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Abstract

Background: The mainland of the Americas is home to a remarkable diversity of languages, and the relationships between
genes and languages have attracted considerable attention in the past. Here we investigate to which extent geography and
languages can predict the genetic structure of Native American populations.

Methodology/Principal Findings: Our approach is based on a Bayesian latent cluster regression model in which cluster
membership is explained by geographic and linguistic covariates. After correcting for geographic effects, we find that the
inclusion of linguistic information improves the prediction of individual membership to genetic clusters. We further
compare the predictive power of Greenberg’s and The Ethnologue classifications of Amerindian languages. We report that
The Ethnologue classification provides a better genetic proxy than Greenberg’s classification at the stock and at the group
levels. Although high predictive values can be achieved from The Ethnologue classification, we nevertheless emphasize that
Choco, Chibchan and Tupi linguistic families do not exhibit a univocal correspondence with genetic clusters.

Conclusions/Significance: The Bayesian latent class regression model described here is efficient at predicting population
genetic structure using geographic and linguistic information in Native American populations.
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Introduction

Comparing genetic and linguistic data provides information

about various aspects of American prehistory, the process by

which the Americas were originally colonized [1] or migration

across linguistic barriers [2]. In addition to anthropological

applications, evaluating the relationships between genes and

languages has potential biomedical applications since language

could be used as a proxy for genetic ancestry in various

epidemiological contexts [3,4].

Previous analyses comparing genetic to linguistic differentiation

in the Americas yielded equivocal results. Cavalli-Sforza et al. [5]

reported that, prior to the publication of their book, three of seven

studies supported congruence between genes and languages [6–12].

At that time, Ward et al. [13] found that rates of linguistic

diversification are faster that rates of genetic differentiation in

mtDNA, and concluded that there is little congruence between

linguistic and genetic relationships in the Americas. In more recent

studies also using mtDNA, the hypothesis that language classifica-

tions reflect the genetic structure of Native American populations

was also rejected [2,14]. Lastly, an analysis of autosomal

microsatellite markers in 28 Native American populations from

the Human Genome Diversity Panel (HGDP) provided a qualitative

correspondence between linguistic and genetic groupings [15].

However, tests of correlation were not significant for these data.

To investigate the relationships between genes and languages,

the previous studies made use of tree-based or distance-based

methods. Hunley and Long [2] and Hunley et al. [14] applied a

test of treeness developed by Cavalli-Sforza and Piazza [16] to

decide if a matrix of genetic distances is compatible with a

language tree. These authors dealt with various hierarchical

classifications of American languages, and they found that none of

them were consistent with the mitochondrial genetic distances.

Adopting another approach, Cavalli-Sforza et al. [17] found a high

degree of association between linguistic and genetic trees using a

consistency index. Alternatively, the association of genes and

languages can be assessed by Mantel tests [18]. Mantel tests are

used to reject the absence of correlation between a matrix of

genetic distances and a matrix of linguistic distances, and do not

require reconstructing population trees. Since a spurious associ-

ation between genetic and linguistic distances may be detected

when geography is not accounted for, more elaborate procedures

called partial Mantel tests can be applied in order to control for

geography [19]. Partial Mantel tests were applied to the HGDP

and did not provide strong evidence of association in Native

American populations [15].
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By definition, the results obtained from tree-based and distance-

based methods are influenced by specific choices of tree

reconstruction methods or particular genetic and linguistic

distances. The validity of population trees depends on the

reliability of their reconstruction method and on the hypothesis

that genetic differentiation results from population fission.

Whereas trees are well-suited for describing evolutionary relation-

ships of non-recombining sequences like mtDNA, they may be

sensitive to distortion due to gene flow between populations when

nuclear data are analyzed [20]. In addition, we still lack an

evolutionary tree for languages as linguists have not yet reached a

clear consensus on their classification [21], and even questioned

the validity of branching trees as an adequate representation of

linguistic patterns of divergence [22]. Finally, there are several

pairwise measures of population differentiation or of linguistic

divergence, and the choice of a specific measure can have a

significant impact on Mantel tests [23]. Linguistic distances can,

for instance, be based on a hierarchical linguistic classification

[24], or they can be directly derived from structural linguistic

features such as aspects of sound systems and grammar [25,26].

