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Abstract

As recently demonstrated by the COVID-19 pandemic, large-scale pathogen genomic data are crucial to characterize transmission
patterns of human infectious diseases. Yet, current methods to process raw sequence data into analysis-ready variants remain slow to
scale, hampering rapid surveillance efforts and epidemiological investigations for disease control. Here, we introduce an accelerated,
scalable, reproducible, and cost-effective framework for pathogen genomic variant identification and present an evaluation of
its performance and accuracy across benchmark datasets of Plasmodium falciparum malaria genomes. We demonstrate superior
performance of the GPU framework relative to standard pipelines with mean execution time and computational costs reduced by
27× and 4.6×, respectively, while delivering 99.9% accuracy at enhanced reproducibility.
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Background
Pathogen genomic data are a valuable resource for
understanding the epidemiology and evolution of
infectious diseases. As the current COVID-19 pandemic
has demonstrated, a key tool for disease control is the
establishment of genomic surveillance programs to
monitor local and global patterns of pathogen spread
and evolution to guide public health policy decisions and
interventions. Advances in next-generation sequencing
(NGS) platforms and the rapidly declining sequencing
costs have resulted in an unprecedented proliferation
of pathogen whole genomes, revolutionizing the field of
genomic epidemiology by inferring geographic origins of
infections, tracking pathogen transmission and variant
spread to aid surveillance and public health response
[1–7]. The increasing accessibility of pathogen whole-
genome sequencing (WGS) data has spurred the need for
robust, rapid, scalable and reproducible bioinformatics
pipelines to keep pace with the advances in the NGS
market. New scalable compute frameworks are needed

to accelerate and accurately process raw sequence reads
into analysis-ready variants to speed up and facilitate
public health and research communities in the use of
pathogen WGS to support surveillance and epidemio-
logical investigations, such as inference of transmission
chains, detection of outbreaks and tracking of antimicro-
bial drug resistance emergence and spread. In turn, this
would enable the generation of actionable data within a
time frame useful for public health response.

Among human infectious diseases of global impor-
tance, malaria is a leading cause of death in children
under five years of age in tropical and subtropical regions
[8], and halting transmission and spread of antimalaria
drug resistance of Plasmodium falciparum, the most
virulent human malaria parasite, is crucial to reducing
the global burden of the disease. Inferring malaria trans-
mission, mapping the spread of antimalaria resistance
parasites, developing and evaluating efficacy of vaccines
rely on high-quality measurement of natural genetic
variation of representative P. falciparum WGS data from
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clinical isolates and population-based surveillance,
which is becoming more widely accessible and cheaper
[9–17]. Furthermore, P. falciparum in vitro evolution and
whole genome analysis is increasingly being used to
discover the next-generation targets for antimalar-
ial therapeutics [18, 19]. Yet, despite the growth of
P. falciparum whole genome data, current sequence
read mapping algorithms and variant calling tools
lack scalability, while studies lack standardization of
implemented pipelines. Since the first P. falciparum
reference genome sequenced in 2002 [20], the number
of P. falciparum sequenced genomes exceed 7000 [9] and
the MalariaGEN Community Project is well on its way to
expand sequencing of Plasmodium whole genomes. This
proliferation of malaria genomic data owns to increase
of genomic sequencing capabilities, steady decline in
sequencing costs and development of new efficient
sample preparation methods to selectively enrich P.
falciparum whole genomes directly from routinely col-
lected dried blood samples (i.e. hybrid capture, selective
whole genome amplification) [14, 21–24]. As the total
amount of genomic data is increasing at a rate faster
than Moore’s Law for computational processing power,
more efficient and scalable compute capacities are
required to meet the increased demand for P. falciparum
WGS processing and variant identification, along with
standardized and reproducible bioinformatics pipelines.
The limited consensus of standardization in malaria and
other pathogen genomic studies is in part due to the
fact that conventional variant calling tools (i.e. GATK,
DeepVariant [25, 26]) were designed and validated for
the measurement of human genomic variation (diploid
genomes) rather than microbial haploid genomes
[27]. Additionally, standardized genetic variant calling
pipelines for pathogens requires the implementation of
version controls and truth sets of genetic variants to
train data models to measure and assess the perfor-
mance of these variant calling pipelines. Specifically,
for P. falciparum genomic studies, new variant calling
pipelines need optimization and validation as significant
differences in genomic characteristics occur relative to
human or other pathogen genomes, including extreme A-
T content [20], ploidy issues and low complexity regions.

