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Abstract: Paper-based technologies have been drawing increasing attentions in the biosensor field due
to their economical, ecofriendly, and easy-to-fabricate features. In this paper, we present a time-delay
valve mechanism to automate a series of procedures for conducting competitive enzyme-linked
immunosorbent assay (ELISA) on a paper-based device. The mechanism employs a controllable
time-delay valve, which has surfactants to dissolve the hydrophobic barriers, in a fluid pathway.
The valves can regulate the liquid and sequentially deliver the sample flow for automating ELISA
procedures in microchannels. Competitive ELISA is achieved in a single step once the sample, or small
molecule pesticide (e.g., Imidacloprid), is applied onto the paper-based device with a comparable
sensitivity to plate-based competitive ELISA. The results further demonstrate the appositeness of
using paper-based devices with the valve designs for on-the-go ELISA detection in agriculture and
biomedical applications.

Keywords: microfluidic valve; competitive enzyme-linked immunosorbent assay (ELISA);
pesticide residue

1. Introduction

As more evidence shows the relevance between pesticide exposure and birth defects, fetal death,
and neurological disorder, the capability to detect the pesticide residue on foods or agricultural goods
has become increasingly important [1–3]. Different detection methods for pesticide residence have
thus been developed [4–6]. They however either are expensive or have small throughput, limiting
their broader applications. Meanwhile, in biochemical analysis, paper-based devices have recently
been popular [7–11]. Paper-based device for pesticide residue detection can be of great interest for
on-the-go applications in agriculture and biomedical fields.

Pesticide residue detection today mainly relies on enzyme-linked immunosorbent assay (ELISA),
the adaption to paper-based device is not straightforward nor trivial. ELISA is a sensitive method
to measure the concentrations of antigen or antibody with high specificity. It typically involves a
series of manual procedures—including mixing, washing, and incubation—which are sequentially
conducted one by one. Few researchers have reported the ELISA application onto paper-based devices
for biological testing as the procedures are tedious and time consuming, and become a major obstacle
to be implemented onto a paper-based device [12,13]. A mechanism that permits these procedures to
be performed on a paper-based device through time-delay valve designs will be necessary.

Various time-delay valve mechanisms have been developed to achieve sequential fluid flow
deliveries by assigning different time delays to plural channels, which are formed by hydrophobic
materials (e.g., wax) in geometrical patterns [14–17], on hydrophilic papers. Common examples are
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actuators [18–21], physical barriers [22–27], and chemical substances [28,29]. While they are all effective
approaches, actuators require external force, and physical barriers may cause damage to paper-based
devices. Therefore, dissolvable surfactant is utilized as the key component for our time-delay valve
mechanism by reducing the surface tension of hydrophobic barriers.

To demonstrate the feasibility and broader applications of our mechanism on paper-based devices,
the competitive ELISA is adapted, as it is perhaps one of the most complicated ELISA techniques.
The competitive ELISA is a highly specific technique which is mostly utilized to measure the antigen
concentration of a sample by detecting interference between target antibodies and antigens in an
expected signal output. As the sample antigen concentrations increase, the output signals decrease,
showing that the signal output inversely correlates with the amount of antigen in the sample. This is
advantageous, particularly when detecting low concentration of samples or pesticide residue.

A single step automated competitive ELISA is achieved with our paper-based device. With the
application of our unique time-delay valve mechanism to paper-based microchannels, undesirable
multi-step reagent manipulations of plate-based competitive ELISA are eliminated. Imidacloprid,
one of the most popular pesticides due to its high toxicity to insects but human [30,31], is tested
with the device. The results reveal a comparable sensitivity to the data by conventional plate-based
competitive ELISA.

2. Mechanism and Methods

A paper-based microfluidic device was constructed with a time-delay valve design to handle
multiple fluids and to sequentially proceed the experimental steps of a competitive ELISA protocol,
as shown in Figure 1. The device has three areas: analyte input, reaction, and detection areas.
The analyte input area was where the analyte was added; it was designed with a certain size that
could hold enough volume (e.g., 100 mL) for the sample solution to gradually diffuse into the second
area—reaction area. The reaction area had three channels, including left, center, and right channels.
The center channel had no hydrophobic wax barrier across the channel, so there was no time-delay
valve to delay the flow that the solution could directly flow through. The antigen in the analyte
(e.g., imidacloprid) meanwhile combined with the MAb (antibody) at (f) and the uncombined MAb
were brought to the detection area along with the solution. The uncombined MAb combined with
the antigen at (b). These were the competitive procedures between the antigen in the analyte and
the antigen at (b). The right and left channels meanwhile were the delay channels. They had wax
barriers, which functioned as time-delay valves, set across the channels to prevent the fluid wicking
and to delay the solution passing through. The detection area included two areas: (a) control area,
which contained immobilized antibodies (Abs) for enzyme-linked detection, and (b) test area, which
contained the immobilized specific antigens to the target Abs.

