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Abstract

Stroke is a leading cause of disability; but no pharmacological therapy is currently available for 

promoting recovery. The brain region adjacent to stroke damage, the peri-infarct zone, is critical 

for rehabilitation, as it exhibits heightened neuroplasticity, allowing sensorimotor functions to re-

map from damaged areas1–3. Thus, understanding the neuronal properties constraining this 

plasticity is important to developing new treatments. Here we show that after a stroke in mice, 

tonic neuronal inhibition is increased in the peri-infarct zone. This increased tonic inhibition is 

mediated by extrasynaptic GABAA receptors (GABAARs) and is caused by an impairment in 

GABA transporter (GAT-3/4) function. To counteract the heightened inhibition, we administered 

in vivo a benzodiazepine inverse agonist specific for the α5-subunit-containing extrasynaptic 

GABAARs at a delay after stroke. This treatment produced an early and sustained recovery of 

motor function. Genetically lowering the number of α5 or δ-subunit-containing GABAARs 

responsible for tonic inhibition also proved beneficial for post-stroke recovery, consistent with the 

therapeutic potential of diminishing extrasynaptic GABAAR function. Together, our results 

identify new pharmacological targets and provide the rationale for a novel strategy to promote 

recovery after stroke and possibly other brain injuries.
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Stroke is a major source of disability, confining one-third of stroke survivors to nursing 

homes or institutional settings4. Recent studies have shown that the brain has a limited 

capacity for repair after stroke. Neural repair after stroke involves re-mapping of cognitive 

functions in tissue adjacent to or connected with the stroke5,6. Functional recovery in this 

peri-infarct tissue involves changes in neuronal excitability that alter the brain's 

representation of motor and sensory functions. Stimulation of peri-infarct cortex enhances 

local neuronal excitability through a process that involves long-term potentiation (LTP), 

alters sensorimotor maps, and improves use of affected limbs5–8. The inhibitory 

neurotransmitter GABA is critical for cortical plasticity and sensory mapping. Altering 

GABAergic transmission changes sensory maps during the critical period of cortical 

development9 and produces rapid alterations in adult cortical maps that resemble changes 

occurring after stroke10,11. Alterations in cortical maps through blockade of GABAergic 

signaling are associated with fundamental changes in cellular excitability including LTP12. 

In a similar manner to normal cortical plasticity, GABAergic mechanisms may mediate 

changes in neuronal excitability that play a central role in functional recovery of peri-infarct 

cortex after stroke.

Cortical GABAergic signaling through GABAARs is divided into synaptic (phasic) and 

extrasynaptic (tonic) components. Tonically active extrasynaptic GABAARs set an 

excitability threshold for neurons13,14. Extrasynaptic GABAARs primarily consist of α5 or 

δ-subunit-containing receptors13,14. Pharmacological and genetic knockdown of α5-

GABAARs enhance LTP and improve performance on learning and memory tasks15,16. 

The selective effects of extrasynaptic GABAARs on cellular excitability and plasticity, and 

the evidence that changes in neuronal excitability underlie functional reorganization in peri-

infarct cortex, suggest that this system may play a role in post-stroke recovery. We find that 

stroke increases tonic GABAergic transmission in peri-infarct cortex and dampening this 

tonic inhibition produces an early and robust gain of motor recovery post-stroke 

(Supplementary Fig. 1, schematic summary).

We examined neuronal excitability in the peri-infarct cortex of mice during the period of 

recovery and reorganization after a photothrombotic stroke to forelimb motor cortex. 

Whole-cell voltage-clamp recordings in in vitro brain slices prepared at 3-, 7-, and 14-days 

post-stroke (Fig. 1a) showed a significant increase in GABAAR-mediated tonic inhibition 

(Itonic) in layer 2/3 pyramidal neurons, compared to neurons from sham controls (control: 

8.05±0.80 pA/pF, n=24, vs. post-stroke: 13.6±1.41 pA/pF, n=45, Mann-Whitney U-test, 

P<0.05; Fig. 1b). Itonic remained elevated from 3- to 14-days post-stroke (Supplementary 

Fig. 2a). The mean phasic excitation remained unchanged over the 2-week period after 

stroke (Supplementary Fig. 3a, b). The mean phasic inhibition was unchanged except for a 

transient decrease at 7-days post-stroke (Supplementary Fig. 3c, d). The resting membrane 

and GABA reversal potentials were both unchanged (Supplementary Fig. 3e, f).