Existing algorithms and bioinformatics tools devel-
oped for conducting analysis-ready variants typically
leverage the central processing unit (CPU) environment
for data processing [28–31]. However, more recently,
new algorithms have been developed that can leverage
the computing power of graphics processing unit
(GPU) architecture and adopted into high-performance
computing workflows as they can outperform CPUs
by dramatically reducing computational time when
applied to human genomics [32]. To overcome the
processing bottlenecks to meet increasing throughput
requirements of malaria WGS data and improve repro-
ducibility, we propose NVIDIA Clara Parabricks software
(hereafter ‘Parabricks’), a GPU computational framework
to accelerate, scale and standardize secondary analysis

of P. falciparum genome sequencing data. Herein, we
optimize and evaluate the performance, sensitivity
and precision of Parabricks accelerated mapping and
variant calling pipeline against the Burrows-Wheeler
Aligner (BWA-MEM) and Genome Analysis Toolkit (GATK),
the best practices pipeline using nearly 1000 P. falci-
parum whole genome sequences from the MalariaGEN
Community Project [9]. We demonstrate orders of
magnitude improvement in the computational time
and cost for the GPU-accelerated malaria genomic
variant identification pipeline relative to the standard
pipeline, while maintaining high accuracy and enhancing
reproducibility. This framework can be expanded to
any traditional application of P. falciparum genomics to
exploit the computing power and prevalence of GPUs,
and as such has substantial utility within the malaria
genomic communities for ensuring scalable, high-
quality, reproducible and decentralized analysis-ready
variants required for downstream analysis like malaria
transmission inferences, antimalaria drug resistance
tracking and drug discovery.

Results
Parabricks computational workflow overview
Parabricks is a computational workflow optimized to
take advantage of GPUs and distribute the inputs among
available worker threads on a GPU and CPU hybrid
system (Figure 1A). Computationally intensive functions
in genomic data analysis, such as Smith-Waterman and
Pair-Hidden Markov Model (Pair-HMM) algorithms, are
accelerated on GPUs, while sequential functions such
as input reading, graph calculation and output writing
are run on available CPU threads (Figure 1B). Figure 1
illustrates the Parabricks compute framework ran on
AWS g4dn.12xlarge instance with 48 virtual CPUs and 4
Tesla T4 GPUs.

Pipeline benchmarking and runtime comparison
Using P. falciparum WGS data from six samples with a
representative range of BAM file size (median = 2.6 GB,
range 0.4–4.7 GB), we estimated the optimal computing
configuration to perform benchmarking of Parabricks
GPU (Figure 2A) relative to the BWA-MEM and GATK
CPU standard pipeline. Tests were run with 1, 4, 8
GPUs, which showed a 2.6×, 2.7× relative speed increase
(Table 1, Figure S1). In contrast, test runs with 16, 32,
64 vCPUs showed a 0.9×, 0.8× relative speed decrease,
demonstrating that the GPU architecture does not suffer
from a diminishing return when increasing allocated
processing units compared to CPUs. Based on these
estimates (Table 1), we determined that the optimal con-
figuration to benchmark Parabricks pathogen genomic
variant identification pipeline is 4 GPUs and 16 vCPUs
for BWA-MEM and GATK standard pipeline. Run time
comparison based on 100 P. falciparum WGS randomly
selected samples shows a significant speed increase with
a 27× acceleration relative to the GATK CPU standard

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac314#supplementary-data
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Figure 1. Overview of Parabricks computational workflow. (A) The cloud-based Parabricks malaria pipeline presented herein runs on AWS g4dn.12xlarges
with 4 Tesla T4 GPUs and 48 CPUs. The pipeline uses fastq files as input and distributes the files into chunks between worker threads for short-read
alignment, sorting and marking duplicate reads, calculating BQSR, and finally performing GATK variant calling resulting in output VCF file. (B) Work
distribution between CPUs and GPUs using Parabricks GPU-accelerated GATK Haplotypecaller for variant calling. The sequential functions for variant
calling, such as input reading, graph calculation and output writing are performed on CPU threads, while compute intensive functions, such Smith-
Waterman and pair-HMM are performed on GPUs.

pipeline (t-test, P-value <2.2e-16), with a median run
time of 5.03 versus 135.73 min per sample (Figure 2B). For
both the CPU and GPU pipelines, the run time correlates
with the size of the raw input data (Figure 2B). The
CPU-based and the Parabricks GPU pipelines exhibit
similar ratios of mean runtime to the runtime standard
deviation (mean/std) of 124/57 = 2.2 and 4.5/1.9 = 2.4,
respectively. The Parabricks GPU is consistently faster
than the CPU, and the linear correlation of runtime to
input size (data not shown) indicates CPU and GPU both
respond similarly to changes in the size of input data for
the ranges we ran (median: 2.1 GB, range: 0.02–20.1 GB).

