. We
also reviewed system logs and conducted in-depth interviews with participants to study engagement with the intervention,
feasibility, and acceptability.

Results: We invited 647 women to learn more about Zuri: 86 completed our automated SMS screening and 41 enrolled in the
study. Most of the enrolled women submitted at least 3 mood ratings (31/41, 76%) and sent at least 1 message to Zuri (27/41,
66%). A third of the sample engaged beyond registration (14/41, 34%). On average, women who engaged post registration started
3.4 (SD 3.2) Healthy Moms sessions and completed 3.1 (SD 2.9) of the sessions they started. Most interviewees who tried Zuri
reported having a positive attitude toward the service and expressed trust in Zuri. They also attributed positive life changes to the
intervention. We estimated that using this alpha version of Zuri may have led to a 7% improvement in mood.

Conclusions: Zuri is feasible to deliver via SMS and was acceptable to this sample of pregnant women and new mothers. The
results of this prepilot study will serve as a baseline for future studies in terms of recruitment, data collection, and outcomes.
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Introduction

Depression is a leading cause of disability worldwide. Women
experiencing perinatal depression are a particularly underserved
population. Depression during pregnancy and in the postpartum
period (perinatal depression) affects as many as 20% of women
in high-income countries [1] and may be more prevalent in low-
and middle-income countries (LMICs) [2]. The condition is
associated with a number of poor outcomes in women and their
children, including increased maternal morbidity and mortality
[3,4], poor infant health [5-9], and poor developmental outcomes
[10-12].

Although effective interventions exist for common mental
disorders that occur during pregnancy and the postpartum period
[13], most cases in LMICs go untreated. In these settings, more
than 7 of 10 people who need treatment cannot access care
because of a lack of trained professionals [14]. In Kenya, for
example, there are only 180 psychiatric nurses outside of the
capital city, a ratio of about 1 provider per 200,000 to 250,000
people. To close this gap, the World Health Organization
developed the Mental Health Gap Action Programme (mhGAP)
intervention guide, which outlines how to deliver mental health
services in primary health care settings through nonspecialist
providers. This task-sharing approach has proved efficacious,
particularly for maternal mental health [15].

One example of an intervention based on the mhGAP
intervention guide is the 15-session Thinking Healthy Program,
a cognitive behavioral therapy (CBT)–based intervention for
treating perinatal depression that is intentionally nonstigmatizing
(eg, uses words such as stress and burden instead of depression
and illness) [16]. Community health workers—typically women
educated through secondary school with no specific background
in mental health—are trained over 5 to 10 days to help pregnant
women learn three skills: to identify unhealthy thinking, to
replace unhealthy thinking with helpful thinking, and to practice
thinking and acting healthy. In a trial in Pakistan with 900
pregnant women, Rahman et al [17] found that the intervention
halved the prevalence of major depression, and a 7-year
follow-up study reported a persistent effect of treatment (as well
as some spontaneous recovery among the control group) [18].
A peer-delivered version of Thinking Healthy may offer an
alternative, cost-effective strategy for treating perinatal
depression [19].

Despite this impressive evidence of feasibility and efficacy,
there are significant barriers to scale-up [20], and there is
evidence that the effects of Thinking Healthy might not extend
to children of depressed mothers without additional engagement
[21]. Common implementation challenges of task-sharing
models include a lack of funding and infrastructure for training
and service delivery, workforce retention in the absence of

compensation or incentives for nonspecialists, high workloads,
transportation costs, appointment scheduling logistics, and
inadequate clinical supervision [22]. Although it is critical to
study how to optimize and scale these task-sharing approaches,
the fact remains that today, most women in LMICs who need
treatment still have no access to care.

Given this treatment gap and barriers to scale-up, our intention
is to make it possible for anyone with a basic mobile phone (ie,
a feature phone with only text messaging capabilities) to receive
high-quality, evidence-based psychological support anytime,
anywhere. We are attempting this in the context of perinatal
depression by adapting Thinking Healthy to an existing artificial
intelligence (AI) system for automated psychological support
called Tess, which we have named Zuri in Kenya. This idea is
innovative because it introduces an entirely new delivery
channel that has the potential for a step change in expanding
access to care while also potentially augmenting and
strengthening existing task-sharing models.

Zuri works by engaging a patient in conversation via a variety
of trusted channels, including text messaging (SMS). Either
Zuri or the patient can start a conversation, and Zuri can be
programmed to walk a patient through a structured curriculum
such as Thinking Healthy. As a safety measure, conversations
with patients in need of additional support can be handed over
to live counselors as needed. The potential benefits of this
approach include on-demand 24/7 access for an unlimited
number of patients, no scheduling of appointments, no travel
costs to appointments, enhanced sense of privacy and avoidance
of social stigma, and high fidelity to treatment.

Our long-term goal is to expand access to high-quality,
on-demand treatment services to people who have common
mental disorders such as perinatal depression but cannot receive
care from mental health professionals because of cost and human
resource constraints. The main objectives of this study are to
adapt Thinking Healthy for dissemination in Kenya through the
Zuri AI system, develop and test study procedures to inform
the design of a randomized controlled trial (RCT), and generate
preliminary evidence of feasibility, acceptability, and response
to treatment.