In this study, we introduce a novel method for investigating the

relationships between genes and languages that avoids genetic and

linguistic distances as well as tree reconstruction methods. We

consider Bayesian latent class regression models [27] where we regress

the unobserved genetic structure on linguistic and geographic

variables. The principle of the method is to group individuals into

genetic clusters at the same time as their latent cluster labels are

regressed. To evaluate the predictive capacity of different sets of

linguistic and geographic covariates, we also propose procedures of

variable selection. Using this approach, the following questions are

addressed. To what extent can geographic or linguistic origin

explain individual membership to genetic clusters? Do languages

contribute to a better prediction of cluster membership than

geography alone? Among the classifications of Native American

languages that have been proposed by linguists [28,29], which one

is the best predictor of population genetic structure? Although

some of these questions have received considerable attention in the

context of evolutionary trees or evolutionary distance comparisons

[2,23,30], examining their answers from a latent class individual-

based model is new and potentially highly informative.

Methods

Several Bayesian model-based approaches have been proposed

to assign individuals to genetic clusters [31–33]. To assess the

effects of geographic and linguistic covariates on the assignment of

individuals to genetic clusters, we considered a Bayesian latent

class regression model [27,34,35]. This new model incorporates a

hidden regression model within the framework proposed by

Pritchard et al. [31] and implemented in the computer program

structure.

Bayesian model
Consider a genotypic data set, X , for a sample of n diploid

individuals genotyped at L loci, and assume that there are K
clusters, each of which is characterized by a set of allele

frequencies at each locus. Let Z~(Z1, . . . ,Zn) be the vector of

cluster labels of each individual in the sample, and let P be the set

of allele frequencies. In addition, assume that a set of covariates is

measured for each individual, and stored in a design matrix, ~XX .

The covariates represent the geographic and linguistic information

that is available to build predictors of the population genetic

structure that is encoded in vector Z. Regarding geography,

predictors can be defined as linear or quadratic trend surfaces as

proposed by Durand et al. [36]. Linear trend surfaces include two

covariates, latitude and longitude, while quadratic surfaces also

include squared and cross-product terms. Languages are coded as

factors defined as binary dummy variables in the design matrix

[37]. The factor levels will be dependent on the choice of the

linguistic classifications considered further in this study. Remark

that in regression models using factors, a linear constraint (or

contrast) must be defined for identifiability reasons. In our study,

we assumed that the sum of effects is null.

For algorithmic reasons, the latent regression model was

implemented through a hidden multinomial probit model [38]. In

the multinomial probit model, there are K{1 regression

equations

Wi,k~ ~XX ibkz i,k,i~1, . . . ,n,k~1, . . . ,K{1,

i~( i,1, . . . , i,K{1)*N (0,Id),
ð1Þ

each corresponding to a genetic cluster. The (Wi,k) are

‘‘augmented’’ continuous variables defined for each individual

and each cluster, bk is a column vector of regression coefficients,

and Id denotes the identity matrix. For each individual i, a cluster

label Zi can be obtained from the augmented variables as follows

Zi~
K if max‘Wi,‘v0

k if max‘Wi,‘w0 and max‘Wi,‘~Wi,k:

�
ð2Þ

In the multinomial probit model the role of the clusters is not

symmetric. The estimates of the regression coefficients are defined

with respect to the K th cluster, called the reference cluster.

