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Abstract

Cancers arise from the accumulation of somatic genome mutations, which can be

influenced by inherited genomic variants and external factors such as environmental

or lifestyle-related exposure. Due to the heterogeneity of cancers, precise information

about the genomic composition of germline and malignant tissues has to be correlated

with morphological, clinical and extrinsic features to advance medical knowledge and

treatment options. With global differences in cancer frequencies and disease types,

geographic data is of importance to understand the interplay between genetic ancestry

and environmental influence in cancer incidence, progression and treatment outcome.

In this study, we analyzed the current landscape of oncogenomic screening publications

for geographic information content and quality, to address underrepresented study pop-

ulations and thereby to fill prominent gaps in our understanding of interactions between

somatic variations, population genetics and environmental factors in oncogenesis. We

conclude that while the use of proxy-derived geographic annotations can be useful

for coarse-grained associations, the study of geo-correlated factors in cancer causation

and progression will benefit from standardized geographic provenance annotations.

Additionally, publication-derived geographic provenance data allowed us to highlight

stark inequality in the geographies of cancer genome profiling, with a near lack of sizable

studies from Africa and other large regions.

Introduction
Cancer is one of the top causes of mortality globally, and
the understanding of its genesis and pathophysiological
mechanisms remains one of the major challenges in

life sciences. Although the past decades have witnessed
major improvements in cancer diagnostics and thera-
peutics—partially driven by rapid advances in genomic
screening techniques such as DNA array and sequencing
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technologies—the overall spectrum of genomic alterations
in malignant transformation and progression remains
poorly understood.

As a multistep genomic disease, different factors influ-
ence the transformation of somatic cells into malignant
clones. Whereas the majority of oncogenomic variants arise
as mutations in the DNA of somatic cells and affect genes
involved in proliferation, differentiation and control of
apoptosis, inherited (‘germline’) genomic variants can pre-
dispose to specific malignancies [1, 2]. As external mod-
ifiers of the individual cancer risk, environmental factors
such as pollution levels, intensity of ultraviolet radiation
or exposure to infectious agents have been found to con-
tribute to carcinogenetic processes to a varying extent.
While environmental or lifestyle-mediated exposure related
to microgeographic or macrogeographic origin can pro-
mote disparities in incidence and clinical outcome in indi-
viduals [3, 4], a less well-defined contribution is provided
through ancestry-specific biases in the occurrence of cancer-
promoting genome variants [5]. Well-known examples here
are the population-specific enrichment of BRCA1 gene vari-
ants in persons of Ashkenazi jewish ancestry compared to
mixed-reference populations [6]; the higher somatic muta-
tion frequencies for TP53, EP300 and NFE2L2 in Chinese
patients suffering from esophageal squamous cell carci-
noma (ESCC) compared to ‘Caucasian’ patients [7] or the
significant molecular differences existing between prostate
cancers in ‘African Americans’ vs. ‘Caucasicans’ (SPINK1
overexpression, ERG rearrangement and PTEN deletion are
less frequent in the first group)[8].

Since highly variable cancer rates by ethnicity and
geography have been observed for multiple cancer types
[9], inclusion of geographic and population background
information in cancer-related data analysis projects should
be considered for improving the understanding of envi-
ronmental and population-related contributions. Indeed,
strong support for the systematic inclusion of geographic
and population parameters in cancer data analyses comes
from ESCC, a cancer type with a high incidence in China
compared to Europe and America, including some areas
of remarkably frequent occurrence such as Chaoshan. To
understand the contributions of environmental, genetic
and cultural risk factors, studies in this particular disease
have looked at familial correlation, genetic susceptibility
(polymorphism for some chemical metabolizing genes
involved with ESCC), lifestyle factors (alcohol, cigarette,
tea and coffee consumption), environmental factors due
to geographic variations (levels of selenium, strontium or
zinc and dietary preference for consumption of fermented
fish and preserved fish sauce) and relation with human
papillomavirus infection [10]. However, current patient-
derived oncological models predominantly lack population

data and tend to overrepresent ‘Caucasian’ individuals [11].
Given the current lack of standardized annotations for
geographic sample provenance in prominent genome data
collections such as NCBI’s Gene Expression Omnibus (GEO
[12]; www.ncbi.nlm.nih.gov/geo/) or EBI’s ArrayExpress
(www.ebi.ac.uk/microarray-as/aer/), an exploration of
published cancer genome studies using a geographic
approximation method could provide a general picture of
study geographies, help to understand the utility of proxy
data and provide arguments about structured ‘geodata’
annotations in biomedical research.