Methods

Research Design
We adapted Thinking Healthy for the Zuri AI system and
evaluated the combined perinatal depression intervention, which
we are calling Healthy Moms, with a cohort of pregnant women
and new mothers recruited from 2 large public hospitals in
Kenya. We used a single-case experimental design (partially
nonconcurrent multiple baseline [23], open label) and qualitative
interviews to generate preliminary data on feasibility,
acceptability, and response to treatment. This is a stage 2
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Registered Report. The stage 1 protocol
(DERR1-10.2196/11800) describes our preliminary work to
adapt Thinking Healthy for dissemination in Kenya through the
Zuri AI system [24].

Participants and Recruitment
We recruited pregnant women and new mothers from 2 large
public hospitals in Kiambu County, Kenya (population
approximately 2.5 million, 60% urban). Both hospitals are part
of a county-wide partnership offering patients innovative SMS
programs that promote healthy motherhood [25]. When a woman
signed up for the county SMS, we sent her an invitation via
SMS to complete an automated SMS screening (in English) to
determine if she was eligible for Healthy Moms. The screening
included questions about age, maternity status, expected or
actual delivery date, 9 questions about symptoms of depression
from the Patient Health Questionnaire–9 (PHQ-9) [26], and a
question about her current mood.

We informed all women who completed the automated screening
that a study team member would call them within 1 business
day. During this follow-up call, women who endorsed having
thoughts of self-harm in the previous 2 weeks (question 9 on
the PHQ-9) were offered a referral for counseling but were not
eligible to enroll in Healthy Moms, given the early stage of
intervention development. All other women were eligible to
enroll as long as they confirmed that they were at least 20 weeks
pregnant or no more than 6 months postpartum. The study
coordinator (AM)—a Kenyan woman fluent in English and
Swahili—assessed each woman’s English-speaking ability on
the call and asked women to rate their ability to read and
understand English. Women could enroll regardless of language
ability; however, we informed women with low English literacy
that they might not find value in the current version of the
program if they were not comfortable reading and writing in
English.

If a woman chose to continue the enrollment process, the study
coordinator read the informed consent form, answered her
questions, and obtained verbal informed consent to enroll. The
study coordinator asked enrollees to share information about
the type of phone they use, schooling, number of dependents,
marital status, and employment status.

Eligibility
To be eligible to participate, women needed to meet the
following criteria: (1) pregnant (>20 weeks) or less than 6
months postpartum, (2) receiving antenatal or postnatal health
care services from a participating hospital in Kiambu County,
(3) have access to any type of mobile phone, (4) be enrolled in
the county SMS program, and (5) be at least 18 years of age.
English language proficiency and self-reported experience of
depression symptoms were not required but were assessed.
Women who endorsed suicidal ideation at the time of
recruitment were ineligible to enroll in the study and were
informed about potential resources for treatment.

Randomization to Baseline Length
As each woman enrolled in the study, we attempted to match
her to another new enrollee of similar maternity status and

randomly assigned the pair to have a 1-week or 2-week baseline
period (using a random number generator). The intention was
to ensure that every participant had a concurrent baseline period
with at least one other person.

Intervention
We developed the Health Moms intervention based on the
original Thinking Healthy manual for community health workers
[16]. We also created a companion Healthy Moms journal that
we printed and delivered to enrolled participants [27]. The
journal included modified health calendars from the original
Thinking Healthy manual along with short session summaries
and writing prompts. This prepilot study was an opportunity to
get feedback on the journal to ascertain how we might adapt
the content into text, audio, and video for electronic delivery
(and ultimately discontinue print versions in future trials). We
conducted an initial round of user testing to develop the SMS
intervention journal content [28].

Unlike Thinking Healthy, which trains community health
workers to deliver the in-person intervention to women in need,
we designed Healthy Moms for automated delivery via text
messaging. We maintained the Thinking Healthy structure of
15 sessions overall: 3 prenatal sessions and 12 postnatal sessions
during the first 10 months of the infant’s life.

When it was time for a woman to participate in a Healthy Moms
session, we (Zuri) sent her a text message to let her know that
a new session was ready. The automated session began when
she replied via SMS (Later in the study, we also enabled women
to chat with Zuri via Facebook Messenger.). Each automated
session followed the same 4-task format as that of Thinking
Healthy: (1) reviewing key lessons from the previous session,
(2) reviewing her mood ratings, (3) teaching new skills, and (4)
introducing practice-based homework. Multimedia Appendices
1 and 2 provide an example Healthy Moms session conversation
flow and associated journal content.

In between Healthy Moms sessions, women were encouraged
to start a conversation with Zuri by asking a question or saying
“Hi.” Zuri attempted to discern the user’s request and responded
automatically with answers or replies that used active listening
techniques such as restatement and reflection.

