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Learning efficient navigation in vortical flow fields
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Efficient point-to-point navigation in the presence of a background flow field is important for
robotic applications such as ocean surveying. In such applications, robots may only have
knowledge of their immediate surroundings or be faced with time-varying currents, which
limits the use of optimal control techniques. Here, we apply a recently introduced Reinfor-
cement Learning algorithm to discover time-efficient navigation policies to steer a fixed-
speed swimmer through unsteady two-dimensional flow fields. The algorithm entails input-
ting environmental cues into a deep neural network that determines the swimmer's actions,
and deploying Remember and Forget Experience Replay. We find that the resulting swimmers
successfully exploit the background flow to reach the target, but that this success depends on
the sensed environmental cue. Surprisingly, a velocity sensing approach significantly out-
performed a bio-mimetic vorticity sensing approach, and achieved a near 100% success rate
in reaching the target locations while approaching the time-efficiency of optimal navigation
trajectories.

TGraduate Aerospace Laboratories, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA. 2 Computational Science and
Engineering Laboratory, ETH Zurich, 8093 Zurich, Switzerland. 3 John A. Paulson School of Engineering and Applied Sciences, Harvard University, 150
Western Ave, Boston, MA 02134, USA. 4 Mechanical and Civil Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125,
USA. ®email: jodabiri@caltech.edu

NATURE COMMUNICATIONS | (2021)12:7143 | https://doi.org/10.1038/s41467-021-27015-y | www.nature.com/naturecommunications 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27015-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27015-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27015-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27015-y&domain=pdf
http://orcid.org/0000-0003-0681-4892
http://orcid.org/0000-0003-0681-4892
http://orcid.org/0000-0003-0681-4892
http://orcid.org/0000-0003-0681-4892
http://orcid.org/0000-0003-0681-4892
http://orcid.org/0000-0001-8337-2122
http://orcid.org/0000-0001-8337-2122
http://orcid.org/0000-0001-8337-2122
http://orcid.org/0000-0001-8337-2122
http://orcid.org/0000-0001-8337-2122
http://orcid.org/0000-0002-6722-9008
http://orcid.org/0000-0002-6722-9008
http://orcid.org/0000-0002-6722-9008
http://orcid.org/0000-0002-6722-9008
http://orcid.org/0000-0002-6722-9008
mailto:jodabiri@caltech.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

avigation in the presence of a background unsteady flow

field is an important task in a wide range of robotic

applications, including ocean surveying!, monitoring of
deep-sea animal communities?, drone-based inspection and
delivery in windy conditions?, and weather balloon station
keeping®. In such applications, robots must contend with
unsteady fluid flows such as wind gusts or ocean currents in order
to survey specific locations and return useful measurements, often
autonomously. Ideally, robots would exploit these background
currents to propel themselves to their destinations more quickly
or with lower energy expenditure.

If the entire background flow field is known in advance,
numerous algorithms exist to accomplish optimal path planning,
ranging from the classical Zermelo’s equation from optimal
control theory>® to modern optimization approaches!37-10,
However, measuring the entire flow field is often impractical, as
ocean and air currents can be difficult to measure and can change
unpredictably. Robots themselves can also significantly alter the
surrounding flow field, for example when multi-rotors fly near
obstacles!! or during fish-like swimming!2. Additionally, oceanic
and flying robots are increasingly operated autonomously and
therefore may not have access to real-time external information
about incoming currents and gusts (e.g.1>14).

Instead, robots may need to rely on data from on-board sen-
sors to react to the surrounding flow field and navigate effectively.
A bio-inspired approach is to navigate using local flow infor-
mation, for example by sensing the local flow velocity or pressure.
Zebrafish appear to use their lateral line to sense the local flow
velocity and avoid obstacles by recognizing changes in the local
vorticity due to boundary layers!>. Some seal species can orient
themselves and hunt in total darkness by detecting currents with
their whiskers!®. Additionally, a numerical study of fish schooling
demonstrated how surface pressure gradient and shear stress
sensors on a downstream fish can determine the locations of
upstream  fish, thus enabling energy-efficient schooling
behavior!”.