Tonic inhibition is effectively controlled by the degree of extracellular GABA uptake 

through neuronal and astrocytic GABA transporters (GATs)14. We applied a GAT-1-

selective antagonist, NO-711 (10μM), and found a significantly greater effect (% Itonic 

increase after GAT blockade) in post-stroke neurons (94.0±16.3%, n=10) than in controls 

(34.3±11.4%, n=6; P<0.05; Fig. 2a). Co-application of NO-711 and the GAT-3/4-selective 
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antagonist SNAP-5114 (40 μM) produced a substantial increase in Itonic in controls 

(300.6±46.0%, n=4; Fig. 2a), revealing the synergistic actions of GATs in the cortex as 

previously proposed17. In post-stroke neurons, co-application only produced an effect 

(110.7±32.0%, n=5) similar to GAT-1 blockade alone (P=0.68; Fig. 2a), indicating a 

dysfunction in GAT-3/4 after stroke. Sequential blockade of the two GATs confirmed the 

post-stroke impairment, as peri-infarct Itonic showed no further response to GAT-3/4 

blockade after the initial GAT-1 block, in contrast to responses shown in controls (Fig. 2b, 

c). This effect was not due to receptor saturation, as Itonic showed further increase in 

response to raised [GABA] under GAT blockade (Supplementary Fig. 4a). Western-blot 

analysis confirmed a reduced GAT-3/4 level in peri-infarct cortex, whereas GAT-1 levels 

were unchanged (Supplementary Fig. 5).

We hypothesized that the chronically elevated tonic inhibition in the peri-infarct region may 

antagonize the neuronal plasticity required for functional recovery after stroke. Therefore, 

we tested whether reducing the excessive tonic inhibition would improve function recovery. 

Of the two GABAARs subtypes shown to underlie tonic inhibition in cortical neurons, the 

α5-GABAARs can be antagonized specifically by L655,708, a benzodiazepine inverse 

agonist16, while no specific antagonist exists for δ-GABAARs. L655,708 (100 nM) 

decreased Itonic in control neurons by −13.3±5.2% (n=4), but produced a significantly 

greater decrease in post-stroke neurons (−30.0±4.1%, n=13; P<0.05; Fig. 2d, e), which 

reverted Itonic back to control level (control: see above vs. post-stroke + L655,708: 

140.8±18.5pA, n=13; P=0.702; Fig. 2f). L655,708 produced only minimal effects on phasic 

inhibitory currents in both post-stroke and control conditions (Supplementary Fig. 4b).

We next tested the effects of reducing tonic inhibition on functional recovery after stroke, 

using measures of fore- and hindlimb motor control. Stroke produced an increase in the 

number of foot-faults in grid-walking task, and a decrease in forelimb asymmetry in the 

cylinder task from 7-days post-stroke. Chronic treatment with L655,708 starting 3-days 

post-stroke resulted in a dose-dependent maximal gain of function beginning from 7-days 

post-stroke in both tasks (P<0.001; Fig. 3a–c). Acute treatment with L655,708 just prior to 

behavioral testing had a minimal effect on stroke recovery (Supplementary Fig. 7). To assess 

the necessity of long-term administration, we discontinued L655,708 treatment after 2 weeks 

and found a decrease in functional gains, although these mice still performed better than 

vehicle-treated stroke controls (Supplementary Fig. 6).

To further corroborate the role of reduced tonic inhibition in enhancing stroke recovery, we 

tested mice with deletions of either α5 or δ-subunit-containing GABAARs (Gabra5−/− and 

Gabrd−/−, Methods)18. Gabra5−/− animals showed significantly better motor recovery post-

stroke, comparable to L655,708-treated wild-type animals (Fig. 3d–f). In addition, 

Gabra5−/− animals displayed a significant reduction in hindlimb foot-faults (Fig. 3e). 

Gabrd−/− animals also showed significant improvements in motor recovery (Fig. 3d–f), but 

to a lesser extent than the Gabra5−/− mice. Thus, modulation of α5GABAARs affords 

greater functional gains in motor recovery than δGABAARs, and genetic removal of 

α5GABAARs produces a more widespread increase in motor recovery than pharmacological 

antagonism. Administration of L655,708 to Gabrd−/− mice produced an even greater 
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recovery, confirming the beneficial effect of reducing peri-infarct tonic inhibition (Fig. 3a, 

c).