During this free chat mode, Zuri would ask a question similar
to “How are you feeling now?” If the response indicated neutral
or positive emotions, Zuri would offer a rapport-building module
(eg, music, cooking, passions). If the response indicated a
negative emotion, Zuri would offer a supportive intervention
(eg, mindfulness and relaxation). Module selection was
prioritized on the basis of aggregate helpfulness ratings from
all user interactions in the X2AI/Tess system so that the most
helpful modules were offered first. There was no limit to how
much or how often a user could engage with Zuri.

If a woman discussed self-harm or other crisis topics, Zuri
alerted a live study support member who could take over the
chat session or call the participant directly and facilitate a
referral to traditional in-person treatment if indicated (Zuri was
programmed to inform women that her response might not be
immediate at this stage of testing; therefore, they should seek
help at an emergency room if in a crisis.). During enrollment,

JMIR Form Res 2020 | vol. 4 | iss. 10 | e17895 | p. 3https://formative.jmir.org/2020/10/e17895
(page number not for citation purposes)

Green et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


we also informed participants that they were free to seek
concomitant care and interventions at any point during the study.

Just as mental health specialists and nonspecialists trained to
deliver psychotherapy improve over time with practice and
experience, AI-enhanced systems such as Zuri also change,
albeit in more subtle ways, given the current state of the
technology. For instance, Zuri’s emotion recognition algorithms
updated automatically when it correctly or incorrectly interpreted
the emotional valence of a user’s input; however, the didactic
intervention content did not change dynamically. Modifications
to the intervention content were made manually; we reviewed
conversation transcripts and made minor changes to the wording
or sequence of messages when we noticed that users were
confused or not engaging.

Outcomes and Data Collection Procedures
We collected data on study implementation, intervention
engagement, feasibility and acceptability of the intervention,
and patient outcomes, including depression severity and current
mood.

Study Implementation
We tracked data on the recruitment funnel from the initial
screening invite through the secondary eligibility screening to
ultimate engagement with the intervention. We also tracked
participants’responses to regular prompts to complete automated
assessments throughout the study period.

Intervention Engagement
We assessed intervention engagement by reviewing Zuri system
logs to document the completion of Healthy Moms sessions and
patient-initiated engagement with Zuri outside of scheduled
sessions. The Zuri system logs also informed our assessment
of feasibility and acceptability; low engagement was considered
a marker of potential barriers to feasibility or a lack of
acceptability.

Feasibility and Acceptability of the Intervention
We further explored feasibility and acceptability by inviting 15
enrolled women to participate in individual interviews during
the evaluation period. We purposively invited 3 different types
of participants: those who did not finish the registration process
with Zuri (n=5), those who finished the registration process but
did not complete a session (n=5), and those who completed at
least one session (n=5). A master’s level trainee (YL) and the
study coordinator (AM, Kenyan) conducted the interviews.
Women who did not complete a full session with Zuri were
interviewed over telephone. Women who completed one or
more sessions were reimbursed to travel to one of the study
hospitals for an in-person interview. The interviews lasted
approximately 20 to 40 min and were based on a semistructured
interview guide. The guide included open-ended questions and
follow-up probes related to reasons for using Zuri, attitudes
toward Zuri, favorite features, preferences of language and
platform, challenges encountered, and perceived impact after
using Zuri. The interviews were conducted in English; however,
the study coordinator provided simultaneous translation to
Swahili as needed.

In addition to these interviews, we also attempted to document
all contacts the research team had with participants outside of
the Zuri AI system and logged all adverse events. We were
interested in determining how much assistance or encouragement
users need from the team to understand and use the automated
intervention.

Patient Outcomes
To measure mood, we asked participants to rate their feelings
on a 10-point scale that we created and tested with users [24],
where 1 meant very sad and 10 meant very happy (shifted to
0-9 for analysis). We invited women to rate their current mood
via SMS during the enrollment screening and then every 3 days
throughout the baseline and intervention periods. Each rating
invitation reminded women of their previous rating. We also
encouraged women to track and reflect on their mood and
behaviors on a daily basis using the Healthy Moms journal we
provided as part of the intervention (not analyzed) [27].

We also administered the PHQ-9 [26] via SMS. Our intention
was to assess depression severity throughout the intervention
period. However, after developing the protocol, we determined
that the depression screening was too long to administer on a
repeating basis. Instead, we opted to collect our minimum target
of 2 self-ratings of depression severity, representing pre- and
posttreatment.

Empirical Approach

Describe Study Implementation and Intervention
Engagement
We used the study database to summarize the recruitment funnel
and outcome data collection progress. We quantified
intervention engagement in several ways. First, we used the
system logs to summarize how frequently each participant
engaged with the intervention by either participating in a Healthy
Moms session (in response to a scheduled invite) or initiating
a chat with Zuri in between the scheduled sessions. We also
calculated and summarized the delay between our invitations
to begin a Healthy Moms session and participants’ start times,
the proportion of Healthy Moms sessions started and completed,
and the duration of participant-initiated chats with Zuri.

Explore Intervention Feasibility and Acceptability
As a hypothesis-generating exercise, we estimated the magnitude
and direction of the associations between participant
characteristics measured at baseline (eg, age, education, literacy,
and symptom severity) and intervention engagement by fitting
a Bayesian linear regression model.

