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Cardiovascular diseases (CVD) remain the leading cause of death in the USA. Cardiomyocytes (CMs) derived from
human pluripotent stem cells (hPSCs) provide a valuable cell source for regenerative therapy, disease modeling, and
drug screening. Here, we established a hPSC line integrated with a mCherry fluorescent protein driven by the alpha
myosin heavy chain (aMHC) promoter, which could be used to purify CMs based on the aMHC promoter activity in
these cells. Combined with a fluorescent voltage indicator, ASAP2f, we achieved a dual reporter CM platform, which
enables purification and characterization of CM subtypes and holds great potential for disease modeling and drug
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Introduction
Cardiovascular diseases (CVD) claim millions of lives
per year and pose a severe threat to economics and hu-
man health. What is worse, the total number of annual fa-
talities caused by CVD worldwide is projected to increase
[1]. Transplantation of cadaveric heart donors emerges as
a potential therapy for CVD and has been performed since
the first case in 1967. So far, due to advances in knowledge
of preventing rejection and infection post-heart trans-
plantation, the survival rate has been distinctly elevated.
Nevertheless, despite more refined criteria of recipient-
donor selection and improved regulation of allocation or
prioritization of donor resources, shortage of donor hearts
remains a primary limitation, leading to a lengthy waiting
list for CVD patients [2].

Functional CMs derived from human pluripotent stem
cells (hPSCs) would provide an unprecedented cell
source for disease modeling, drug discovery, and cell
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transplantation therapy for CVD patients [3]. Despite
the high efficiency of CM differentiation with recent ad-
vances [4, 5], the resulting cultures are mixed with
different CM subtypes, including atrial, ventricular, and
a small number of pacemaker CMs, which may lead to
potential problems such as influencing in vitro disease
modeling outcomes and altering in vivo cell function
after transplantation. Therefore, it is critical to generate
CM models composed of homogenous subtypes. Early in
2003, Mummery et al. cocultured hPSCs with mouse vis-
ceral endoderm-like cells, generating enriched ventricular-
like CMs (around 85%). This report demonstrated the
possibility of inducing biased CM subtypes and inspired
the following researches [6]. Zhang and colleagues investi-
gated the role of Noggin and retinoid signaling in the spe-
cification of CM subtypes, which led to the increased
proportions of atrial or ventricular-like CM populations
[7]. Likewise, by manipulating the retinoid pathway, the
Keller group reported the dependence of atrial/ventricular
specification on early mesoderm patterning and further
identified surface markers RALDH2 and CD235a to effi-
ciently distinguish atrial and ventricular subtypes respect-
ively [8]. Halloin et al. reported a chemically defined and
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xeno-free protocol for suspension culture of ventricular-
like CMs with >90% purity by controlling the WNT path-
way [9]. Zhu and colleagues proved that inhibition of
neuregulin (NRG)-1p/ErbB signaling enhanced the popu-
lation of nodal-like CMs [10]. The Cho group pointed out
that overexpression of gene SHOX2 was sufficient to in-
crease hPSC-derived cardiac pacemaker cells [11]. Schwei-
zer et al. reported a protocol to selectively differentiate
hPSCs into CMs with nodal-type characteristics, which re-
lies on co-culture with visceral endoderm-like cells and
subsequent culture in a serum-enriched medium [12].
The Keller group described a transgene-independent
method to generate sinoatrial node (SAN)-like pacemaker
cells, which were identified as NKX2-5-negative CMs ex-
pressing SAN markers and displaying expected electro-
physiological properties [13]. However, all these protocols
did not support dynamic cell monitoring during differenti-
ation [8].