Low/sub-seizure dosing of picrotoxin (PTX: 0.1mg/kg, i.p.), a use-dependent GABAAR 

antagonist, enhances learning and memory in transgenic mouse models of Alzheimer's and 

other cognitive impairments by reversing an increased GABAergic inhibitory tone, acting at 

both synaptic and extrasynaptic GABAARs19,20. The pharmacological effects of PTX on 

reducing phasic and tonic inhibition were not altered after stroke (Supplementary Table II). 

PTX given to animals from 3-days post-stroke resulted in a significant gain of forelimb 

function on the grid-walking task compared to vehicle-treated stroke controls (P<0.05; 

Supplementary Fig. 9a). No significant changes were observed in hindlimb function or 

forelimb asymmetry (Supplementary Fig. 9b, c). Combined L655,708 + PTX treatment 

showed similar initial functional gains compared to stroke + L655,708 alone; however, 

prolonged PTX + L655,708 treatment produced a deterioration in motor function such that 

the performance progressively worsened at late periods after stroke (Supplementary Fig. 9). 

These data suggest that increasing cortical excitability too far or reducing phasic inhibition 

negatively impact functional recovery.

An important element in stroke treatment is the timing of drug delivery. GABAAR agonists 

administered at the time of stroke decrease stroke size20. Therefore, dampening tonic 

inhibition too early after stroke may produce an opposite effect, i.e. increased cell death. To 

test this, we assessed stroke volume at 7-days post-stroke, in animals treated with 1) vehicle, 

2) L655,708 from stroke onset, and 3) L655,708 from day-3 post-stroke. Stroke volumes 

were similar between mice treated with vehicle and L655,708 from day-3 (Fig. 4). In 

contrast, stroke volume was significantly increased in animals treated with L655,708 from 

stroke onset (P<0.05; Fig. 4). These data indicate a critical timeframe for therapeutically 

dampening tonic inhibition post-stroke: reduction too early would exacerbate stroke damage, 

while delaying treatment by 3-days would promote functional recovery without altering 

stroke size. Genetic deletion of α5- or δ- GABAARs did not affect infarct size or neuronal 

number in peri-infarct cortex (Supplementary Fig. 8). Unlike pharmacological antagonism 

of α5-GABAAR-mediated inhibition, in Gabra5−/− and Gabrd−/− mice, the genomic absence 

of one of the extrasynaptic GABAARs may trigger compensatory upregulation of the other 

receptor13 and thus obscuring their roles in neuroprotection immediately after stroke.

Current therapies that promote functional recovery after stroke are limited to physical 

rehabilitation4. Here, by identifying an excessive tonic inhibition after stroke, we have 

found promising new targets for pharmacological interventions to promote recovery. The 

elevated tonic inhibition in cortical pyramidal neurons occurs during precisely the same 

time-period important for cortical map plasticity and recovery1–3. Alterations in other 

aspects of cortical signaling have also been described during this period, including altered 

GABAAR subunits, glutamate receptor expression and neuronal network properties21–24. 

Protein levels of GAT-1 and GAT-3/4 were shown to be decreased in peri-infarct cortex in 

some rodent stroke models, and reactive astrocytes exhibit reduced uptake of other 

neurotransmitters23. However, there are conflicting data on GABAAR levels after stroke23–

26. We found decreased protein level and compromised function of GAT-3/4 in peri-infarct 

cortex. The elevated tonic inhibition may curtail cortical plasticity and spontaneous recovery 
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after stroke, and is consistent with tonic GABAergic inhibition exerting a causal role in 

limiting motor recovery in stroke.

Non-selectively decreasing GABAergic tone facilitates neuronal plasticity in genetic models 

of cognitive diseases19,20. We show for the first time that antagonizing an elevated tonic 

inhibition enhances motor recovery after stroke, consistent with the idea that molecular and 

cellular events of neuronal plasticity are dampened in the peri-infarct zone, and promoting 

this plasticity facilitates functional recovery. Together, our results have identified novel 

pharmacological targets and provide a rational basis for developing future therapies to 

promote recovery after stroke and possibly other brain injuries.

Methods Summary

Photothrombotic model of focal stroke

Focal stroke was induced by photothrombosis in adult male C57BL/6 mice (age 2–4 month) 

as described by27.