We also explored barriers to and facilitators of engagement
during in-depth interviews with participants and reviews of chat
transcripts. Throughout the process, the analyst (YL) wrote
memos to capture the main themes. In preparation for the
thematic analysis, she developed a codebook and randomly
selected one transcript that was double-coded and discussed.
After refining the codebook, she used NVivo 12 (QSR
International) to code memos and transcripts. The analyst wrote
analytic memos for each thematic code, identifying similarities
and differences across transcripts using a constant comparative
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method [29]. She identified representative quotations of each
theme.

Generate Preliminary Evidence About Participants’
Response to Treatment
We aggregated the individual N-of-1 studies and estimated the
magnitude of response and quantified uncertainty by fitting
Bayesian linear mixed-effects models [30] in R (version 3.5)
using the brms package [31] with default priors. As described
in the protocol, the first model we fit included a random effect
for observations nested within participants and the following
fixed effects: (1) an intercept, (2) a dummy indicator for the
treatment phase, (3) a time-within-baseline variable centered
around the first observation (equal to 0 for observations outside
of the baseline period), and (4) a time-within-treatment variable
centered around the last observation (equal to 0 for observations
outside of the treatment period). We applied a first-order
autoregressive structure on the covariance matrix for the
within-person residuals to account for autocorrelation.

We also fit a similar model not described in the protocol that
reflected a lesson we learned in another project: rather than
centering the time-within-period variables around a single
observation, it may be more reasonable to center around the
average of several consecutive observations when there is
substantial individual variability in daily ratings. In this model,
we centered the time-within-baseline variable around the first
3 observations and centered the time-within-treatment variable
around the last 3 observations. Given the data availability, this
3-observation centering window was practical; we did not run
the model with different window sizes to avoid cherry-picking
the results. In the end, our choice of centering had no impact
on the results; therefore, we decided to focus on the
3-observation centering window as an example of what we
would likely attempt in a future trial using this design.

We augmented this quantitative analysis with a qualitative
analysis of the in-depth interviews. We explored what links, if
any, participants could make between engagement with the
intervention and their mood, health, and relationships. We also
intended to explore themes among women who did not exhibit
positive changes in mood (nonresponders); however, this was
not feasible, given the delay in launching this study.

Research Ethics
We obtained approvals to conduct this study from the
institutional review boards at Duke University (US, 2018-0396)
and Strathmore University (Kenya, SU-IRB 0210/18) and from
the National Commission for Science and Technology in Kenya.

The study coordinator, AM (female, Kenyan, bachelor’s degree),
explained the study to prospective participants via telephone,
administered the informed consent procedures, and obtained
women’s oral consent to enroll in this study.

Study participants were provided with an honorarium of up to
Ksh 1500 (roughly US $15) delivered via mobile money transfer
to recognize the time spent in completing study assessments.
The original plan was to make these transfers after women
completed sessions 1, 5, and 10; however, in practice, we sent
women prorated honoraria on the basis of lower benchmarks
of engagement, given the delay in launching this study.

X2AI, the creators of the AI system that we used to deliver
Healthy Moms, transferred data to the research team in
accordance with X2AI’s data security policies [32]. The first
author (EG) stored identifiable study data on a secure server
during the study and then deidentified the data for analysis using
the Safe Harbor method. Anonymized quantitative data and the
code used to generate this manuscript are available for reanalysis
[33].

Summary of Deviations From Stage 1 Protocol
In addition to changing the tense of the writing from future to
past, we also made several edits to the Introduction section and
modified several procedures described in the Methods section
of the stage 1 protocol [24]: we (1) labeled the study as prepilot
rather than pilot to better reflect that the data are preliminary
and intended to inform the design of a larger pilot study; (2)
moved text from the Scientific Objectives and Significance and
Expected Outcomes sections to the Discussion section (but did
not alter the objectives); (3) expanded access to the intervention
from just SMS to include Facebook Messenger; (4) visualized
the daily mood ratings but relied on model fitting rather than
visual inspection to estimate trends and period impacts; and (5)
dropped a planned nonresponder qualitative inquiry and
modified the honorarium schedule because of limited time.

Results

Recruitment and Participants
We invited 647 women (446/647, 68.9% pregnant; 201/647,
31.1% new mothers) already enrolled in their county’s SMS
program to learn more about Zuri; 13.3% (86/647) of women
completed our automated SMS screening between February 12,
2019, and June 18, 2019 (15/86, 17% of all women screened
scored at or above the cutoff for possible depression; mean 9.5,
SD 4.9). We determined that 52 of these 86 women were eligible
to participate; 41 of 52 women completed the enrollment process
(Figure 1).
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Figure 1. Study flow diagram.

Table 1 reports the characteristics of the enrolled participants.
The sample was evenly divided between pregnant women and
new mothers. The average woman enrolled in the study was
25.9 years old (SD 4.8). All women reported that they could
read in English, and the study interviewer reported that all could
speak English. Most women used a smartphone, attended
secondary school or higher, were married, and did not work.
Women were not recruited on the basis of depression symptoms,
and only 1 had a PHQ-9 score ≥15 at the time of enrollment

[34]. The average PHQ-9 score upon study entry was 8.2
(possible maximum value of 27), and the average mood rating
was 7.8 (possible maximum value of 9).