Fluorescent stem cell reporters provide a convenient
and efficient method to purify expected CM subtypes.
However, previous fluorescent reporters for CM studies
relied on the integration of fluorescent proteins into
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early CM marker like NKX2-5 or pan-CM marker like
NCX1. These approaches generated a mixed population
of SA node, ventricular CMs, or atrial CMs [14, 15]. Re-
cently, the Wu group generated a TBX5“°'*? and
NKX2-578RF? double reporter cell line, which facilitated
the isolation of four distinct cardiac subpopulations [16].
Specifically, TBX5+NKX2-5+ cells sorted at the second
week of hPSC-CM differentiation gave rise to
ventricular-like CMs with 93% purity and TBX5-NKX2-
5+ cells held the potential to derive atrial-like CMs with
90% purity, which provided useful cell sources for pre-
cise drug testing. This study also utilized the fluorescent
voltage sensor ASAP2 to analyze action potentials of
CM subtypes. Nevertheless, the overlapping excitation
and emission wavelengths of Clover2 (excitation 505nm;
emission 515nm) with ASAP2 (excitation 488nm; emis-
sion 507nm) may introduce errors in fluorescence-based
functional characterization in CMs. Here, we established
a hPSC line integrated with aMHC promoter-driven
mCherry reporter protein (excitation 587nm; emission
610nm), enabling the visualization and separation of de-
rived atrial CMs. Combined with the advanced
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Fig. 1 Generation of aMHC-mCherry H9 reporter line. a Diagram of the proposed strategy for reporter line derivation. Construct expressing aMHC
promoter-driven mCherry and blasticidin-resistant (BSDr) genes was designed and delivered into hPSCs via lentivirus, followed by drug selection
and single-cell colony derivation. b Representative brightfield (BF) and mCherry images of live aMHC-mCherry H9 cells. ¢ PCR genotyping of hPSC
clones after drug selection is shown. Forward and reverse primers were designed within mCherry coding sequencing, and wild-type (WT) H9 cells
were used as a negative control. d Representative immunostaining and flow cytometry results of NANOG, OCT4, and SSEA4 are shown. e
Representative immunostaining images of SOX17 and PAX6 for endodermal and ectodermal differentiation, respectively, were shown. Scale bars,
100 pm
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fluorescent voltage indicator, ASAP2f, we achieved a
dual reporter hPSC-CM platform that enables both sep-
aration and microscope-based characterization of CM
subtypes.

Results

Generation of aMHC-mCherry hPSC line

Since aMHC is predominantly expressed in the human
atrium instead of the ventricle [17], we designed the
aMHC-mCherry construct to report atrial hPSC-CMs.
Lentiviruses carrying the aMHC-mCherry construct
were used to infect H9 hPSCs, and single cell-derived re-
porter H9 cells were obtained after drug selection
(Fig. 1a). The resulting cells presented typical tightly
packed and domed colony-like morphology of undifferen-
tiated hPSCs with refractive edges (Fig. 1b). Genotyping
with mCherry-targeting primers demonstrated the suc-
cessful integration of the fluorescent mCherry reporter
(Fig. 1c). Importantly, no mCherry fluorescence was ob-
served in the undifferentiated hPSCs, indicating there was
no leakage of mCherry signal (Fig. 1b). Immunostaining
and flow cytometry analysis of pluripotency markers, in-
cluding NANOG, OCT4, and SSEA4, demonstrated that
engineered cells retained pluripotent status (Fig. 1d),
which was further confirmed by their ability to differenti-
ate into SOX17+ endoderm and PAX6+ ectoderm
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(Fig. 1e). No mCherry signal was observed during endo-
derm and ectoderm differentiation, indicating the lineage-
specific activity of aMHC-mCherry. Mycoplasma test was
performed routinely to ensure engineered reporter cells
were not mycoplasma contaminated (Fig. S1).

Characterization of aMHC-mCherry CMs

We next investigated the reporting function of the
resulting aMHC-mCherry hPSCs during CM differenti-
ation with our previously developed GiWi protocol [5]
(Fig. 2a). Spontaneously beating CMs were successfully
generated, and strong mCherry signal was observed
(Fig. 2b; Video S1-S2), confirming the reporting function
of aMHC-mCherry. Overlapping expression of mCherry
with cardiac troponin T (¢TNT) via both immunostain-
ing and flow cytometry analysis (Fig. 2c, d) successfully
demonstrated their cardiac-specific reporting and indi-
cated the presence of another CM population that only
expresses ¢INT, but not mCherry. Based on that fact
that aMHC is expressed predominantly in atria and it is
distinct from the beta-MHC isoform that mainly locates
in ventricles [17], the cTNT+mCherry+ cells we ob-
served were atrial CMs, and the majority of ¢TNT+
mCherry- cells were ventricular CMs. To further inves-
tigate the correlation between aMHC-mCherry signals
and CM subtypes, we stained generated day 30 (D30)
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Fig. 2 Cardiomyocyte (CM) derivation and subtype reporting of aMHC-mCherry hPSCs. a Diagram of CM subtype derivation, where aMHC-
mCherry labels atrial CMs. b Representative brightfield (BF), mCherry, and FITC (empty channel) images of live aMHC-mCherry CMs on day 11
Representative images of day 12 CMs stained with pan-CM marker cTNT. d Flow cytometry analysis of aMHC-mCherry CMs with (right) or without
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CMs with MLC2v and MLC2a antibodies, which specific-
ally targeted ventricular CMs or atrial CMs, respectively.
Based on images, we observed co-localization of mCherry
signals with MLC2a+ CMs. MLC2v+ CMs, however, were
mCherry negative (Fig. S2A, B), further supporting our re-
sults in flow cytometry. Therefore, this aMHC-mcherry
reporter hPSC line possesses the potential to track atrial
CM subpopulations during CM differentiation. When
combined with surface cell marker, such as the pan-CM
marker SIRPA, ventricular-enriched population (SIRPA+
mCherry-) could also be easily isolated [18].