Reinforcement Learning (RL) offers a promising approach for
replicating this feat of navigation from local flow information. In
simulated environments, RL has successfully discovered energy-
efficient fish swimming!®1°® and schooling behavior!?, as well as a
time-efficient navigation policy for a repeated, deterministic
snapshot of turbulent flow using position information?0. In
application, RL using local wind velocity estimates outperformed
existing methods for energy-efficient weather balloon station
keeping* and for replicating bird soaring?!. Other methods exist
for navigating uncertainty in a partially known flow field such as
fuzzy logic or adaptive control methods’. Finite-horizon model
predictive control has been also used to plan energy-efficient
trajectories using partial knowledge of the surrounding flow
field?2. However, RL can be applied generally to an unknown flow
field without requiring human tuning for specific scenarios.

The question remains, however, as to which environmental
cues are most useful for navigating through flow fields using RL.
A bio-mimetic approach suggests that sensing the vorticity could
be beneficiall®; however flow velocity, pressure, or quantities
derived thereof are also viable candidates for sensing.

In this work, we find that Deep RL can indeed discover time-
efficient, robust paths through an unsteady, two-dimensional
(2D) flow field using only local flow information, where simpler
strategies such as swimming towards the target largely fail at the
task. We find, however, that the success of the RL approach
depends on the type of flow information provided. Surprisingly, a
RL swimmer equipped with local velocity measurements dra-
matically outperforms the bio-mimetic local vorticity approach.
These results show that combining RL-based navigation with
local flow measurements can be a highly effective method for

navigating through unsteady flow, provided the appropriate flow
quantities are used as inputs to the algorithm.

Results

Simulated navigation problem. As a testing environment for RL-
based navigation, we pose the problem of navigating across an
unsteady von Kdrmdan vortex street obtained by simulating 2D,
incompressible flow past a cylinder at a Reynolds number of 400.
Other studies have investigated optimal navigation through real
ocean flows!, simulated turbulence?’, and simple flows for which
there exist exact optimal navigation solutions®. Here, we inves-
tigate the flow past a cylinder to retain greater interpretability of
learned navigation strategies while remaining a challenging,
unsteady navigation problem.

The swimmer is tasked with navigating from a starting point
on one side of the cylinder wake to within a small radius of a
target point on the opposite side of the wake region. For each
episode, or attempt to swim to the target, a pair of start and target
positions are chosen randomly within disk regions as shown in
Fig. 1.

Additionally, the swimmer is assigned a random starting time
in the vortex shedding cycle. The spatial and temporal
randomness prevent the RL algorithm from speciously forming
a one-to-one correspondence between the swimmer’s relative
position and the background flow, which would not reflect real-
world navigation scenarios (see Supplementary Note 1). All
swimmers have access to their position relative to the target (Ax,
Ay) rather than their absolute position to further prevent the
swimmer from relying on memorized locations of flow features
during training. For this reason, the start and target regions were
chosen to be large relative to the width of the cylinder wake.

For simplicity and training speed, we consider the swimmer to
be a massless point with a position X,, = [x, y] which advects with
the time-dependent background flow Uy, = [u(x, , 1), v(x, y, £)].
The swimmer can swim with a constant speed U, and can
directly control its swimming direction 6. These dynamics are
discretized with a time step At =0.3D/U., using a forward Euler
scheme, where D is the cylinder diameter and U, is the
freestream flow velocity:

XO = Xstart7 (1)

Xn+1 = Xn + At(Uswim[Cos(e)a Sln(e)] + Uﬂow) . (2)

Fig. 1 Test navigation problem of navigating through unsteady cylinder
flow. Swimmers are initialized randomly inside the red disk and are
assigned a random target location inside the green disk. These regions of
start and target points are 4D in diameter, and are located 5D downstream
and centered 2.05D above and below the cylinder. Additionally, each
swimmer is initialized at a random time step in the vortex shedding cycle.
An episode is successful when a swimmer reaches within a radius of D/6
around the target location.
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It is also possible to apply RL-based navigation with more
complex dynamics, including when the swimmer’s actions alter
the background flow!2.