We conducted interviews with 15 of the 41 women enrolled in
the study. They ranged in age from 20 to 38 years. Most were
married and had delivered their baby within the last 6 months.
All of the interviewees attended some secondary schooling, and
2 had earned a bachelor's degree.
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Table 1. Characteristics of participants.

Maternity status: post-
partum (22/41, 54%)

Maternity status: preg-
nant (19/41, 46%)

All women (n=41)Characteristics

27.2 (5.5)24.3 (3.1)25.9 (4.8)Age (years), mean (SD)

Self-reported English language reading skills, n (%)

0 (0)0 (0)0 (0)Poor

0 (0)0 (0)0 (0)Just okay

5 (23)7 (37)12 (30)Good

16 (73)12 (63)28 (68)Excellent

1 (2)0 (0)1 (2)Missing

Highest level of school attended, n (%)

0 (0)0 (0)0 (0)None

0 (0)0 (0)0 (0)Primary

0 (0)0 (0)0 (0)Postprimary or vocational

8 (36)14 (74)22 (54)Secondary

8 (36)3 (16)11 (27)College

5 (23)2 (10.5)7 (17)University

1 (4.5)0 (0)1 (2)Missing

19 (86)14 (74)33 (81)Phone type: smartphone, n (%)

17 (77)15 (79)32 (78)Employed outside the home: no, n (%)

1.6 (0.9)0.5 (0.5)1.1 (0.9)Number of dependent children, mean (SD)

Marital status, n (%)

2 (9)1 (5)3 (7)Single

0 (0)0 (0)0 (0)Separated

0 (0)0 (0)0 (0)Cohabiting

19 (86)18 (95)37 (90)Married

1 (4.5)0 (0)1 (2)Missing

7.8 (3.2)8.7 (4.1)8.2 (3.6)PHQ-9a total score, possible 0-27, mean (SD)

0 (0)1 (5)1 (2)Possible depression: (PHQ-9≥15), n (%)

6.6 (2.4)7.1 (2.4)6.8 (2.4)Mean mood at enrollment, possible 0-9, mean (SD)

aPHQ-9: Patient Health Questionnaire–9.

Data Collection

Mood Ratings
Overall, the enrolled women submitted 719 daily mood ratings
over the course of the study. The average woman submitted

17.5 ratings (SD 17.2), and 76% (31/41) of women submitted
at least 3 ratings. The grand mean mood rating was 6.4 of 9 (SD
1.3) among those who submitted at least 3 ratings. Figure 2
suggests that most women reported a high degree of variability
in ratings from one day to the next.
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Figure 2. Time series of 705 mood ratings among 31 participants who submitted at least three ratings.

PHQ-9
We did not attempt to administer the PHQ-9 on a regular,
ongoing basis to avoid frustrating users and distracting from
potential engagement with the intervention. Instead, we only
requested that women complete the PHQ-9 again at the end of
the study period; 54% (22/41) of women responded.

Intervention Feasibility and Acceptability

Engagement Patterns
Over the course of the study, 66% (27/41) women sent at least
one message to Zuri to begin the registration process, and 34%
(14/41) of these women engaged with the intervention content
beyond registration. Among this postregistration engagement
subset, the average woman engaged with Zuri on 7.7 days (SD
6.0) and sent 130.5 messages (SD 117.4). On average, women
sent 36.4% of these messages to Zuri in free chat mode, not as
part of a Healthy Moms session. The median conversation
unfolded over 0.6 hours (range 0.0-14.6 hours). Figure 3 displays
the distributions of these engagement metrics.

To further investigate the nature of participant-initiated chats,
we analyzed conversation transcripts and summarized the
conversation modules engaged. Figure 4 shows the distribution
of incoming messages by the free chat conversation module
and maternity status. The most common rapport building module
asked users about their passion in life. The most common
intervention module outside of the Healthy Moms content was
mindfulness-based meditation. In general, pregnant women
were more likely to engage in intervention content during free
chats compared with new mothers. This means that after
rapport-building chats, Zuri suggested an intervention module
and the women agreed to try.

On average, women who engaged in Zuri postregistration started
3.4 (SD 3.2) Healthy Moms sessions and completed 3.1 (SD
2.9) of the sessions they started. The median time from a push
session invite to a woman responding was 0.6 hours (range
0.0-740.1 hours). Figure 5 shows a woman’s engagement pattern
over the course of the study period. There were no reported
adverse events. One woman's conversation was flagged in real
time for a potential crisis follow-up.
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Figure 3. Distribution of number of days engaged and number of incoming messages sent among 14 women who engaged with Zuri beyond registration.

Figure 4. Distribution of incoming messages by free chat conversation module and maternity status.
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Figure 5. Engagement pattern for Participant 3. Dates shifted to maintain anonymity but pattern preserved.