Cancer genomics data collections—representing the
results of data curated from scientific studies and pri-
mary data resources—are essential for advancing our
understanding of molecular mechanisms and guiding
the improvement of treatment protocols. Whole-genome
profiling for structural and sequence variations has become
an integral part of the molecular assessment of cancer
samples and in vivo systems and has led to thousands of
publications of original studies. The corpus of scientific
literature related to cancer genome screening experiments,
pre-selected through similarities in subject and general
scope, offers an opportunity for the analysis of longitudinal
directions and possible gaps in this specific field of
biomedical research.

Progenetix is a publicly available cancer genome data
resource (progenetix.org), originally established in 2001
[13] and maintained through our group at the University
of Zurich (UZH) and Swiss Institute of Bioinformatics. The
original goals of the resource were to make copy number
variation (CNV) data from comparative genomic hybridiza-
tion (CGH [14, 15]) studies comparable across different
cancer types and to counteract biases from extrapolations
based on small-batch experimental results. Through the
continuous compilation of oncogenomic profiling publica-
tions since 1993 (first clinical CGH samples) up to now
using a standard set of query parameters against NCBI’s
PubMed database [16], Progenetix’s literature collection
provides a representative—though certainly not exhaus-
tive—view of the cancer genomics publication landscape,
currently containing 3240 curated articles focusing on pri-
mary publications of individual cancer studies (excluding
reviews and technical papers). By intent, it covers published
data analyzed by array comparative genomic hybridization
(aCGH, including SNP arrays [17, 18]) and chromosomal
comparative genomic hybridization (cCGH) experiments,
as well as whole genome sequencing (WGS) or whole exome
sequencing (WES [19, 20]) studies. For a subset of 1547
articles, the database contains a total of 93 640 sample-
specific genomic profiles that allow for comparative meta-
analyses of genomic copy number imbalance profiles across
more than 400 diagnostic classes.
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Here we present an overview of the global distribution
of cancer studies based on the literature data collected for
the Progenetix database, used as an example for a curated
knowledge resource covering the corpus of publications
in a defined research area and containing readily avail-
able geographic provenance information. We highlight the
importance of geographic data (populations and environ-
mental) and aim for the improvement of standards and
consensus in metadata annotation of relevant clinical and
individual features which would help elucidate the multi-
factorial nature of cancer through epidemiological and
correlation studies.

Materials and Methods

Data description

As result of the standard Progenetix literature curation pro-
cess 3240 publications were collected and included in the
Progenetix database. The publications, spanning the years
1993–2019, were retrieved from PubMed by combining
keywords using boolean AND (intersection) or boolean OR
(union) such as ( (‘whole genome sequencing’ OR WGS)
OR (‘whole exome sequencing’ OR WES) OR (array AND
genomic) OR (SNP AND array) OR ‘comparative genomic
hybridization’ OR CGH OR aCGH) AND (cancer OR
leukemia OR lymphoma). For each publication, the number
of analyzed biosamples (i.e. instance of tumor material
profiled) was determined, separately for the main genome
screening technologies (WGS, WES, aCGH, cCGH). Geo-
graphic point coordinates were assigned to each set of
samples using the address (city) of the first author of the
associated publication, serving as a proxy for the sam-
ples’ origins. Point coordinates were obtained for each city
name using the external geographic database GeoNames
(www.geonames.org).

In contrast to the publication collection of the Pro-
genetix resource, individual genome profiling experiments
are labeled after review of existing information from asso-
ciated publications or repository information for their ‘best
available’ geographic origin, using a precedence of sample
specific data >experiment location >first author proxy,
where available.