GPU-accelerated pathogen genomic variant
identification pipeline accuracy
To evaluate the performance of the GPU framework
relative to the commonly used read mapping and
variant calling tool combination in recovering P. fal-
ciparum genome-wide variants, we performed read
mapping, marked duplicates and variant calling for
979 P. falciparum genomes using the BWA-MEM and
GATK CPU standard pipeline. We used the GATK CPU
output variants as gold standard and truth call set
against which to compare the variants called by the
Parabricks GPU-accelerated pipeline. The same input
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dataset was run using the Parabricks GPU P. falciparum
genomic variant identification pipeline (Figure 2A).
Various quality metrics were assessed per genome
sample including duplication rates and mean depth
coverage (Table S1, Supplementary information, Figures
S2 and S3). We measured accuracy in terms of sensitivity
(the probability of true variants being identified) and
precision (the probability a variant identified by the GPU
caller being a true variant). It should be noted that the
baseline variant caller in GATK4 is non-deterministic
and can generate slightly different results depending
upon certain run-time parameters, such as number
of threads, so the following differences are consistent
with these variations in GATK4 execution. The site-
level concordance metrics for the variants identified by
the two pipelines are summarized in Table S1. Prior to
filtering, the median sensitivity and precision for single
nucleotide polymorphisms (SNPs) are 99.97 and 99.95%,
respectively. The median sensitivity and precision for
short insertion–deletions (InDels) also exceed 99.9%, with
values of 99.98 and 99.97%, respectively. The median
number of false positive (FP) for SNPs is 33 (range: 0–479)
and FP for InDels is 12 (range: 0–359) before filtering. We
report an overall high degree of site-level concordance
between the GPU pipeline relative to the CPU pipeline
with only 0.109 and 0.074% discordant site-level for SNPs
and InDels.

Variant calling performance varies across the P.
falciparum genome and, as expected, worsen in sub-
telomeric and hypervariable regions (hereafter ‘HR’, see
section Methods), where accessibility and unambiguous
alignments are limited by repetitive sequences and are
generally excluded from P. falciparum genomic epidemi-
ology studies [9, 13, 33]. After variants were filtered from
HR, we report significant improvements in accuracy in
the Parabricks GPU variant calling performance across
the P. falciparum core genome (20.8 Mb; 90%). The median
sensitivity and precision for SNPs are 100 and 100%,
respectively, and as expected are significantly improved
over the accuracy prior filtering out variants in the
HR (Figure 3A, B Wilcoxon, P < 0.0001). Similarly, the
median sensitivity and precision for InDels are 99.99
and 99.99%, respectively, with a resulting accuracy
significantly improved over the accuracy prior filtering
(Figure 4A, B, Wilcoxon, P < 0.0001). Notably, after HR
variants were filtered, both pipelines achieved high
genotype concordance (degree of agreement between
genotype data) (Table S3), with an overall genotype
concordance of 99.9971% for SNPs and 99.9915% for
InDels. This demonstrates that SNP and InDel alleles
are highly concordant between the CPU and GPU
pipelines, with InDels having slightly higher discordant
genotypes compared to SNPs, as should be expected. This
demonstrates that Parabricks GPU P. falciparum variant
calling pipeline is functionally equivalent to the GATK
CPU standard tools, maintaining an accuracy greater
than 99.9 while mean execution time is significantly
accelerated (Figure 2B).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac314#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac314#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac314#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac314#supplementary-data
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Figure 2. Parabricks variant calling acceleration and scalability. (A) Parabricks workflow to perform read mapping and variant calling of malaria P.
falciparum genomes. The first GATK Baserecalibrator (BQSR) function in the Parabricks pipeline generates a recalibrated bases BAM files, while the
second GATK BQSR function, marketed by an asterisks, generate recalibration table outputs to enable the comparison pre- and postrecalibration. (B)
Runtime comparison between GATK CPU pipeline versus Parabricks GPU-accelerated variant calling pipeline. Boxplots of run time of GATK CPU standard
pipeline (purple) and Parabricks GPU pipeline (green) for 100 P. falciparum genomes. Bold lines indicate the median value, the boxes span the interquartile
range and whiskers extend to the extremes of the sampled values. Parabricks GPU shows a 27× acceleration in execution time relative the GATK CPU
standard pipeline (t-test, P-value <2.2e-16).