The time-delay valve was employed to sequentially control the flow passing through these three
channels. As shown in Figure 2, once the device was made, the analyte was first added in the input area
and flowed into the three channels in the reaction area. While the analyte solution could pass through
the center channel quickly, it took much longer time to pass through the side channels. The solution
dissolved the surfactant and became capable of reducing the surface tension of the wax barrier, which
promoted its wicking ability, so the solution could penetrate the barrier and pass through the side
channels. This is the time-delay valve mechanism. The time duration for solution to pass each
time-delay valve was determined by the wax-barrier width and the surfactant concentration. Such a
mechanism can permit the sequential delivery of the enzyme-linked second Ab in the left channel and
bcip/nbt solution in the right channel to the detection area. Once the solutions reached the detection
area and mixed antigen (in test area) and MAb (in control area) for the enzyme reactions taking places.
A colored product was then formed. A visible color change can be observed in the detection area.



Micromachines 2019, 10, 837 3 of 9
Micromachines 2019, 10, x 3 of 10 

 

 
Figure 1. Schematic to show the paper-based enzyme-linked immunosorbent assay (ELISA) device 
with our time-delay valve mechanism. The device has three areas: analyte input, reaction area and 
detection area. The device is prepared before the detection with the following procedures: (a) MAb 
(antibody) is immobilized in the control area, (b) antigens specific to the target antibodies (Abs) is 
immobilized in the test area for colorimetric detection, (c) bcip/nbt solution to produce color, (d) 
enzyme-linked antibody (second Ab), (e) our time-delay valve design, which controls the timing and 
sequences of the liquid flow. (f) MAb combines with both the tested sample (imidacloprid) and 
antigen-competitive reaction. 

 

Figure 2. Schematic to show the time-delay valve mechanism in three steps: (0) The device is made 
before the solutions flow through the channels. (1) The solution first flows through the central 
channel. (2,3) The left and the right channels are sequentially opened by the solution, which dissolves 
surfactant at different concentrations. 

As for the design pattern, a multiple step process was performed sequentially by three steps 
with time-delay valve mechanism: (1) The central sample fluid laterally flowed through the reaction 
area to detection area without barrier, resulting in the competitive reaction with the pre-spotted MAb 
between the analyte and the immobilized antigens. The side fluids dissolved the pre-spotted 
surfactant solutions at different concentrations. (2) It took less time for the left side fluid flow (higher 
surfactant concentration) to penetrate the wax barrier and transport the second Ab to the test area for 
capture of enzyme-second Ab. (3) On the other hand, it took longer time for the right side fluid flow 
(lower surfactant concentration) to penetrate and transport the bcip/nbt substrate to the detection 
area. The enzyme reaction then occurred at the test area to produce a visible color change. These were 
the procedures of competitive ELISA. 

3. Device Fabrication 

3.1. Device Fabrication 

The patterns in Figure 1 were designed with AutoCAD (Autodesk, Inc., San Rafael, CA, USA) 
and printed on an NC membrane (nitrocellulose membrane) with a solid ink printer (Xerox, 
ColorQube8580, Xerox, Norwalk, CA, USA) using solid wax ink (Xerox, Genuine Solid Ink Black). 
After the wax was printed, the membrane was baked at 125 °C for 120 s to melt the wax into the 
membrane to form hydrophobic patterns. 

Figure 1. Schematic to show the paper-based enzyme-linked immunosorbent assay (ELISA) device with
our time-delay valve mechanism. The device has three areas: analyte input, reaction area and detection
area. The device is prepared before the detection with the following procedures: (a) MAb (antibody) is
immobilized in the control area, (b) antigens specific to the target antibodies (Abs) is immobilized in the
test area for colorimetric detection, (c) bcip/nbt solution to produce color, (d) enzyme-linked antibody
(second Ab), (e) our time-delay valve design, which controls the timing and sequences of the liquid
flow. (f) MAb combines with both the tested sample (imidacloprid) and antigen-competitive reaction.
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Figure 2. Schematic to show the time-delay valve mechanism in three steps: (0) The device is made
before the solutions flow through the channels. (1) The solution first flows through the central channel.
(2,3) The left and the right channels are sequentially opened by the solution, which dissolves surfactant
at different concentrations.