Slice preparation for electrophysiology

Following decapitation, brains were rapidly removed and placed into a N-methyl-D-

glucamine (NMDG)-based cutting solution to enhance neuronal viability28. Coronal slices 

(350μm) were cut and transferred to an interface-style chamber containing artificial 

cerebrospinal fluid as previously described13. Recordings were made from intact peri-

infarct cortical layer-2/3 pyramidal neurons and analyzed as previously described13.

In vivodrug administration

L655,708 was dissolved in DMSO and then diluted 1:1 in 0.9% saline. L655,708-filled 

ALZET-1002 pumps were implanted at 3-days post-stroke and replaced every two weeks. In 

acute administration studies, 5mg/kg L655,708 was administered (i.p.) 30 minutes prior to 

testing. The concentration in one minipump, 5mM, delivers a 200ug/kg/day dose in mice. 

With one or two minipumps implanted, this provides a dose escalation. PTX (0.1mg/kg i.p. 

bi-daily) starting 3-days post-stroke was administered alone or in concert with L655,708.

Behavioral analysis

Mice were videotaped during walking and exploratory behavior in the grid-walking and 

cylinder/rearing tasks, tested at approximately the same time each day during the nocturnal 

period29. Baseline behavioral measurements were obtained one week prior to surgery. Post-

stroke animals were assessed at weeks 1, 2, 4, and 6.

Infarct-size measurement—For the histological assessment of infarct size, brains were 

processed at 7-days post-stroke using cresyl violet as previously described30.

Statistical analysis—All data are expressed as mean ± s.e.m. For electrophysiological 

comparisons between control vs. post-stroke, Mann-Whitney non-parametric test was used. 

For multiple comparisons across post-stroke days, one-way analysis of variances (ANOVA) 

and Newman–Keuls' multiple pair-wise comparisons for post-hoc comparisons were used. 
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For behavioral testing, differences between treatment groups were analyzed using two-way 

ANOVA with repeated measures and Newman–Keuls' multiple pair-wise comparisons. The 

level of significance was set at P<0.05.

METHODS

Photothrombotic model of focal stroke—Under isoflurane anesthesia (2–2.5% in a 

70% N2O / 30% O2 mixture), 2–4 month-old adult C57Bl6 (Charles River, Wilmington, 

MA) male mice were placed in a stereotactic apparatus, the skull exposed through a midline 

incision, cleared of connective tissue and dried. A cold light source (KL1500 LCD, Zeiss) 

attached to a 40× objective giving a 2mm diameter illumination was positioned 1.5mm 

lateral from Bregma, and 0.2mL of Rose Bengal solution (Sigma; 10 g/L in normal saline, 

i.p.) was administered. After 5-min, the brain was illuminated through the intact skull for 

15-min. Rose-bengal produces singlet oxygen under light excitation, which damages and 

occludes vascular endothelium, resulting in focal cortical stroke under the region of 

illumination (Fig. 4), circumscribed by peri-infarct tissue with normal neuronal cell number 

(Supplementary Fig. 8). Two to four month-old adult male Gabra5−/− and Gabard−/− mice1 

received stroke as above. These mice had been back-crossed to C57Bl6 in excess of 15 

generations, and were compared in behavioral studies to wild-type C57Bl6. Body 

temperature was maintained at 36.9 ± 0.4°C with a heating pad throughout the operation and 

did not vary by drug or genetic condition. This stroke method produces a small stroke in the 

mouse forelimb region of the motor cortex (Fig. 4). Sample size was 10 per group for 

Gabara5−/− and Gabard−/− in stroke/behavioral studies. Sample size was 8 per group for 

each condition in dosing of L655,708 (Fig. 3).

Blood pressure (systolic and diastolic) and heart rate were measured in separate cohorts of 

mice in wild-type (C57Bl6), with and without L655,708 administration via ALZET 

minipumps from 3-days post-stroke, and in Gabra5−/− and Gabrd−/− mice, before during and 

after stroke, using a standard non-invasive tail-cuff method (Coda, Kent Scientific, 

Torrington, CT). There were no significant differences in heart rate or blood pressure by 

treatment or genotype (Supplementary Table I). All studies in this manuscript complied with 

the STAIR (Stroke Therapy Academic Industry Roundtable) criteria for stroke investigations 

in measuring physiological parameters, monitoring treatment effects for at least one month, 

analyzing treatment effects blinded to conditions, utilizing dose-response studies, and use of 

a drug administration route with blood brain barrier penetration.