Performing sequence read mapping and variant
calling for P. falciparum WGS samples that have multi-
fastq files is laborious, time consuming and prone to
errors. Parabricks GPU P. falciparum variant identification
pipeline is optimized to take as input multiple paired
fastq files from the same sample in a single command
line, to perform mapping, sorting and mark duplicates
and merging to create sample-level BAM files. In the
analyzed dataset, 119 out of the 979 P. falciparum genome
samples had multi-fastq files (range: 2 to 12 multi-
fastq paired files) and were run using this function. This
optimized function in Parabricks, which is not available
in the BWA-MEM CPU standard pipeline, simplifies the
pathogen genomic mapping and variant identification
pipeline and enhances reproducibility, while maintaining
reduced execution time.

While sequencing costs of pathogen WGS have
reduced drastically, computational costs to perform
mapping and variant calling remain relatively high [34].
We compared the average running cost per P. falciparum
genome of the GPU framework relative to the BWA-
MEM and GATK CPU standard pipeline in recovering P.
falciparum genome-wide variants. We demonstrate up to
fivefold reduced running cost for the GPU framework
against the BWA-MEM and GATK CPU baseline using
the optimal hardware configurations (4 GPU versus
16 vCPU) (Table 1). Given the average computing cost
per P. falciparum genome using the GPU-accelerated

framework of $0.29 on AWS, we determine that com-
puting 1000 P. falciparum genomes from raw fastq to
analysis-ready variants on 4 GPU costs approximately
$290. In comparison, given the average computing cost
per P. falciparum genome using the standard BWA-
MEM and GATK CPU pipeline of $ 1.33 on 16 vCPU,
for the same number of P. falciparum genomes the
cost is $1330. This demonstrates that the proposed
GPU-accelerated pipeline for P. falciparum genome-
wide variant identification is not only fast and highly
scalable but also considerably minimizes bioinformatics
costs per sample rendering large-scale P. falciparum
genomic studies relatively inexpensive and feasible to
the malaria research community and to surveillance
programs.

Comparison between cloud-based ecosystem
and in-house HPC for reproducibly purpose
A subset of 100 samples was randomly selected from the
full 979 P. falciparum genomes set and analyzed using the
malaria Parabricks GPU genomic variant identification
pipeline on the Purdue University’s Gilbreth HPC cluster
for a reproducibility study. No modifications were imple-
mented to the pipeline settings or driving scrips except
for site-specific storage paths and scheduler parameters.
Produced pipeline results were compared to correspond-
ing matching samples from the AWS cloud-based runs.
We assessed the accuracy in terms of sensitivity and
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Figure 3. Sensitivity and precision of P. falciparum genome-wide SNP identification using Parabricks GPU-accelerated pipeline. Boxplots of (A) SNP
sensitivity and (B) SNP precision after HR removal. Bold lines indicate the median value, the boxes span the interquartile range and whiskers extend to
the extremes of the SNP values. (C) Scatterplot of SNP sensitivity and precision after HR removal.

precision of identified genome-wide variants in the 100
P. falciparum genomes run on Gilbert HPC versus AWS
using the GATK concordance function. The results are
summarized in Table S2. The median sensitivity and
precision for SNPs and InDels for the 100 P. falciparum
genomes run on Gilbert HPC versus AWS are 100 and
100%, respectively. This comparison demonstrates that
the malaria Parabricks GPU genomic variant identifica-
tion pipeline can be run on cloud-based system and on
an in-house HPC that have significantly different hard-
ware (Tesla T4GPUs versus HPC P100) and still produce
the same qualitative and quantitative variant results, as
should be expected by a reproducible and deterministic
software, while maintaining acceleration and scalability
factors.