Dual reporter platform

ASAP2f emerges as a sensitive voltage indicator to assess
the performance and function of CMs, neurons, and other
cell types with ion flux fluctuation [19, 20]. Before the de-
velopment of these genetically encoded voltage indicators
(GEVI), voltage-sensitive dyes were widely used for cellu-
lar imaging due to their brightness, photostability, and fast
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kinetics [21-24]. Nevertheless, there are concerns that the
addition of these dye molecules can alter the electrical
properties of the plasma membrane, thus distorting its
normal behavior or slowing down action potential con-
duction. In addition, their substantial toxicity and dye-
specific pharmacological side effects have also been re-
ported, which remain challenges for using these chemo-
genic voltage dyes for cell imaging [25]. In comparison,
GEVI show less risk of photobleaching or cell toxicity and
have the advantage on tissue-specific imaging, which have
been widely used for cell characterization. Here, by com-
bining the aMHC-mCherry reporter with ASAP2f (Fig. 3a),
we developed a dual-reporter hPSC platform for real-time
live-cell visualization and functional analysis of hPSC-
derived CMs during differentiation. To achieve this, the
ASAP2f coding sequence was cloned into a lentiviral
backbone and packaged to produce lentiviruses for hPSC
infection. The majority of infected cells presented GFP
fluorescence on the cell membrane (Fig. S3A), confirming
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Fig. 3 Generation of a dual aMHC-mCherry and ASAP2f voltage reporter CM model. a Diagram of the proposed strategy for combining aMHC-
mCherry reporter with ASAP2f indicator. b Representative brightfield (BF), ASAP2f, and mCherry images of day 29 live CMs derived from dual
reporter hPSCs. ASAP2f fluorescence signal analysis of atrial- (c) and ventricular-like (d) CMs at indicated locations illustrated in b was shown.
Rectangular spot represents the mCherry+ASAP2f+ region, while circle spot indicates the mCherry-ASAP2f+ region. Scale bars, 100 pm




Jiang et al. Stem Cell Research & Therapy (2021) 12:305

the successful integration of ASAP2f in hPSCs while retain-
ing strong expression of pluripotent marker (Fig. S3B). We
next assessed the fluorescence fluctuation of ASAP2f,
which could recapitulate the cell membrane potential by
reporting voltage changes, in both atrial and ventricular
CMs (Fig. 3b—d; Video S3, S4-S5). Changes in fluorescence
intensity were recorded and used to reflect the voltage
changes, presenting typical shapes of cardiac action poten-
tial with stages of rapid depolarization, initial repolarization,
plateau, rapid repolarization, and resting potential. Interest-
ingly, as compared to mCherry-negative regions, action po-
tential shapes in mCherry-positive regions showed shorter
duration of plateau stage, which was consistent with re-
ported differences in action potentials of atrial and ven-
tricular CMs via patch-clamp analysis [26] (Fig. 3¢, d),
underscoring the sensitivity and specificity of this dual re-
porter platform. Moreover, we tested isoprenaline, a drug
that has been demonstrated to accelerate the heat beating
[27], in the generated CMs from our reporter cell line. Con-
sistent with previous observations, isoprenaline significantly
increased the frequency of CM contraction in a dose-
dependent manner (Fig. S4), further supporting the utility
of this ASAP2f reporter design.

Conclusions

In this study, we generated a stable hPSC line with
mCherry reporter driven by aMHC promoter, enabling
the visualization and separation of atrial CM subpopula-
tions from hPSC differentiation cultures. Single-cell col-
ony derivation efficiently avoids the risk of reporter
silencing in lentiviral insertion. Coupled with pan-CM
surface marker such as SIRPA, ventricular CM subtypes
(SIRPA+mCherry-) can be also quantified or purified
through FACS. Furthermore, combined with the photo-
stable ASAP2f voltage indicator, we generated a dual
fluorescent reporter platform that enables sensitive and
functional characterization of CM subtypes in beating
frequency, voltage fluctuation, or deep action potential
analysis. This design not only provides a visible tool to
understand the mechanisms underlying electrical con-
duction between CM subtypes, but also offers tremen-
dous potential for CVD modeling and drug screening.
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NANOG, OCT4, and SSEA4 were shown. Scale bars, 100 pm.
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