Given the above latent class model framework, we used a

Markov Chain Monte Carlo (MCMC) algorithm based on Gibbs

sampling to compute the joint posterior distribution on individual

cluster labels, regression coefficients and allele frequencies

Pr(Z,b,PjX )!Pr(X jZ,P)Pr(Zjb)Pr(b)Pr(P) :

In this equation, the likelihood Pr(X jZ,P) and the prior

distribution on allele frequencies Pr(P) are computed in the same

way as in the model without admixture of the program structure

(equations (2) and (4) in [31]). The distribution Pr(b) is a

noninformative prior distribution (see Appendix A), and Pr(Zjb)
corresponds to the distribution of cluster labels obtained from the

multinomial probit model. The algorithm was implemented in the

software POPS, and is described in more details in Appendix A.

For each subset of covariates, we additionally computed a

matrix of posterior predictive membership probabilities using a

Monte Carlo method. To perform the computations, we simulated

cluster labels from the generative model described in equation (1)

and (2) where the regression coefficients are sampled from their

posterior distribution. To display predicted and inferred member-

ship probabilities graphically, we used barplot representations. In

these graphics, each individual is represented by K aligned colored

segments, and the segment lengths are proportional to their

estimated or predicted membership probabilities.

Variable selection
To investigate whether a particular subset of covariates is a

suitable proxy for genetic assignment, we used two distinct

measures. Both measures are based on the posterior of regression

coefficients and cluster labels. The first measure is a Pearson

Prediction of Native American Population Structure
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correlation coefficient, r. For a given subset of covariates, the

ability of the model to predict genetic structure was evaluated by

computing the correlation between the matrix of predicted

membership coefficients and the matrix of estimated membership

coefficients. The second measure is based on cross-validation, a

technique used in the field of machine learning [39,40] and for

latent class models [41]. In our analyses, a 2-fold cross-validation

was implemented. More specifically, we divided the genotypic data

set, X , into two non-overlapping data sets containing comple-

mentary subsets of loci. We considered one of these data sets as the

training set, X training, and the other one as the validation set,

X validation. The rationale of the cross-validation approach is that

the demographic processes that shaped population genetic

structure have affected all loci across the genome. Thus the

training and validation sets are exchangeable, as they provide the

same amount of information about population structure. We

performed 500 runs of the Gibbs sampling algorithm using the

training set, and retained the 50 runs having reached the highest

likelihood values. For each of the retained runs, a predictive score

was computed by averaging the log-probability of the validation

set over the posterior distribution given the training set

Predictive Score~E log(Pr(X validationjZ))jX training
� �

:

The computation of predictive scores is detailed in Appendix B.

Another series of 50 scores was computed after exchanging the

role of the validation and training sets, and a cross-validation score

was obtained by averaging the resulting 2|50~100 predictive

scores.

Simulated data
We ran a first series of simulations using the generating model of

the program POPS. Assuming three clusters, cluster labels of 300

individuals were simulated using the following regression equa-

tions

Wi,1~1z3 ~XX Lat
i z i,1 ð3Þ

Wi,2~{4z12 ~XX Lat
i z i,2 ð4Þ

where i,k is a standard Gaussian noise. The interpretation of the

above linear trend model is that latitude is the only variable that

influences individual cluster labels. Biallelic genotypes were

simulated at L~20, 40, 100 loci. Allele frequencies were

dependent on the population of origin, and were equal to 30%
and 70%, 70%{30% and 50%{50% in each population

respectively. We implemented four hidden regression models:

one model without covariates, one with latitude, one with

longitude and one with both covariates.

In the second series of simulations, we extended the model by

including a factor with five levels representing five languages. The

hidden regression equations were defined as

Wi,1~1{0:2 ~XX Lat
i z0:5L1

i z1L2
i {1:5L3

i {2L4
i z2L5

i z i,1 ð5Þ

Wi,2~{3z9 ~XX Lat
i z6L1

i {1:5L2
i z3L3

i {1:5L4
i {6L5

i z i,2 ð6Þ

where Lk
i is equal to 1 if individual i speaks the language k and is 0

otherwise. When running POPS to predict population genetic

structure, we considered three linguistic classifications. The first

classification contained five languages corresponding to the

indicator variables used in the simulation. The second classifica-

tion contained seven languages obtained after splitting the second

and the third languages of the first classification into two

sublanguages. The last classification contained three languages

because we merged two pairs of unrelated languages from the first

classification.