Sample location evaluation

For a randomly selected subset of 200 articles, the article
contents were manually examined in order to identify any
text describing the geographic origin of the samples or
patients. These locations, if present, could then be compared
to the city of the first authors’ institutions for each article
in this subset.

Map representation

A kernel density raster was generated from the geographic
point coordinates using the ArcGIS Kernel Density tool,
using a search radius of 200 km and a cell size of 25
x 25 km, with each point weighted by the number of
samples associated to that location. The final map shows a
smoothed representation of the density of genome profiling
experiments per square kilometer around the world.

Network of collaborations

Author collaborations were visualized at the country level
using a set of 3093 publications from the Progenetix
database where author affiliation countries could be auto-
matically determined. Author affiliations were extracted by
running the CERMINE tool [21] over the set of publication
PDFs to obtain an XML file for each publication including
structured metadata.

The set of affiliation countries (provided as country
codes) was then extracted from these XML files for each
article. We counted how many times a country appeared
at least once in an article (country counts) and how many
times pairs of countries appeared together on an arti-
cle (collaboration counts). We generated a network graph
representation of this data using the Gephi visualization
software [22], with countries as nodes and collaborations
between countries as edges.

Results

Sample location evaluation and proxy by first

author location

Based on the manual examination of 200 publications for
sample/patient location information in text, it was found
that 30.5% of the articles contained explicit sample loca-
tion information (e.g. city and country name) and 28.0%
contained indirect sample location information (e.g. hos-
pital name). The remaining 41.5% of the articles had no
sample location information.

Regarding the agreement between sample locations
and first author locations, for the 117 articles that
contained sample location, 52.1% agreed on a city/province
level, additional 22.2% on a country and 13.9% on
a continent level. For the remainder of the articles
(11.9%), the first author location or full author loca-
tion list provided an incomplete or misleading picture
of the sample/patient locations described in the text:
7.7% of the articles contained samples from more than
one continent and in 4.2% of the articles the sample
location was in a different continent to the first author
location.
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Figure 1. Map of the geographic distribution of genome screening experiments using the first author affiliation location proxy, derived from 3240

publications registered in the Progenetix database, including 104 543 genomic array, 36 766 cCGH and 15 409 whole genome/exome-based cancer

genome profiles. The map is rendered in the Goode Homolosine Land equal area projection (kernel density per square kilometer).

In summary, author proxy information provided a rea-
sonable assignment at a ‘population’ scale, with 74.3% of
correct attribution to at least country level (with additional
per-sample contributions from the ‘mixed provenance’ arti-
cles). Nevertheless, when the attribution of geographic sam-
ple provenance is extrapolated from article authorship,
there is a risk of potential non-alignment of the studies’
place of execution and the origin of the study material at
higher resolution.

Geographies of published studies

Figure 1 shows a map of the global geographic distribution
of biosamples in the Progenetix database, using the first
author affiliation location as a proxy for the sample loca-
tion. As can be seen, the distribution is highly uneven and
concentrated in a few regions of the world, in particular
Western Europe and the North-Eastern USA. In Europe,
the cities associated with the most number of samples are
Amsterdam, London and Paris, whereas in the USA the top
cities are Boston/Cambridge, New York and San Francisco.

Figure 2 shows the cumulative numbers of published
oncogenomic screening experiments as collected in the Pro-
genetix database. The top 10 sample-contributing countries
are the USA (49 901 samples registered at Progenetix),
followed by Germany (17 447), the UK (12 843), Japan
(11 538), France (9612), the Netherlands (7777), Sweden
(6896), Spain (6080), Canada (5862) and China (4937).
The ranking by number of genomic arrays per year is
relatively consistent over time for the top countries, with
few relative shifts.

International collaborations

In Figure 3, we present a network graph showing the col-
laborations between countries based on the subset of publi-

cations (3093) from the Progenetix database where author
affiliation countries could be automatically extracted. In
total, 67 countries appeared at least once in an author
affiliation, with the most frequent country by far being
the USA, with contributing authors on 1215 publications
(39%). The second most frequent country is Germany
(523), followed by the UK (375), then the Netherlands (265)
and Japan (243). A total of 34% of the collection featured
more than one country in the affiliation list, supporting a
high degree of international collaboration in cancer genome
research. The remaining 66% of publications featured just
a single country, but with potentially many institutions
collaborating. A total of 38 publications featured more
than five different countries in the author affiliation list,
including a publication [23] with contributors from 13
different countries, the maximum in our data.