Whole-cell voltage-clamp electrophysiology—Slices were submerged in the 

recording chamber and continuously perfused (5–8 ml/min) with oxygenated ACSF (32–

34°C). Visualized patch-clamp recordings from layer-2/3 pyramidal neurons were 

performed at 40x using infra-red oblique-illumination (Leica DM-LFS; Hamamatsu CCD 

camera C3077–78).

Control recordings were made from cells of sham-operated animals at similar locations as 

those recorded in post-stroke animals. Microelectrodes (3–5 MΩ) were filled with a 

cesiummethylsulfonate (CsMeSO4)-based internal pipette solution, containing (in mM) 120 

CsMeSO4, 10 CsCl, 5 TEA-Cl, 1.5 MgCl2, 10 HEPES, 0.1 EGTA, 2 Na-ATP, 0.5 Na-GTP, 
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and 5 QX-314, pH 7.25–7.30 with CsOH, 275–285 mOsm. The recording ACSF was 

supplemented with 5 μM GABA to replenish the extracellular GABA concentration reduced 

by the high-flow perfusion of the slices1. For recording Itonic at −70 mV, a high-CsCl-based 

internal solution was used, containing (in mM) 140 CsCl, 1 MgCl2, 10 HEPES, 0.1 EGTA, 

4 NaCl, 2 Mg-ATP, 0.3 Na-GTP, and 5 QX-314, pH ~7.3, ~275 mOsm/l, with ACSF 

containing 3 mM kynurenic acid to block glutamatergic currents.

Neurons were voltage-clamped in whole-cell configuration using a MultiClamp-700A 

amplifier (Molecular Devices); all recordings were low-pass-filtered at 3 kHz (8-pole 

Bessel) and digitized online at 10 kHz (National Instruments PCI-MIO-16E-4 board). Series 

resistance and whole-cell capacitance were estimated from fast transients evoked by a 5mV 

step and compensated to 75%. EPSCs and IPSCs were recorded by voltage-clamping 

sequentially at −70mV and +10mV, respectively. All drugs were purchased from Sigma or 

Tocris. L-655,708 and SNAP-5114 were dissolved in DMSO then diluted 1:1000 in H2O. 

NO-711, Gabazine and GABA were dissolved in H2O.

Tonic inhibitory current and mean phasic current determination—Custom-

written macros running under IGOR Pro v.6.0 (WaveMetrics, Inc.) were used to analyze the 

digitized recordings to determine the values of tonic currents and mean phasic currents, as 

previously described1. Itonic was recorded as the reduction in baseline holding currents 

(Ihold) after bath-applying a saturating amount (>100μM) of the GABAAR antagonist 

SR-95531 (gabazine), while voltage-clamping at +10mV. NO-711, SNAP-5114 and 

L-655,708 were added to the recording ACSF via perfusion and their effects on Itonic were 

recorded as the post-drug shift in Ihold. Drug perfusion was continued until the shifting Ihold 

remained steady for 1–2 min.

To determine the mean phasic current (Imean), a 60-s segment containing either EPSCs or 

IPSCs was selected, and an all-point histogram was plotted for every 10,000 points (every 

1s), smoothed, and fitted with a Gaussian to obtain the mean baseline current. All baseline 

mean values were then plotted and linear trends subtracted to normalize the mean baseline 

current to 0pA. After baseline normalization, the values of each 10,000 points (each 1s) 

were averaged to yield the value of Imean (in pA/s) for each 1s epoch. The averaged Imean 

value of a 60s segment was reported as the phasic Imean value for either the spontaneous 

EPSC or IPSC. Synaptic event kinetics (i.e. frequency, peak amplitude, 10–90% rise time, 

and weighted decay time constant) are analyzed by custom-written LabView-based software 