In the third series of experiments, we studied two previously

published data sets simulated from a five-island model [42]. The

simulated data represented one population structured into five

subpopulations differentiated at FST levels equal to 0:03 and 0:04.

Five hundred individuals (100 per subpopulation) were simulated

using allele frequency distributions across 10 codominant unlinked

loci. Spatial coordinates were simulated using Gaussian distribu-

tions. The subpopulations were adjacent to each other and

arranged on a ring. We ran POPS using the spatial coordinates of

each individual as covariates. In addition, we introduced a

spurious noisy covariate independent on the subpopulation of

origin. We considered the models defined by all the possible

inclusions of those three covariates (23~8 models). These data

enabled us to compare the performances of POPS to other

programs using spatial covariates [42–44].

Native American data
We applied POPS to 512 Native American individuals from

the Human Genome Diversity Panel (HGDP) data set [15].

Individuals from 28 populations were genotyped at 678

microsatellite loci. Fourteen Siberian individuals from the

Tundra Nentsi population were also included in the study. In

the regression models we considered three linguistic classifica-

tions. The first and second linguistic classifications corresponded

to Greenberg’s classification at the stock level and at the group

level [28,45]. The third linguistic classification was given by the

website The Ethnologue (www.ethnologue.com) [29,46]. The three

linguistic classifications were encoded with factors having 8, 14

and 16 levels respectively (see Table S1). To account for

geography, all models included quadratic trend surfaces. The

combinations of geographic and linguistic variables resulted in

the following four latent cluster regression models. Model A

included geographic information only. Models B-D included

geographic and linguistic information: Model B used Green-

berg’s classification at the stock level (8 levels), Model C used

Greenberg’s classification at the group level (14 levels), and

Model D used The Ethnologue classification at the family level

(16 levels).

MCMC parameters
For the simulated data, the runs of POPS used 2,000 sweeps

with an initial burn-in period of 1,000 sweeps. For the human

data, the runs used 5,000 sweeps with an initial burn-in period of

2,500 sweeps. These values ensured that the likelihoods stabilized

around their stationary values. For the HGDP data and for each

model, we ran a total of 500 MCMC runs. We retained the 50

runs with the largest likelihood values, and we averaged the

resulting estimated and predicted membership coefficients using

the computer program clumpp [47].

The number of clusters was set to K~9 [15]. Among these nine

clusters, there were eight Native American clusters plus the

reference cluster. For Native American population samples, we

chose the Siberian population (Tundra-Nentsi) to represent the

reference group. Individuals in the reference cluster were not

allowed to switch to other clusters during the MCMC runs.

Prediction of Native American Population Structure
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Results

Simulation results
Using simulated data sets, we investigated whether including

geographic and linguistic covariates can improve the estimation of

membership probabilities or not, and we evaluated which subsets

of variables best predict the estimated population genetic structure.

For the simulations where latitude was influential (equations (3)

and (4)), we found that the true values of the regression coefficients

were close to the mode of the posterior distributions (Figure 1).

The influence of each covariate was thus correctly ascertained by

POPS when the data were generated under its underlying

statistical model. To further evaluate if missing the true set of

covariates modifies the inference and the prediction of member-

ship coefficients, we evaluated the performances of POPS using

various hidden regression models. For all models, the misclassi-

fication rates were less than 4%. The upper bound was obtained

under a model without covariates and for the smallest number of

loci (L~20, Figure 2A). The misclassification rates never

increased when we included a spurious longitude variable. With

L~20 loci, the misclassification rate decreased to 2% when the

correct covariate (latitude) was used. With L~40 loci, the

misclassification rates were less than 1% for all hidden models.