As for the design pattern, a multiple step process was performed sequentially by three steps
with time-delay valve mechanism: (1) The central sample fluid laterally flowed through the reaction
area to detection area without barrier, resulting in the competitive reaction with the pre-spotted
MAb between the analyte and the immobilized antigens. The side fluids dissolved the pre-spotted
surfactant solutions at different concentrations. (2) It took less time for the left side fluid flow (higher
surfactant concentration) to penetrate the wax barrier and transport the second Ab to the test area for
capture of enzyme-second Ab. (3) On the other hand, it took longer time for the right side fluid flow
(lower surfactant concentration) to penetrate and transport the bcip/nbt substrate to the detection area.
The enzyme reaction then occurred at the test area to produce a visible color change. These were the
procedures of competitive ELISA.

3. Device Fabrication

3.1. Device Fabrication

The patterns in Figure 1 were designed with AutoCAD (Autodesk, Inc., San Rafael, CA, USA) and
printed on an NC membrane (nitrocellulose membrane) with a solid ink printer (Xerox, ColorQube8580,
Xerox, Norwalk, CA, USA) using solid wax ink (Xerox, Genuine Solid Ink Black). After the wax was
printed, the membrane was baked at 125 ◦C for 120 s to melt the wax into the membrane to form
hydrophobic patterns.
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3.2. Preparation of the Paper-Based Enzyme-Linked Immunosorbent Assay (ELISA) Device for the Detection
of Imidacloprid

In our ELISA protocol, the monoclonal mouse anti-imidacloprid antibody (MAb) and
imidacloprid-antigen (antigen) solutions (0.5 µL at 1 mg/mL) were spotted on the NC membrane in
the control and test areas at locations (a,b) in Figure 1. After drying for 1 h at room temperature,
the membrane was blocked to against nonspecific protein adsorption in bovine serum albumin (BSA)
solution for 1 h. The bcip/nbt substrate, polyclonal goat anti-mouse IgG conjugated with alkaline
phosphatase (second Ab) and the MAb were spotted by a micropipette onto the membrane at locations
(c,d,f), respectively. After drying the membrane for 1 h at room temperature, different concentrations
of surfactant solution (e.g., Tween 20) was dispensed on the membrane at location (e).

3.3. Materials

Monoclonal mouse anti-imidacloprid antibody (imidacloprid-MAb) and imidacloprid-antigen
were obtained from Department of Entomology, National Taiwan University (Taipei, Taiwan).
Polyclonal goat anti-mouse IgG conjugated with Alkaline phosphatase (AP) were purchased from
Invitrogen (Invitrogen, Carlsba, CA, USA). The bcip/nbt (5-bromo-4-chloro-39-indolyphosphate
p-toluidine salt, nitro-blue tetrazolium chloride) substrate solution and substrate buffer solution was
purchased from Nacalai Tesque (Taipei, Taiwan). Bovine serum albumin (BSA), phosphate-buffered
saline (PBS), polysorbate 20 (Tween 20), and p-nitrophenyl phosphate (pNPP) were purchased from
Sigma-Aldrich (St. Louis, MI, USA).

3.4. Data Processing

A smartphone camera, Sony z1 (20.7 megapixel, Sony Corporation, Tokyo, Japan), was used to
capture images of the competitive ELISA results. The color intensity of the image was quantified by an
image processing program (ImageJ, National Institutes of Health, Bethesda, MD, USA). Quantified
data from the test and control areas were subtracted by the background data, acquired from the area
above the test area, for calibration.

4. Result and Discussion

4.1. Time-Delay Valve

Surfactant, surfactant concentration, and wax barrier width were the main factors that affected the
performance of the time-delay valve. Tween 20 and Triton X-100, gentle surfactants which were common
agents for immunoblotting and ELISA, were used to enable the solution to penetrate the hydrophobic
wax barrier by lowering the surface tension of the barrier. Several combinations of different wax barrier
widths, and surfactant concentrations were tested for finding the optimal parameters for our device.
During the tests, surfactants at different concentrations in 0.5 µL were dispensed at the front of wax
barrier and dried for 1 h for complete evaporation (Figure 3 left). PBS was added (100 µL) to dissolve
the surfactant for penetrating the wax barrier.
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Figure 4 showed the effects of surfactant, surfactant concentration, and barrier width on the time
for the solutions to fully penetrate the barrier. It took less time as the surfactant concentration increased,
while it took more time as the barrier width increased. It took much longer time for the PBS-Tr (Triton
X-100 in PBS solution) to pass through the wax barrier than PBST (Tween 20 in PBS solution) did.
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Figure 4. Time required for the solutions to penetrate the wax barriers when different concentrations of
(a) PBST and (b) PBS-Tr and different barrier widths were applied. Experiments were conducted at
least three times for each concentration of both surfactants. (a) is reproduced with permission from
reference [32].