(EVAN), as previously described1. For comparison of the IPSC peak amplitudes under 

control and PTX-treated conditions (Supplementary Table II), the largest-amplitude count-

matched method was used, whereby the amplitude values in a given recording were sorted 

and the largest x number of events under control condition were averaged and taken for 

comparison with the average of an equally-matched x number of events under the PTX 

condition, with x determined by the number of events detected under the 10 μM PTX 

condition. This method circumvents the erroneous comparison of average amplitudes when 

considering the effects of a receptor antagonist that reduces the smaller events (in control 

condition) below the noise level.
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Measurements of neuronal resting membrane potential (Vrest) and GABA 
reversal potential (EGABA)—To estimate Vrest, the cell-attached recording technique2 

was used. Briefly, depolarizing voltage ramps (−100 to +200 mV) were applied to cell-

attached patches to activate voltage-gated K+ channels and establish the K+ current reversal 

potential, which provides a measure of the Vrest, given near equimolar K+ inside the cell and 

the pipette. EGABA was estimated by measuring the K+ reversal potential after activating 

GABAARs with 50μM muscimol. Recordings were made using a solution containing the 

following (in mM): K+ gluconate (135), KCl (5), MgCl2 (2), HEPES (10), EGTA (0.1), Na-

ATP (4), Na-GTP (0.3), pH 7.3, 273mOsm/l. A junction potential of 9mV was measured 

and then subtracted from voltage values of all measurements.

Fitting of multiple distributions to cumulative probability plots—The fitting of 

multiple distributions to a cumulative probability plot (Supplementary Fig. 2) was done as 

follows. Cumulative probabilities of the variable x (i.e., P(x)) were calculated and fitted by 

one or more normal curves approximated by the logistic equation3:

where R1, …,Rn are the ratios of the n normal distributions (such as ), 

, are the individual means, and p1,…,pn are steepness factors related to the n 

standard deviations (SD1,. . SDn).

Behavioral analysis

Grid-walking Task—The grid-walking apparatus was manufactured as previously 

described4, using 12mm square wire mesh with a grid area 32cm / 20cm / 50cm (length / 

width / height). A mirror was placed beneath the apparatus to allow video footage in order to 

assess the animals' stepping errors (i.e. `footfaults'). Each mouse was placed individually 

atop of the elevated wire grid and allowed to freely walk for a period of 5min. Video footage 

was analyzed offline by raters blind as to the treatment groups. The total number of 

footfaults for each limb, along with the total number of non-footfault steps, was counted, 

and a ratio between footfaults and total-steps-taken calculated. Percent footfaults were 

calculated by: [#footfaults / (#footfaults + #non-footfault steps) * 100]. A ratio between 

footfaults and total steps taken was used to take into account differences in the degree of 

locomotion between animals and trials. A step was considered a footfault if it was not 

providing support and the foot went through the grid hole. Further, if an animal was resting 

with the grid at the level of the wrist, this was also considered a fault. If the grid was 

anywhere forward of the wrist area then this was considered as a normal step.

Spontaneous Forelimb Task (Cylinder Task)—The spontaneous forelimb task 

encourages the use of forelimbs for vertical wall exploration / press in a cylinder5. When 

placed in a cylinder, the animal rears to a standing position, whilst supporting its weight 

with either one or both of its forelimbs on the side of the cylinder wall. Animals were placed 

inside a Plexiglas cylinder (15cm in height with a diameter of 10cm was used) and 
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videotaped for 5min. Videotape footage of animals in the cylinder were evaluated 

quantitatively in order to determine forelimb preference during vertical exploratory 

movements. While the video footage was played in slow motion (1/5th real time speed), the 

time (sec) during each rear that each animal spent on either the right forelimb, the left 

forelimb, or on both forelimbs were calculated. Only rears in which both forelimbs could be 

clearly seen were timed. The percentage of time spent on each limb was calculated and these 

data were used to derive an SFL asymmetry index (% ipsilateral use- % contralateral use). 

The `contact time' method of examining the behavior was chosen over the `contact 

placement' method, as described by5, as it takes into account the slips that often occur 

during a bilateral wall press post-photothrombosis.

Western Blot—Seven days after stroke mice were decapitated, the brains rapidly removed 

and peri-infarct cortex microdissected and frozen (n=5). The equivalent region of cortex was 

taken in control, non-operated mice (n=3). Samples were homogenized in 

radioimmunoprecipitation (RIPA) buffer (Pierce; Rockford, IL) and centrifuged at 20000×g 

at 4°C for 10 minutes. Supernatant was collected as protein extract and stored at −80°C. 

Western blot was performed as described5. 100 ug of protein from each sample was diluted 

in 7.5 ul of 2× SDS- sample buffer gel (Invitrogen; Carlsbad, CA) containing dithiothreitol 

(DTT) (Sigma, St. Louis, MO) and brought to a final volume of 15 ul with RIPA buffer. 