Correlates of Engagement
To examine the relationship between participant characteristics
measured at baseline and intervention engagement, we estimated
a Bayesian linear regression model of incoming messages.
Figure 6 displays the Markov Chain Monte Carlo draws from
the posterior distribution of the parameters. Some evidence
suggests that being pregnant (vs a new mom), reporting greater

depression symptom severity, and being employed outside of
the home are associated with less engagement, whereas being
married and more educated are associated with more
engagement. For instance, the point estimate is that married
women sent 57.8 more messages, holding all else constant. For
every 2 SD increase in the baseline PHQ-9 score, holding all
else constant, the point estimate is that women sent 29.5 fewer
messages.

Figure 6. Results of a Bayesian linear regression model of incoming messages on participants’ characteristics measured at baseline (N=40; 1 participant
missing required data). The plot shows the Markov Chain Monte Carlo draws from the posterior distribution of the parameters. PHQ-9: Patient Health
Questionnaire-9.

Qualitative Findings on Feasibility and Acceptability
Most of the women who were interviewed and who had tried
Zuri had a very positive attitude toward the service and
expressed that they could trust Zuri. One woman said:

It’s like a mom to me. My mom is very far, and my
sister doesn’t have any knowledge of kids.

Another woman said:

I usually keep it to myself. So, when I am chatting
with Zuri, it’s like they have the right questions to ask
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me, and they teach me how to relate with my child,
relate with other people.

Some of the women had also shared Zuri with others, such as
their partners or neighbors, who often responded positively.
One woman said:

My husband was very supportive, because sometimes
he used to help me with some answers.

Many women said that they preferred to chat with Zuri than to
chat with a counselor because they felt they could be more open
with the automated service. For instance, one woman said:

I prefer Zuri because they don’t know me.

Nonetheless, women noticed that Zuri was not perfect and
described examples of when Zuri gave an irrelevant response
when they asked her a question. Most said they would just
ignore the messages and moved on. In our review of chat
transcripts, we learned that Zuri was easily confused by
messages coming out of order over SMS. This was not an issue
on Facebook Messenger; however, almost every woman said
they preferred to chat with Zuri through SMS. The main reason
being that SMS was free, whereas chatting through Facebook
Messenger required them to buy data bundles to access the
internet.

Many women mentioned that their favorite part of Healthy
Moms was the exercises taught by Zuri and the journal, including
meditation, breathing, and walking. They found that those
exercises were easy and could help them relax. One woman
said:

They made me be flexible...until my delivery day.

Other women said that they appreciated the unbiased
information provided by Zuri. They indicated that counselors
and nurses often give psychosocial advice based on their
personal experiences, which can be biased. They felt like they
could trust Zuri because she was more unbiased and factual.
They especially liked information regarding breastfeeding and
how to play with the child. As one woman indicated:

For the baby, I never knew she’s supposed to be
massaged after the bath at all. I never knew she can
see different colors.

Women gave three main reasons why they registered with Zuri
and continued to engage. The first reason was anxiety and stress
during pregnancy. They were either ashamed of their bodies or
worried about experiencing miscarriage. One woman said:

One of the negative thoughts I had was maybe if I
don’t want food what will happen. And then if I sleep
bad what will happen to my baby...Actually I was
getting worried if I don’t feel the movement of my
baby inside me sometimes.

The second reason was that many postpartum women did not
feel confident in their roles as new mothers. One woman
expressed her anxiety by saying:

It’s like I don’t know how to take care of her, good
care of her.

The final reason was that many of the women interviewed did
not have a stable source of income, causing them stress.

Women described 4 main barriers to engaging with Zuri. The
first was connectivity. Some women either damaged or lost
their phones and did not know how to reconnect with Zuri. The
second challenge was that women were easily (and
understandably) distracted by their new baby and forgot to
complete open sessions. As one woman said:

The text can come in the morning, no matter if I am
busy or if I am free to answer. If I am free, I just sit
and relax. But you see, sometimes we are texting, and
the baby starts crying.

The third challenge was that the registration process was very
confusing for some women, especially early on in the study;
therefore, some women stopped participating. Related to this,
some women were confused by our study’s use of 2 SMS short
codes: 1 for Zuri and 1 for study assessments. Despite these
challenges, women did not contact our study coordinator to
receive assistance in using Zuri.

Preliminary Evidence on Response to Treatment

Quantitative Findings
In preparation for modeling the response to treatment, we limited
the data to the 12 women who contributed at least 4 mood
ratings before and after starting the intervention. Figure 7 plots
the time series of ratings by period and overlays the days of
intervention engagement with vertical lines.

Figure 8 shows the estimates from a Bayesian linear
mixed-effects model. The model included a random effect for
observations nested within participants and the following fixed
effects: (1) an intercept, (2) a dummy indicator for the treatment
phase, (3) a time-within-baseline variable, and (4) a
time-within-treatment variable. The time-within-period variables
were centered around the first 3 or last 3 observations of the
period (first for baseline, last for treatment).

The intercept represents the mean value of the outcome at the
first 3 baseline assessments. The treatment indicator is a contrast
between the first 3 baseline assessments and last 3 observations
in the treatment period, and the time-within-period variables
estimate linear change during the baseline and treatment periods.