Discussion and conclusion
The utility of pathogen genomic data for surveillance and
control of infectious diseases is evidenced by the COVID-
19 pandemic, for which viral WGS analysis has greatly
informed patterns of variant spread, virus evolution and
vaccine efficacy [3–6]. The increasing affordability of NGS
for WGS has revolutionized pathogen genomic surveil-
lance programs by providing inexpensive sequencing
data to monitor transmission and evolution of malaria,
COVID-19, and other pathogens in clinical and public
health settings. These leaps in pathogen genomics and
sequencing technologies promise to enable correspond-
ing advances in biomedicine and genomic epidemiology
of infection diseases for research discovery purpose and
for improving public health efforts. Although, many
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Figure 4. Sensitivity and precision of P. falciparum genome-wide InDels identification using Parabricks GPU-accelerated pipeline. Boxplots of (A) InDel
sensitivity and (B) InDel precision after HR removal. Bold lines indicate the median value, the boxes span the interquartile range and whiskers extend
to the extremes of the SNP values. (C) Scatterplot of InDel sensitivity and precision after HR removal.

obstacles and bottlenecks remain in the entire process
from sample collection to end analysis, a critical step
in the NGS workflow is the bioinformatics analysis for
variant identification in large-scale pathogen genome
data sets, which is hampered by the drastic increase
in sequencing data production at continued reduced
costs. To overcome this computational challenge and
enable the full power of these large pathogen WGS data
sets, we must take advantage of the computing power
and scalability of the GPU architecture and computing
workflows, which have shown to outperform traditional
CPU bioinformatics pipeline for human genomics and
in critical care settings [32, 35]. In this study, we
demonstrate that the GPU-accelerated Parabricks pipeline
for P. falciparum genomic variant identification exhibits
a large performance advantage over the conventional
pipeline by improving speed, scalability and reproducibil-
ity. Our comparative analysis of Parabricks GPU accuracy

relative to the standard GATK CPU pipeline demonstrates
that Parabricks GPU performs comparably to previous
methods, maintaining high accuracy with >99.9% for
SNP and InDel detection, while significantly reducing
execution time by 27-fold and computational costs by
fivefold. The ability to generate analysis-ready variant
outputs in less than 5 min with greater than 99.9%
accuracy for the high confidence genomic regions of
P. falciparum at lower costs, remarkably reduces the
computational bottleneck that most malaria genomic
epidemiology studies and surveillance programs cur-
rently face. This means that a malaria WGS workflow
for variant detection that normally takes 2–3 hrs. Per
sample on a CPU-only node can be processed on a GPU-
enabled Parabricks pipeline in less than 5 min. Notably,
this speed gain becomes useful to the public health
and research communities to rapidly generate insights
into their samples as WGS are generated in the lab,
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from the mining of antimalaria drug resistance profiles
to compute and recomputing comparative analyses of
malaria genomes from temporally and spatially relevant
data set as they are generated or become available in
public data repositories.

P. falciparum genomic studies from natural populations
have increasingly being used to guide our understanding
of malaria epidemiology and transmission, for exam-
ple by assessing population connectivity between sub-
populations, and the efficacy of parasite interventions [9,
11, 13, 15, 16, 36], and will continue to grow as the World
Health Organization (WHO) has called for reinvigorated
commitment to malaria elimination. P. falciparum WGS
is an essential tool and remains the gold standard for
identifying and cataloguing new genetic variants rele-
vant for surveillance. The malaria Parabricks GPU variant
identification pipeline provides additional and practical
advantages to these efforts: first, its ease-of-use and uni-
fied analytic framework enables users with limited bioin-
formatics expertise to carry out scalable, reproducible
analysis-ready variants; second, its suitability for AWS
cloud deployment facilitates access to users with limited
onsite computational resources at better cost efficiency
due to the inherent elasticity of cloud computing. Thus,
the efficiency, scalability and ease-of-use of the estab-
lished framework renders population genomic studies
of P. falciparum economically more accessible, enabling
efforts to decentralize malaria WGS and computational
analysis to endemic countries [10, 37]. We note a poten-
tial limitation to our study, due to the lack of highly
confident gold standard variant call datasets, we did not
measure performance of the pipeline in identifying low-
frequency variants originating from the minor strain in
mixed infections, which are clinically and epidemiolog-
ically relevant and can provide additional information
for malaria transmission intensity inferences [10, 38].
However, our results show promise for these applications
given the accuracy in SNP detection relative to standard
methods, while previous studies have shown that down-
stream analytical methods for deconvolution of mixed
infections from P. falciparum WGS from short reads are
rather limited by number of strains, low genome coverage
and reference panels used [39, 40]. This suggests that
generating high-quality WGS remain critical and can
reduce the possible bias in mixed infection estimation in
this study system.