Samples were denatured at 95°C, loaded on to a 4–12 % gradient Tris-Glycine gel 

(Invitrogen; Carlsbad, CA), separated via SDS-PAGE, and then transferred to HYBOND™-

P (pvdf) membrane (Amersham; Piscataway, NJ) at 30 volts for 2 hours. Membranes were 

rinsed and blocked overnight at 4°C. Membranes probed with antibodies against GABA 

Transporter 3 (Rbt Anti-GAT-3 1:1000; Millipore; Temcula, CA), and GABA Transporter 1 

(Rbt Anti-GAT-1 1:200; Millipore; Temecula, CA). Following successive washes, 

membranes were incubated in IgG Donkey Anti-Rabbit HRP-labeled secondary (1:6000; 

Jackson; West Grove, PA) for one hour at room temperature. Membranes were incubated in 

ECL PLUS (Amersham; Piscataaway, NJ)) and chemiluminescence was detected using 

Fluorochem (Alpha Innotech, San Leandro, CA). Membranes were then re-probed for one 

hour at room temperature with GAPDH (1:2500; Abcam; Cambridge, MA) and Donkey 

Anti-Rbt-HRP (1:10000; Jackson; West Grove, PA) as an endogenous control protein to 

ensure equal loading. Immunoblotting was performed in triplicate for each antibody. Adobe 

Photoshop software (Adobe Systems Inc, San Jose, CA) was used for densitometric analysis 

of all blots.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Elevated tonic inhibition in peri-infarct cortex
a, Images showing the peri-infarct recording site. Whole-cell patch-clamp recordings were 

made from post-stroke brain slices, within 200μm of infarct (top left), from layer-2/3 (top 

right) pyramidal neurons (bottom panels). b, Box-plot (boxes: 25–75%, whiskers:10–90%, 

lines: median) showing significantly elevated tonic inhibition in peri-infarct cortex (asterisk: 

P<0.05; see Supplementary Fig. 2 for additional analyses). c,d, Representative traces 

showing tonic inhibitory currents in control and peri-infarct neurons, respectively. Tonic 

currents were revealed by the shift in holding currents after blocking all GABAARs with 

gabazine (>100μM). Cells were voltage-clamped at +10mV.
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Figure 2. Post-stroke impairment in GABA transport and effect of blocking α5-GABAARs
a, Blocking GAT-1 (NO-711) produced a higher % increase in Itonic after stroke; combined 

blockade of GAT-1 and GAT-3/4 (NO-711 + SNAP-5114) produced a substantial Itonic 

increase in controls but only an increase equivalent to blocking GAT-1 alone after stroke. 

b,c, Itonic in sequential drug applications. Note the lack of response to SNAP-5114 

application in the post-stroke slice. d, L655,708 reduced Itonic. e, L655,708 significantly 

decreased post-stroke Itonic. f, Drug treatment reverted post-stroke Itonic to near-control level 

(asterisk: P<0.05; n.s.: no significance, bar graphs represent mean ± s.e.m.).
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Figure 3. Behavioral recovery after stroke with L655,708 treatment and in Gabra5−/−and 
Gabrd−/− animals
a–c, L655,708 treatment starting from 3-days post-stroke resulted in a dose-dependent 

improvement in functional recovery post-stroke. d–f, Gabra5−/− and Gabrd−/− mice also 

showed decreased motor deficits post-stroke. Functional recovery was assessed with 

forelimb (a, d) and hindlimb foot-faults (b, e), and on the forelimb asymmetry (c, f). Low-

dose L655,708 = 200μg/kg/day per animal; high-dose L655,708 = 400μg/kg/day per animal. 

Data are ± s.e.m. *** = P≤0.001 stroke + vehicle vs Sham; + = P≤0.05, ## = P≤0.01, # = 

P≤0.001 vs stroke + vehicle.
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Figure 4. Inflection point in L655,708 treatment effect on infarct size
Representative Nissl stained sections at 7-days post-stroke from stroke + vehicle-treatment 

(a), stroke + L655,708-treatment starting at the time of stroke (b) and stroke + L655,708-

treatment starting from 3-days post-insult (c). Quantification of the stroke volume is shown 

in panel (d). Data are mean ± s.e.m. for n=4 per group, * = P≤0.05.
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