In this model, the average mood rating at the start of the baseline
period was 6.07 on a scale of 0 to 9, and there was no significant
baseline trend (an assumption for inference using the multiple
baseline design). The point estimate of the treatment effect was
0.42, which represents a 7.0% improvement in mood over the
baseline mean (d=0.17). The posterior probability that this effect
is greater than zero is 93.2%.

We could not run the same analysis using PHQ-9 scores because
we only attempted to collect data at 2 time points and only
obtained complete data for half of the (small) sample.
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Figure 7. Time series of 432 mood ratings by participant (N=12) and period. Days engaged with Zuri indicated by vertical lines.

Figure 8. Estimates from a Bayesian linear mixed-effects model of repeated measures data on self-reported mood throughout the study period (432
observations among 12 participants). Uncertainty intervals computed from posterior Markov chain Monte Carlo draws.
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Qualitative Findings on Perceived Impact
Many women attributed positive impact to the intervention,
which we grouped into 3 themes. The first theme was that Zuri
helped them to take care of themselves. Women said that they
loved themselves more, that their mood had improved, and that
they had learned how to replace negative thoughts with positive
thoughts. One woman described her experience with Zuri by
saying:

Because a pregnant woman is…tired all the time,
right? But with Zuri everything was good. I was very
active because it also made me have lessons. Because
I knew after waking up in the morning I will breathe
in and out some minutes. After that I brush, take my
breakfast, I wait for noon time something like 12:00
or even 1:00. I go for a walk. After walking I come
back shower then I keep myself busy with Zuri. So it’s
very helpful actually.

One woman who was ashamed of her body during pregnancy
said:

I started kind of thinking better, that when you are
pregnant, the shape changes and after delivery and
doing exercises, everything goes back to normal.

The second theme was that women acquired new skills that
helped them take care of their babies. Many women indicated
that they could relate to their child better and experienced less
distress raising the child. As one woman said:

All those exercises, how to relate to the child, what
you do to the child...Honestly, if I hadn’t talked to
Zuri, I wouldn’t know.

One woman who feared miscarriage even attributed her baby’s
health and her uncomplicated delivery to Zuri, which we
interpret as the woman having found comfort in Zuri during a
stressful period.

The last theme was that women experienced improved
relationships with others. Some women reported socializing
more with others, and this expanding social support system
further improved their mood. As one woman said:

I used to have the habit of staying alone, not
socializing with other people. Zuri made me be able
to socialize with people. When they see me doing the
exercises, they like knowing where I learnt them from.

Some women felt more secure and trusted others more. One
woman said that she was anxious about leaving her child with
another person, even with her family members. However, after
finishing a session with Zuri on seeking social support, she
explained that she was willing to try asking for help. She
reported:

So I have tried. [The baby] was comfortable. She
cried for some time, then she got used to it.

Discussion

Principal Results
In this prepilot study, we recruited pregnant women and new
mothers in Kenya to try an experimental psychological support

service called Zuri. Zuri is a chatbot that engages users in
automated, text-based conversations over SMS and Facebook
Messenger. Users could initiate chats with Zuri or complete
sessions from the Healthy Moms perinatal depression
intervention curriculum, a CBT-based intervention we adapted
from the Thinking Healthy Program [16]. We used a single-case
experimental design with repeated measures data collection and
in-depth interviews to explore the feasibility and acceptability
of the service, generate a preliminary estimate of response to
treatment, and test study procedures.

Through individual interviews and a review of system logs, we
determined that the service was both feasible to deliver and
acceptable to this sample of users but not without significant
room for improvement and further refinement. Approximately
two-thirds of women in the study tried Zuri at least once, and
half of those who tried engaged beyond the registration process.
This retention rate of 51.9% is slightly more than the average
30-day retention rate of 43% across industries [35] and 40%
across provider-prescribed mental health apps specifically [36].
Although our retention rate is based on a small denominator of
27 women who tried the intervention, it suggests that
engagement with the initial version of the service is within the
range of other digital health apps. Clearly, preventing churn
(dropout) is a common challenge.

This was not a clinically referred sample; however, we observed
an association between depression severity and intervention
use—for every 2 SD increase in the baseline PHQ-9 score,
women sent 29.5 fewer messages. This is a small effect in
absolute terms; however, it speaks to the potential need for more
personalized interventions to maximize user engagement. Most
studies on digital mental health apps for common mental
disorders such as depression do not report detailed use and
usability metrics [37]; however, there is some evidence that
also suggests a negative relationship between depression severity
and engagement [38].

Users pointed to several positive features of Zuri, including
feeling connected to someone who cares while having the benefit
of perceived anonymity and privacy of chatting with a machine.
This is consistent with existing research showing that people
may be more willing to disclose personal information when
they believe their responses are not being observed by another
person [39], and it probably helps to explain our recruitment
experience. More than a quarter of the women who completed
the automated screening endorsed having recent suicidal
ideation, nearly all of whom accepted our referral to in-person
services. Despite having recent and regular contact with
antenatal or postpartum medical providers, these women were
reporting something to Zuri that they presumably had not
reported to frontline medical workers—either because they were
not asked, chose not to disclose, or both. There is a substantial
latent need for mental health treatment that exists alongside the
manifest gaps in access that chatbots such as Zuri could discover
and begin to address.