While here we focus on the GPU-accelerated compute
framework applied to P. falciparum genomics as a case
study given the increased interest and application
of malaria genomics to support global control and
elimination efforts, we propose that Parabricks pipelines
can be widely applied in similar way to other sequenced
human pathogens, including other protozoan and
bacterial genomes for which large-scale WGS projects
are available or under way (for example Mycobacterium
tuberculosis [41]), and as such has substantial utility
within the pathogen genomic community for studies of
genetic variation and genomic epidemiology.

Although we demonstrated that the GPU-accelerated
compute framework for pathogen genomic variant
identification yields improvements in computational
speed, scaling and reproducibility, this is only a first step,
and benefits will only become greater with continued
improvements of GPU based frameworks for downstream
WGS analysis. For example, first, improvements in
usability will improve the accessibility of WGS analyses;
second, extension of Parabricks to machine learning
approaches for further execution improvement; third,
comparison with a more extensive suite of bioinformat-
ics pipelines to improve community confidence in GPU-
accelerated frameworks applied to large-scale pathogen
genomic studies.

Material and methods
P. falciparum WGS benchmarking dataset
acquisition and preparation
Throughout this study, we used P. falciparum 3D7 v3.1 as
a reference genome (ftp://ftp.sanger.ac.uk/pub/project/
pathogens/gff3/2015-08/Pfalciparum.genome.fasta.gz),
which is an African parasite clone isolated in the
Netherlands and is routinely used as a reference for P.
falciparum malaria genomic studies. For the comparison
of the two pipelines, we used publicly available P.
falciparum genomic data from the Pf3k MalariaGEN P.
falciparum Community Project (http://www.malariagen.
net/projects/parasite/pf) [9]. Raw fastq data for all Pf3k
P. falciparum samples were downloaded from SRA using
pysradb (https://github.com/saketkc/pysradb) [42]. We
randomly selected 50% of P. falciparum samples from 10
countries for a total of 1000 P. falciparum samples, and
excluded any samples with only single-end reads and
with the same SRR values present in multiple samples.
This resulted in 979 unique P. falciparum samples with
genomic data from 10 countries. SRR accession numbers
are provided in the Supplementary Table S1.

Read mapping and GATK variant calling
To establish the baseline performance, the raw paired-
end reads for 979 P. falciparum samples were mapped to
the P. falciparum 3D7 reference genome using BWA-MEM
v0.7.15 [28]. Aligned reads were sorted and duplicates
marked using GATK v4.1.0.0. The GATK v4.1.0.0 pipeline
was applied following best practices (https://software.
broadinstitute.org/gatk/best-practices) to establish the
baseline performance of each call set generated from
979 P. falciparum genomes. For P. falciparum genome
samples that had multi-fastq paired files (119 out of 979
samples), each paired-end reads were mapped, sorted
and duplicates marked prior BAM files were merged to
create sample-level BAM files. GATK Base quality Score
Recalibration was applied using default parameters and
using variants from the P. falciparum crosses 1.0 release
as a set of known sites (ftp://www.malariagen.net/data/
pf-crosses-1.0) [33, 43]. We used GATK HaplotypeCaller
in GVCF mode to call single-sample variants (ploidy 2 and

ftp://ftp.sanger.ac.uk/pub/project/pathogens/gff3/2015-08/Pfalciparum.genome.fasta.gz
ftp://ftp.sanger.ac.uk/pub/project/pathogens/gff3/2015-08/Pfalciparum.genome.fasta.gz
http://www.malariagen.net/projects/parasite/pf
http://www.malariagen.net/projects/parasite/pf
https://github.com/saketkc/pysradb
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac314#supplementary-data
https://software.broadinstitute.org/gatk/best-practices
https://software.broadinstitute.org/gatk/best-practices
ftp://www.malariagen.net/data/pf-crosses-1.0
ftp://www.malariagen.net/data/pf-crosses-1.0
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standard-min-confidence-threshold for calling = 30), followed
by GenotypeGVCFs to genotype the cohort. Variants
were examined and summarized before and after
filtering out variants in sub telomeric and hypervariable
regions (ftp://ngs.sanger.ac.uk/production/malaria/pf-
crosses/1.0/regions-20130225.onebased.txt).