All individuals were perfectly assigned to their population of origin

when latitude was included. For L~100, the misclassification rate

was equal to 0% for all models. In the second series of simulations,

linguistic covariates were added to the generating model

(equations (5) and (6)). The misclassification rates were less than

30%, a value obtained for L~20 loci in a model without

covariates (Figure 2B). With L~20, the misclassification rate

decreased to 5% when including latitude and a linguistic variable

with five levels. With L~100 loci, the misclassification rate of the

model without covariates was around 1%. We conclude that when

the data are generated from a hidden regression model, including

covariates in POPS increases the performances of the program.

This is particularly true when the number of loci is relatively small.

Finally, we studied the variable selection criteria for the data

where latitude was influential (equations (3) and (4)) as well as

linguistic covariates (equations (5) and (6)). Whatever the number

of loci we considered, the increase of the correlation coefficient

was larger when including latitude rather than longitude in the

regression model. Figure 3 shows that the correlation coefficient

and the cross-validation score reach a plateau when the true

predictors are included in the hidden regression model. This

plateau was found when latitude was the sole determinant of

genetic structure and when linguistic covariates had an additional

contribution to genetic differentiation.

For the five-island data with a level of differentiation of

FST~0:04, the misclassification rates were less than 5%
(Figure 2C). The worst performances were obtained for a model

without covariates. When latitude (or longitude) was included in

the hidden regression model, the misclassification rate decreased

Figure 1. Posterior distributions of the regression coefficients for a data set simulated with the hidden regression model (K~~3). The
dashed vertical lines correspond to the regression coefficients used for generating the data. Two spatial covariates (latitude and longitude) are
included in the regression model but only the first one influences genetic structure.
doi:10.1371/journal.pone.0016227.g001
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to 3%. When both latitude and longitude were included in the

model, the misclassification rate decreased to 1%. The addition of

a spurious noisy covariate did not impact the performance of the

program. Regarding variable selection, Figure 3C shows that the

correlation coefficients and the validation scores reach a plateau

when longitude and latitude are included in the hidden regression

model. For the five-island data with a level of differentiation of

FST~0:03, a model including latitude and longitude was also

selected. In this case, the misclassification rate was equal to 2.8%.

For these data, POPS compared favorably to the spatial versions of

BAPS (misclassification rate = 3.9%) and TESS (misclassification

rate = 4.4%) [42–44].

Native American HGDP data
To investigate the relationships between geography, languages

and genes in Native American populations, we applied POPS to a

multilocus genotype data set including 512 individuals from the

HGDP. We compared the posterior membership coefficients

predicted by four different models that use distinct linguistic

classifications and we computed two variable selection criteria in

order to discriminate among models (see Material and Methods).

The four clustering models resulted in highly similar patterns of

estimated membership coefficients, and these patterns were also

similar to the pattern found with structure (Figure 4, Figure S1,

Wang et al. [15]). As we used a large number of microsatellite loci,

these results are not surprising, and they warrant that the

predictive power of the three linguistic classifications will be

ascertained consistently.

Using a quadratic trend surface to correct for geographic effects,

we compared the predictions of a model without languages (Model

A) to the predictions of a model using Greenberg’s classification at

the stock level (Model B), a model using Greenberg’s classification

at the group level (Model C), and a model using The Ethnologue

classification (Model D). Figure 4A compares the predictions of

Figure 2. Misclassification rates for simulated data as a function of the covariates included in the clustering algorithm. A. The cluster
memberships are influenced by latitude but not by longitude. B. The data are generated using latitude and a 5-level linguistic classification. C. The
data are generated in a five-island model for which FST~0:03 or 0:04.
doi:10.1371/journal.pone.0016227.g002
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Figure 3. Variable selection for simulated data. The correlation coefficients r correspond to the correlations between the estimated and
predicted membership probabilities. Confidence intervals of the correlation coefficients are estimated by assuming that the Fisher’s transform
arctanh(r) follows a Gaussian distribution [65]. The validation scores are estimated with the 2-fold cross-validation method. Their standard deviations
are estimated by using a non-parametric bootstrap method. A. The cluster memberships are influenced by latitude but not by longitude. B. The data
are generated using latitude and a 5-level linguistic classification. C. The data are generated in a five-island model for which FST~0:04.
doi:10.1371/journal.pone.0016227.g003