In addition to reporting largely positive impressions of Zuri,
users reported modest improvements in mood. To estimate this
improvement, we used a multiple baseline design with repeated
measures data collection and fit a multilevel model. Importantly,
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for making a causal inference, we did not observe an increasing
trend in mood during the baseline period. We did, however,
observe a small effect in the treatment period. With 432 mood
ratings from 12 women before and after beginning the treatment,
we estimated that mood improved by 7.0% over the average
mood reported at the start of the baseline period (d=0.17). We
have high confidence that this effect is greater than zero;
however, we are similarly confident that the effect is small. We
cannot conclude with confidence that this effect is indeed causal;
however, quantifying this effect estimate gives us a benchmark
for assessing progress in future iterations of the service. We
will look to replicate and hopefully increase this effect in an
RCT with a clinically indicated group of users.

We can also look to the digital health and psychotherapy
literature for external benchmarks. Although there has been a
proliferation of conversational agents for health in recent years
[40], the evidence base is small [41]. Two recent RCTs of
CBT-based chatbots stand out. In a study of 75 US college
students, Tess, an automated chatbot that provides brief
psychological interventions over common communication
channels such as SMS and Facebook Messenger, reduced the
depression symptom severity by roughly 20%, with a reported
standardized effect of 0.68 [42]. Another chatbot called Woebot,
a stand-alone app that delivers CBT, was tested in a trial with
70 students in the United States. Woebot reduced symptoms of
depression by 19%, with a reported standardized effect of 0.44
[43]. For reference, a recent meta-analysis reported that
standardized effects of traditional in-person psychotherapy for
depression range from 0.66 to 0.77 [44]. Automated
conversational agents such as Zuri, Tess, and Woebot have the
potential to lower the cost of service delivery while expanding
our reach, which could make them highly cost-effective.

Before testing this hypothesis with Zuri, however, we need to
build a more robust intervention. As expected with an alpha
version, we observed many opportunities for improvement.
Some challenges users reported, such as the use of 2 short codes
and a confusing registration process, were unique to the setup
of this particular study and will not be used again. The bigger
challenge will be to make the content more engaging to reduce
churn and make the service more robust to misunderstandings.
One way to avoid some of the confusion we observed in
conversations is to move away from SMS, which can jumble
the message order, and instead add a new channel through
WhatsApp, the most popular messaging app in Africa [45]. In
the short term, this might limit access owing to the cost of
internet connectivity; however, penetration rates continue to
climb rapidly. From September 2018 to September 2019, the
number of data subscriptions in Kenya increased by 23% from
42.2 million to 52 million [46].

In terms of study procedures, we observed a response rate of
13.3% (86/647) among a group of women already enrolled in

their county’s health SMS program. Seventeen percent of
women who completed the screening scored at or above the
cutoff for possible depression, and 79% (41/52) of eligible
women completed the enrollment process. Depression was not
a requirement for inclusion in this study; however, it will be in
future studies. Our experience in this prepilot study suggests
an overall enrollment rate of 1%, taking depression symptoms
into account. Therefore, to recruit a sample of 100 possibly
depressed pregnant women and new mothers in a future trial
using the same remote procedures, these estimates suggest that
we would need to advertise to a pool of at least 10,000 women.
This can be easily achieved through print and digital advertising.
In Nairobi County alone, there were more than 130,000 live
births in 2017 [47].

Our experience with remote automated data collection suggests
that women were willing and able to reply to a 1-question
prompt asking them to rate their current mood. However, we
were less successful at obtaining end-line data using the PHQ-9.
In a future trial, it will be important to budget and plan for study
staff to augment remote data collection procedures.

Limitations
The objective of this prepilot study was to adapt Thinking
Healthy for delivery through Zuri for developing and testing
study procedures to inform the design of a future trial and to
generate preliminary evidence to guide the next round of Zuri’s
development. We were limited in our pursuit of these objectives
given that we only offered screening and conversations in
English. This likely constrained our recruitment efforts as
non–English-speaking women did not have the opportunity to
participate. This implies that our estimates for future recruitment
are conservative. The other main limitation of operating Zuri
in English is that we do not have data on how Zuri functions in
Swahili. This is a priority target for development. A related
limitation is that, by virtue of requiring advanced language
skills, we recruited a highly educated sample of women relative
to the general population. In a future trial, it will be important
to explore how women of all educational backgrounds engage
with Zuri.

Conclusions
We determined that Zuri is feasible to deliver via SMS and
acceptable to a sample of pregnant women and new mothers
recruited from 2 large public hospitals in Kenya. The results of
this prepilot study will serve as a baseline for future studies in
terms of recruitment, data collection, and outcomes. The next
step in Zuri’s development is to refine the intervention content
and add Swahili language support. Conversational agents such
as Zuri have great potential to address the large treatment gap
that exists in many low-resource settings, both as a new channel
of treatment and as an adjunct to traditional and task-shifting
approaches.
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