GPU-accelerated genomic variant identification
pipeline
We used and validated Parabricks Suites v3.2.0.1, which
enables GPU-accelerated GATK along with other third-
party tools, such as BWA-MEM, to achieve acceleration
of P. falciparum variant identification pipeline over the
conventional CPU pipeline. Parabricks is built to optimize
acceleration, accuracy and scalability by keeping the
underlying GATK tools the same. We followed the
Parabricks P. falciparum malaria pipeline illustrated in
Figure 2A and applied the pipeline to the same input data
set of 979 P. falciparum genomes used in the GATK CPU
standard pipeline. Documentation and the implemented
code can be found at https://github.com/giocarpi/
malaria-parabricks-pipeline. GATK’s Concordance tool
was utilized to evaluate site-level concordance of the
Variant Call Format (VCF) from Parabricks against the
VCF GATK CPU output variants as the truth set, for each
of the P. falciparum WGS sample to assess the degree of
agreement of position matching of detected variants.
Next, we computed genotype concordance for each P.
falciparum WGS sample for each of the two call sets after
filtering out variants in HRs as described above using the
GATK’s Genotype Concordance tool to assess the degree
of agreement between genotype data (with GATK CPU
being considered the truth (or reference) the Parabricks
GPU being the call). All GATK applications used within
this study were performed on GATK version 4.1.0.0. A
90 day’s trial license for the Parabricks GPU-accelerated
software is available at https://www.nvidia.com/en-us/
clara/genomics/.

Benchmarking of GATK and Parabricks variant
calling pipeline for P. falciparum
While variant identification pipelines for human genomes
are often benchmarked upon diploid human genomic
‘truth sets,’ variants identified and confirmed by multi-
ple sequencing technologies and bioinformatic pipelines,
and further validated by family pedigrees [44], compa-
rable genomic variant truth sets for P. falciparum and
for even other human pathogens are limited [33, 45].
Here, we used the GATK CPU output variants relative
to 3D7 reference genome as gold standard and truth
call set against which to compare the variant calls by
the Parabricks GPU-accelerated pipeline. True positives
(TP) are defined as the variant calls called by GATK
CPU and Parabricks GPU, FP are the calls only identified
by Parabricks GPU and false negatives are the variant
calls identified by GATK but missed by Parabricks GPU.
We measured accuracy in terms of sensitivity (the
probability of true variants identified) and precision (the

probability a variant identified by the GPU caller is indeed
a true variant). Sensitivity is calculated as TP/(TP + FN)
and Precision is calculated as TP/(TP + FP)).

Computing environment and resources
Amazon could (Amazon Web Service, AWS) and dif-
ferent hardware configurations were used to perform
benchmarking for runtime and costs. We used the same
sample input data of P. falciparum genomes to compare
turnaround times and computational costs on 1, 4 and
8 GPU nodes, although 1 GPU not supported was used
to demonstrate the scaling factors for the Parabricks
pipeline against 16, 32 and 64 vCPU nodes for the
GATK CPU standard pipeline. Reproducibility runs were
performed on Purdue University’s Gilbreth HPC cluster
(https://www.rcac.purdue.edu/compute/gilbreth/) using
Gilbreth-B nodes with 192 GB of RAM, 2x12-core Intel
Xeon Gold 6126 CPUs and 2 NVIDIA Tesla P100 cards
per node.

Key Points

• We established an accelerated, scalable, reproducible
and cost-effective compute framework to accelerate raw
sequence reads into analysis-ready variants to speed up
pathogen surveillance efforts and epidemiological inves-
tigations.

• We evaluate the performance and accuracy of the GPU-
accelerated pipeline against GATK Best Practices using
1000 Plasmodium falciparum malaria genomes.

• The GPU-accelerated compute framework for malaria
genomic variant identification outperforms the standard
pipeline by significantly reducing computational time
and costs, 27× and 5×, respectively, while achieving
>99.9% accuracy.

• This unified and easy-to-use GPU analytic framework
is a reproducible and powerful tool to support various
applications in malaria genomics and can be applied in
similar way to other human pathogens.

Supplementary information
The supplementary material available is provided as a
separate word document.
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