The top two most frequent country collaborations are
between researchers from the US and Germany (collaborat-
ing on 122 publications) and from the US with the UK (95
collaborations), reflecting an alignment of overall country
contribution frequencies and international collaborations.
The US features in six of the next seven most common pairs,
collaborating most often with Canada (79), Italy (60), Spain
(60), the Netherlands (58), Japan (49) and France (49).
Though no African countries are represented in the graph,
seven of these countries appear in our data, but below the
country count cut-off value (7), with Egypt appearing as
an affiliation country on five publications, the most for the
African continent.

Standards for geographic attribution of

biosamples

Geographic provenance data can be a powerful tool for
genomic data stratification and exploration. However, as
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Figure 2. Cumulative number (in logarithmic scale) of genomic array samples (CCGH, ACGH, WES, WGS) contained in 3240 publications registered

in the Progenetix database, split by their associated country, from 1993 to 2019 (publication year).

we have observed, projects are frequently highly collab-
orative, with international contributions seen in at least
one third of the published studies based on the contribut-
ing authors’ affiliations. Therefore, the use of submission
location as a proxy for the geolocation of the studies’
samples does not represent a rigorous procedure, but rather
is an operational simplification. Correlating geographic—
and population background-related—patient information
with genomic characteristics calls for a more ambitious
approach, for which standards for the geographic attribu-
tion of individuals, biosamples and technical procedures
should be established.

One of the current initiatives to address challenges in
the generation and—particularly—accessibility of genomic
data in biomedical research and medical practice on an
international scale is the Global Alliance for Genomics and
Health (GA4GH) [24]. A specific aim of this organiza-
tion is to allow flexible, federated data access to genomic
and health-related information across national boundaries.
GA4GH members pursue this goal through the develop-
ment and promotion of data sharing standards and tech-
nologies, driven through working groups (e.g. for genomic
knowledge standards, data security, data discovery or clin-
ical and phenotypic data capture) and driver projects such
as the ELIXIR Beacon project (beacon-project.io) [25].

The responsible sharing of genomics and health-related
data needs to be supported by well-designed data schemas
and Application programming interfaces (API). For several
of those schemas, the inclusion of geolocation parameters
has been found beneficial for supporting an effective
implementation of the derived protocols, e.g. for the
attribution of the geographical origin of individuals and
biosamples, as well as for technical provenance tracking and
regulatory procedures. One model of the different domains

for geolocation attribution is presented in Figure 5, where
we provide a schematic representation of geolocation data
objects and their use in the framework of a GA4GH
schema-derived, hierarchical ‘Individual - Biosample -
Callset’ model. Following this schema, the distinction
between the place of residence/origin of the patient, the
place where the biosample was extracted (e.g. hospital) and
the facility/laboratory where the samples were sequenced
or analyzed becomes feasible for different data analysis
scenarios. Additionally to these geographic parameters,
explicit ancestry information (e.g. using the HANCESTRO
ontology; www.ebi.ac.uk/ols/ontologies/hancestro/) could
provide an additional qualifier for ancestry–environment
stratification. If implemented throughout an international
ecosystem of GA4GH stakeholders, such structured
annotations will allow for diverse causative and co-
relational studies with great impact on genotype/phenotype
correlations and epidemiological knowledge.

While the extension of metadata annotations with geo-
graphic provenance information will provide opportunities
for better stratification of data especially in large-scale
meta-analyses, possible risks of, e.g. easier re-identifications
of individuals through combination of genomic and loca-
tion data [26] has to be considered. A careful design and
review of data schemas and transmission protocols can be
instrumental in lowering risks and improving the accep-
tance of geographic metadata annotations.