Prediction of Native American Population Structure

PLoS ONE | www.plosone.org 6 January 2011 | Volume 6 | Issue 1 | e16227



Model A and Model D. For many population samples, the

membership probabilities predicted by Model A were close to the

estimated coefficients (r~81%, Figure 5A). The predictions of

Model A for every geographic location in the American mainland

are displayed in Figure 6. The value of the correlation coefficient

and the map of predicted membership coefficients confirmed that

geography is a good predictor of genetic structure in Native

American populations. When including linguistic covariates

(Models B–D), the predictions of cluster membership were closer

to the estimates of the MCMC algorithm than those obtained

without languages (Model A) except for the Pima. The correlation

coefficient increased from r~0:81 to r~0:94{0:98 (Figure 5A),

Figure 4. Estimated and predicted population genetic structure for 28 Native American populations. A. The membership coefficients
are estimated in a model that includes spatial information (longitude, latitude). Inference of genetic structure is unchanged when we include
additional linguistic covariates (Supporting Information Figure S1). The main differences between predictions obtained with or without linguistic
information are framed in red. B-D. Membership coefficients predicted by Models B–D. The membership coefficients are averaged over individuals
within the same linguistic unit.
doi:10.1371/journal.pone.0016227.g004
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and the predicted genetic structure changed substantially

(Figure 4A and Figure S1). For several populations the predictions

obtained from linguistic covariates (Models B–D) differed from the

predictions obtained with the geographic covariates only: Model A

predicted that the Kaqchikel and the Wayuu samples shared

substantial ancestry with a group comprising Cabecar, Guaymi,

Kogi, Arhuaco, Waunana and Embera populations; Model A also

predicted that the Kaingang and Guarani samples clustered with

the Ache population, and that the Inga and Piapoco samples were

grouped with the Ticuna sample.

Figure 4 B–D displays the membership coefficients predicted by

POPS using Greenberg’s and The Ethnologue classifications (Models

B–D), grouping populations with the same linguistic taxon. At the

exception of the Andean and Ge-Pano-Carib stocks, Greenberg’s

linguistic stocks were associated with multiple clusters (Figure 4B).

Refining Greenberg’s classification at the group level improved the

characterization of genetic clusters by linguistic taxa (Model C,

Figure 4C). At the group level, the Northern Amerind stock split

into Almosan-Keresiouan and Penutian groups that correspond to

genetically divergent clusters. Similarly, the Central Amerind stock

split into Uto-Aztecan and Oto-Mangue groups which are also

genetically divergent. However, the split of the Equatorial-

Tucanoan stock into the Macro-Tucanoan and Equatorial groups,

and the split of the Chibchan-Paezan stock into the Chibchan and

Paezan groups, did not improve the prediction of genetic clusters.

In The Ethnologue classification (Model D), the Equatorial group

split into the Arawakan and Tupi families. This separation

improved the prediction of genetic clusters since the Arawakan

family was associated with a unique genetic cluster. In contrast, the

separation of the Penutian group into the Mixe-Zoque and Mayan

families did not improve the characterization of genetic groups.

Overall The Ethnologue classification provided better predictions of

genetic groups than Greenberg’s classification. Among the 16

families of The Ethnologue classification, only the Tupi, Choco and

Chibchan families were not associated to a unique genetic cluster

(Figure 4D). Supporting these comparisons, Figure 5B shows that

the cross-validation score increases when using The Ethnologue

(Model D). The values of the cross-validation scores are

approximately equal to {485,100 for Models B and C, and

around {484,750 for Model D. These scores provide quantitative

evidence that the classification of The Ethnologue leads to better

predictions of genetic structure than Greenberg’s classification at

the stock or group levels.