In Figure 5a, PBS-surfactant (2%) started penetrating through the barrier 3 min after the
dispensation of PBS. Figure 5b showed that PBS-surfactant at concentration lower than 2% could not
penetrate through the barriers one hour after the dispensation of PBS.
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Figure 5. Sequence photography of PBS-surfactant penetration tests. (a) 2% surfactant solution
pre-spotted; (b) surfactant solution at concentration lower than 2% (e.g., 1%) pre-spotted.

Tests were conducted to find the optimal delaying time for each time-delay valve to sequentially
control the flow passing through all three channels on our device. It was found that delaying time
less than 30 s resulted in few differences between the arrival of flows from side and central channels
in the detection area, and delaying time longer than 180 s was too long that the sample evaporated.
As a result, time-delay valves with delaying time ranged from 30–60 s was adapted to sequentially
deliver second Ab and bcip/nbt substrate from the side channels on our device.

Figure 6a showed the SEM image of the wax barrier. The barrier prevents the sample flow from
passing through the side channel unless there are surfactants, which inhibits the hydrophobicity
of the barrier. In Figure 6b, surfactant solution was properly pre-spotted on both side channels
(e.g., 10% on the left side channel and 5% on the right one). The sample flows dissolved the pre-spotted
surfactant on both side channels and penetrated through the barriers with different timed durations
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(e.g., 30–60 s), resulting in the sequential arrival of the solutions (e.g., MAb, second Ab, and bcip/nbt)
in the detection area.
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showed the five steps in the time-delay valve while each step was approximately 30–60 s before the
next step. These five steps are: (1) The sample was added on the input area. (2) The sample laterally
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reaction. (3) The left time-delay valve was opened and the second-Ab-carried solution flowed through
the left side channel. (4) The right time-delay valve was opened and the bcip/nbt-substrate-carried
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arrived in the detection area, which triggered the enzyme reaction. (a) is reproduced with permission
from reference [32].

4.2. Performance of Autonomous Paper-Based Devices

Competitive ELISA for Imidacloprid detection was conducted. In Figure 7a, the chromogenic
signals, which responded to the concentrations of imidacloprid, in the detection area were acquired
with a smartphone camera (Sony z1).

Figure 7b illustrated the results of competitive ELISA testing samples at different concentrations
on our devices. The tested sample and immobilized antigen competitively bound to the antibody
(pre-spotted MAb): The more antigen in the sample, the less antibody to bind to the immobilized
antigen—competitive reaction. Second Ab and bcip/nbt substrate solution arrived in the detection area
sequentially from the side channels. The enzyme reaction happened at the detection area, which elicited
a chromogenic signal—a visible color change, which increased as the sample concentration decreased.

The color changes triggered by the enzyme reaction were quantified using Image-J.
The quantification data were shown in Figure 7c, which indicated that the color intensity increased in
the test area as the sample concentrations decreased. The 0 ppm sample resulted in the largest color
change, while the 1 ppb, 10 ppb, and 0.1 ppm samples made noticeable color changes. The 1 ppm
and 10 ppm samples however had very few color changes. The results indicated that our device was
applicable to imidacloprid detection with a detection limit at the sample concentration of 0.1 ppm.

The data were normalized in order to compare to the results by plate-based ELISA. Normalized
color intensity (T/C) was defined as

T/C =
Ti − Tmin
C− Tmin

(1)

where Ti was the color intensity in the test area, Tmin was the minimum color intensity in the test area.
C was the color intensity in the control area.

Figure 8 showed that the T/C values decreased as the sample concentrations increased in both
paper-based and plate-based ELISA. Paper-based and plate-based ELISA, which detected Imidacloprid
at the concentrations of 0, 0.001, 0.01, 0.1, 1, and 10 ppm. Both types of ELISA resulted in similar results,
which validated the applicability of our devices to on-site pesticide detection. The color intensities
of the test areas, from the photos of the paper-based device, acquired with a mobile phone, can be
analyzed for concentration quantification.
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Finally, as conventional ELISAs are conducted in plates with multiple steps and expensive
spectrophotometric readers to quantify the biomarkers, this automated paper-based ELISA analysis
device is very useful as a single-step economic analysis tool and potentially compatible with
digital or cellular phone cameras. It can provide considerable impact, in particular for daily life or
agriculture applications.

5. Conclusions

A time-delay valve mechanism on a paper-based device is developed to automate the competitive
ELISA procedures. The time-delay valve mechanism is applicable to sequentially delivering fluid
flows for a series of reaction steps. Multiple-step competitive ELISA for Imidacloprid detection is
successfully conducted with a similar sensitivity to the ELISA procedures done in plates. The device can
be further improved and extended its capability of performing detection for clinical or environmental
analytes [33–36].
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