Aside from GA4GH, another important initiative within
life sciences aiming at the FAIRification of data (which
should follow the four foundational principles: findabil-
ity, accessibility, interoperability and reusability [27]) is
bioschemas.org. It aims primarily at the annotation of
data resources and repositories for easy identification of
data of interest, in the biomedical domain. In the area

www.ebi.ac.uk/ols/ontologies/hancestro/
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Figure 3. Graphical representation of the collaborations between countries based on 3093 publications contained in the Progenetix database.

Collaborating countries for the three most frequent countries—the United States (US), Germany (DE) and the United Kingdom (UK)—are also shown

in their own graphs. Node size is proportional to the country counts (linearly scaled between 10 and 50), node color represents the country’s

continent and edge thickness is proportional to the collaboration counts. To reduce clutter in the graph, only countries appearing on more than

seven publications appear in the graph, meaning our graph depicts ∼49% of all nodes and 29% of all edges in our data.

Figure 4. Example for a geographic subset generation, given existing geolocation data. In hepatocellular carcinoma (ICD-O 3 Morphology 8170/3)

datasets from the Progenetix collection, a query for experiments with a geographic provenance within 2000 km from Heidelberg or Taipei was used

to generate CNV frequencies for samples from Central Europe (665 samples) and East Asia (430 samples) ad hoc. Such use cases are supported

through the biosample-level location attributes in the (GA4GH derived) Progenetix dataschema. This example does not emphasize differences or

similarities between the groups, but rather highlights the power of ‘one click’ geographic stratification options.
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Figure 5. Metadata representation for a geolocation attribution approach based on concepts being developed at GA4GH. Each extracted ‘Biosample’

from an ‘Individual’ and its ‘Callset’ (i.e. experimental read-out) maintain a relation; ethnicity and geographical provenance of a biosample could be

tracked through the attributes at the ‘Individual’ level.

of collaborative studies, the ‘ICGC ARGO’ project (icgc-
argo.org) is an expansion of the previous International
Cancer Genome Consortium (ICGC) collaboration, which
aims specifically for the inclusion of population-adjusted
samples and also emphasizes the assessment of rich meta-
data. For the improvement of healthcare delivery systems,
it intends to link past and new genomic data to clinical and
health information (e.g. lifestyle parameters, patient history,
diagnosis and treatment response).

Discussion

Based on the data from 3240 articles curated for the Pro-
genetix resource, our analysis delivers an overview of the
geographic provenance ‘landscape’ of cancer genome pro-
filing publications, specifically of those containing whole-
genome profile from hybridization (cCGH, genomic array)
and sequencing (WES, WGS) experiments. When using
the city of the first author’s institution as proxy, we can
show prominent disparities for geographic sample origins
on a (sub-)continental scale, with only very limited con-
tributions from studies of African, Central Asian or South
American origin. While this result could be biased through
the incomplete registration of relevant studies or country-
specific biases in the registration of such studies in PubMed,
it corresponds to the ‘visibility’ of this research to the
international research community.

Previous studies have analyzed collaborations in science
using author affiliations to analyze the spatial aspects of
research and their role [28, 29]. Other analyses have been
focused on specific regions, such as Southeast Asia [30], to
analyze the collaboration networks of biomedical research
and improve the understanding of local health systems.
In the area of cancer research, focused efforts have led
to the creation of interactive tools such as the Global

Oncology Map (gcpm.globalonc.org), a project which aims
to promote research projects and facilitate collaborations,
where users can browse and search for projects, people and
events displayed on a world map [31].

Over the past years, large collaborative initiatives have
emerged with the aim of defining the genome of different
cancers. With over 88 contributing projects, the ICGC has
mapped the structural aberrations of 26 major cancer types
across 16 countries and the European Union. Furthermore,
The Cancer Genome Atlas (TCGA), with an overview of
33 different cancers based on 11 315 cases, provides a rich
collection of high-quality tumor samples. However, with
respect to reflecting population and geographic hetero-
geneity, based on samples from 14 contributing countries,
the representation of population diversity is nevertheless
limited with a great majority of samples labeled as being
from ‘white’ individuals (8186 samples) and other groups
represented in much lower numbers—1325 ‘not reported’,
934 ‘black or African American’, 675 ‘Asian’, 27 ‘Ameri-
can Indian or Alaska native’ and 13 ‘native Hawaiian or
other Pacific Islander’. The data from the respective TCGA
publications has been included in our analysis.