Discussion

We proposed a Bayesian latent class regression model to

investigate to which extent geographic and linguistic information

can predict population genetic structure in Native American

populations. The originality of this approach was to model

individual responses, i.e., the unobserved genetic cluster labels for

each individual, using spatial and linguistic variables.

Our simulation study provided evidence that a hidden

regression layer can improve the inference of genetic structure in

addition to allowing their predictions from covariates. We also

tested two criteria of variable selection based on correlation

coefficients and cross-validation scores and found that these

statistical indices reached a plateau when the true set of covariates

was included in the POPS model. With small numbers of loci, the

use of covariates decreased the misclassification rates of the

clustering program significantly. For large numbers of loci, the

estimation performances were hard to improve, especially when

the likelihood dominated the prior distribution. However, using

large numbers of loci made predictions and the use of the variable

selection criteria reliable.

Using 678 microsatellite markers from the HGDP data set, we

evaluated the suitability of geographic and linguistic predictors for

Native American population genetic structure. Geography pre-

dicted genetic clusters rather accurately. However considering

linguistic origin in addition to geographic origin improved the

prediction of genetic structure. After correcting for geographic

effects, we evaluated the predictive capabilities of three linguistic

classifications: Greenberg’s classification at two distinct levels and

The Ethnologue classification. We did not consider Greenberg’s

tripartite classification (Amerind, Na-Dene, and Eskimo-Aleut)

because, in addition to being controversial [48], all Native

American HGDP populations, except the Chipewyan, belong to

the Amerind family. We rather focused our analysis on

taxonomically lower levels of Greenberg’s classification: linguistic

stocks and groups. Considering those refined levels, The Ethnologue

Figure 5. Variable selection for the Native American HGDP data. Geographic information includes longitude and latitude. Green. stands for
Greenberg and Geog. stands for geography. The best model uses The Ethnologue linguistic classification.
doi:10.1371/journal.pone.0016227.g005
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provided better predictions of population genetic structure than

Greenberg’s classification.

Though The Ethnologue classification provided a better genetic

proxy than Greenberg’s classification, some linguistic families were

not perfectly characterized in terms of genetic clustering. The

Chibchan and Choco families were grouped in a Chibchan-

Paezan stock by Greenberg [28]. These populations shared genetic

ancestry with northern Mesoamerican populations (Mixtec,

Zapotec, Mixe, Maya and Kaqchikel) and with southern Andean

populations (Inga, Quechua, Aymara and Huilliche) (Figure 4A).

Based on mtDNA data, Melton et al. [49] also found genetic

relationships between Chibchan speakers and a Mayan population

from Mesoamerica. To explain these relationships, it has been

argued that Chibchan and Mesoamerican languages were all

interrelated at one time into a larger Proto-Mesoamerican

linguistic group that subsequently splintered into different

language families after the intensification of agriculture in

Mesoamerica [50,51]. The shared genetic relationships between

Mesoamerican populations and Chibchan-Choco populations

would result from their shared common history. Another family

lacking genetic characterization was the Tupi. The Tupi family

encompasses approximately 41 languages that spread throughout

eastern South America several millennia ago [52,53]. Since the

Tupi expansion involved language replacement, it may have

blurred the relationships between genes and languages. Addition-

ally, the Surui and Ache are populations with Tupi languages and

small effective population sizes [15]. The ‘genetic patchwork’ of

the Tupi would then result from genetic drift essentially.