Numerous scientific studies have pointed out dispari-
ties in cancer incidence, prevalence and mortality based
on geographic location and called for further study of
the influence of different genetic backgrounds on can-
cer development [8, 32, 33]. A first, important step to
study the influence of geography-associated (genetic, envi-
ronmental, socio-economic) factors on cancer predispo-
sition, incidence and finally biology would be to asso-
ciate each analyzed cancer sample with its geographical
provenance. Unfortunately, currently available repositories
for genomic data lack submission protocols in which a
biosample’s geographic provenance or individual’s ethnicity
must be provided, and even lack requirements for a minimal
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consistent representation through e.g. {city, country} pairs.
Therefore, most of the time the only geographic location
available is based on the city where a given project has
been submitted, either to a data repository or as part
of the publication process. However, as seen from the
manual analysis of the 200 publications, this submitter
affiliation does not always reflect the geographic prove-
nance of the biosample: a biopsy could have been taken
at a hospital, then analyzed later on at a research center
in a different city, country or even continent. This leaves
a great challenge in deciding whether such locations are
meaningful as proxies for the genetic and/or environmental
backgrounds.

Even with existing geographic provenance, such infor-
mation can only provide an approximation of a patients
ancestry, with varying probability and specificity depending
on regional patterns of migration and admixture. For (can-
cer) genome profiling data with accessible genotyping infor-
mation (e.g. SNP arrays, genome-wide NGS data), a recent
approach of direct genetic inference allows for the assign-
ment of population groups from shared genomic ancestry
[34]. While this method provides genome-based access to
the ancestry component of the sample provenance with
superior information compared to metadata for that spe-
cific domain, it will be restricted to the subset of samples
with accessible genotyping data and therefore be limited
by lack of widespread data deposition and also privacy
concerns associated with genotype data access. Addition-
ally, such a genome-based approach cannot account for
additional data dimensions (environmental, technical) for
which geographic attribution might be beneficial.

Conclusions

Correct attribution of the geographic origin of a patient can
provide valuable information as a proxy for two general
classes of factors with a known role in cancer development:
(i) environmental and lifestyle factors with exposure related
to local or regional geographic origin and (ii) ancestry-
related variation in occurrence or frequency of genomic
variants providing heritable contributions to cancer devel-
opment. However, the lack of standards and deposition
requirements for geographic metadata in genomic data
repositories and as part of scientific publication procedures
currently limits potential benefits of geographic attribution
in cancer genome studies. While the use of proxy infor-
mation (e.g. location of author or data submitter) can be
valuable in geographic epistemology and for coarse-grained
geographic associations, detailed studies on the impact of
geo-correlated factors in cancer causation and progression
could be enabled through precise annotation of geographic
provenance using standardized protocols and data formats.

In our study, we present a GA4GH-derived concept
for the structured annotation of geographic provenance
data that accommodates for different levels of data attri-
bution in genome—and possibly other—profiling analyses,
and demonstrate its implementation in our ‘Progenetix’
cancer genome profiling collection, for stratification of
CNV datasets according to their large-granular geographic
origin.

While the limited availability of structured geographic
provenance data severely restricts options for detailed asso-
ciations between geographic data and genomic parameters
in cancer meta-analyses, the use of author-based proxy
data allows an estimation of the overall international study
landscape in the field of cancer genomics. Here, our anal-
ysis of 3240 publications shows large inequalities, with
the majority of studies being contributed from European,
North American and East Asian groups or collaborations,
and the near complete lack of accessible cancer genome
profiling data from Africa and, to a lesser extent, central
Asia and South America. The lack of ethnic diversity in the
current data collections—reflected in these extreme global
imbalances—highlights the need to properly address global
disparities in cancer research to enable the study of the
influence of genetic background on cancer development.

Supplementary Data

Additional information and supplementary data can be
found in the online repository (github.com/progenetix/
publications: 2020-Carrio-Cordo-cancergeographies).
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