Despite the intrinsic difference between methods, our analysis

confirmed previous findings that a sizeable correspondence between

Figure 6. Genetic structure of Native American populations as predicted by geographical covariates. Geographical covariates include
latitude, longitude, quadratic terms and an interaction term. Locations for which there is a cluster with a predicted membership coefficient larger
than 0:5 are colored with the cluster color. Locations for which there is no cluster that reaches the 0:5 threshold or that are too distant from a
sampled population are colored in grey. The barplot displays the membership probabilities as predicted by geographical covariates.
doi:10.1371/journal.pone.0016227.g006
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genetic and linguistic differentiation may exist only below a certain

level of linguistic differentiation. The tests of treeness indicated that

language classifications provide the best fit to mitochondrial data

when they included external features of language classification trees

and no deeper internal relationships between languages [14]. Using

partial Mantel tests, Wang et al. [15] found a low partial correlation

(r~0:01) between linguistic (Greenberg’s stock level) and genetic

dissimilarities, but the correlation increased to r~0:40 when the

authors considered pairs of populations within stocks. Our analysis

revealed that the congruence between genetic and linguistic

diversification is more evident when considering a finer grain of

linguistic differentiation than the stock level.

To further investigate potential scale effects, we applied POPS

to 77 world-wide population samples from the HGDP data set

excluding two language isolates (Basque and Burushaski) and

grouping the sub-Saharian samples in a reference cluster (Table

S2). The genetic clusters detected by POPS agreed with those

detected by structure (Figure S2) [15,54]. The geographic

predictions of a quadratic trend surface model were highly

correlated to the estimated membership coefficients (r~0:97).

The high value of the correlation coefficient confirmed that

geography is a good predictor of genetic structure at the world-

wide scale [55–61]. Adding the linguistic covariates taken from The

Ethnologue classification increased the correlation coefficient from

r~0:97 to r~0:98. Thus it improved the prediction of genetic

structure only marginally. These results provided evidence that the

effects of language on the prediction of genetic structure are

dependent on the scale considered. The results of POPS were also

comparable to those obtained by Belle and Barbujani [23]

reporting that languages have a small effect on the pattern of

molecular variation at the world-wide scale. At the global scale,

the patterns of genetic population structure are likely to reflect

ancient demographic events, such as population divergence

associated with the colonization of major geographic regions of

the world [25]. At the continental scale, cultural traits contribute

to the mediation of gene flow between human groups [62]. The

predictive power provided by languages in the Americas could

thus result from preferential mating within linguistic groups.

The examination of linguistic and genetic relationships in the

Americas would obviously benefit from a more extensive sampling

from the Na-Dene linguistic stock and from the inclusion of the

Eskimo-Aleut stock. In a regression framework, a large dispersion

of the explanatory variables is preferable. Though the sampling

design of the HGDP was not optimal in our framework, our

approach provided evidence that linguistic proxies improved the

prediction of Native American population genetic structure. As

human genomic data expand in genetic and geographic coverage

[61,63,64], the use of latent class regression models could result in

a more detailed picture of the role of geography and cultural

factors in shaping human genetic variation.

Supporting Information

Figure S1 Estimated and predicted genetic structure of Native

American populations, with K~9 clusters, using different set of

covariates in the probit model (Model A–D).

(TIF)

Figure S2 Genetic structure at a worldwide scale as predicted by

geographical covariates when K = 7. Geographical covariates

include latitude, longitude and distance to the Addis Abeba,

which is computed by included five obligatory waypoints. The

three barplots correspond to 1) the genetic structure as inferred

with genetic data and both spatial and linguistic covariates, 2) the

structure as predicted with spatial information and 3) the structure

as predicted with spatial and linguistic information. The linguistic

variable is a qualitative variable corresponding to The Ethnologue

classification.

(TIF)

Table S1 Coordinates and linguistic entities of 28 Native

American populations from the Human Genome Diversity Panel.

(PDF)

Table S2 Coordinates, distance to Addis-Abeba, and linguistic

families of 77 worldwide populations from the Human Genome

Diversity Panel.
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(PDF)

Appendix S2 Computation of the predictive score for cross-
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