We chose a swimming speed of 80% of the freestream speed
U.. to make the navigation problem challenging, as the swimmer
cannot overcome the local flow in some regions of the domain. A
slower speed (U, <0.6U_ ) makes navigating this flow largely
intractable, while a swimming speed greater than the freestream
(Ugwim > Us) would allow the swimmer to overcome the
background flow and easily reach the target.

Navigation using Deep Reinforcement Learning. In RL, an
agent acts according to a policy, which takes in the agent’s state s
as an input and outputs an action a. Through repeated experi-
ences with the surrounding environment, the policy is trained so
that the agent’s behavior maximizes a cumulative reward. Here,
the agent is a swimmer, the action is the swimming direction 0,
and we seek to determine how the performance of a learned
navigation policy is impacted by the type of flow information
contained in the state.

To this end, we first consider a flow-blind swimmer as a
baseline, which cannot sense the surrounding flow and only has
access to its position relative to the target (s = {Ax, Ay}). Next,
inspired by the vorticity-based navigation strategy of the
zebrafish!®, we consider a vorticity swimmer with access to the
local vorticity at the current and previous time step in order to
sense changes in the local vorticity (s = {Ax7 Ay, w,,w,_;). We
also consider a velocity swimmer, which has access to both
components of the local background velocity (s = {Ax, Ay, u, v}).
Results for additional swimmers with different states are shown in
Supplementary Note 3. In a real robot, velocity sensing could be
implemented via a variety of methods including pitot tubes and
hot wire or hot film anemometry. Local vorticity could be
computed from several velocity sensors. Not considered here are
distributed sensing schemes, such as distributed pressure or shear
sensors, which can be effective for flow sensing and
identification!”. Coupling optimal flow sensor distribution (e.g.23)
with the present RL navigation method may be a fruitful, but
computationally challenging, extension of this point-swimmer
proof of concept.

We employ Deep RL for this navigation problem, in which the
navigation policy is expressed using a deep neural network.
Previously, Biferale et al.?% employed an actor-critic approach for
RL-based navigation of a repeated, deterministic snapshot of
turbulent flow, which is similar to navigating a steady flow field
(see Supplementary Note 1). The policy was expressed using a
basis function architecture, requiring a coarse discretization of
both the swimmer’s position and swimming direction for
computational feasibility. In contrast, V-RACER?* is well-suited
for this navigation problem, as it is designed for continuous
problems and can accept additional sensory inputs with negligible
impact in computational complexity. A single 128 x 128 deep
neural network is used for the navigation policy, which accepts
the swimmers state (i.e. flow information and relative position)
and outputs the swimming direction as continuous variables. The
network also outputs a Gaussian variance in the swimming
direction to allow for exploration during training. The policy
network is randomly initialized and then iteratively updated
through repeated attempts to reach the target following the policy
gradient theorem?>. V-RACER employs Remember and Forget
Experience Replay to reuse past experiences over multiple
iterations to update the swimmer’s policy in a stable and data-
efficient manner. Additional details of the V-RACER algorithm
are shown in Supplementary Note 2. Results such as the success
rate and cumulative reward curves were averaged after training

each swimmer five times. This step helped ensure that differences
in performance did not arise spuriously from the random
initialization of the policy network, as described in%°.

At each time step, the swimmer receives a reward according to
the reward function r,, which is designed to produce the desired
behavior of navigating to the target. We employ a similar reward

function as Biferale et al.20;
11X, ,—X, IX,—X
U

gl

r,=—At+ 10[ ‘“‘g‘"‘q + bonus.  (3)

swim swim

The first term penalizes duration of an episode to encourage
fast navigation to the target. The second two terms give a reward
when the swimmer is closer to the target than it was in the
previous time step. The final term is a bonus equal to 200 time
units, or ~30 times the duration of a typical trajectory. The bonus
is awarded if the swimmer successfully reaches the target.
Swimmers that exit the simulation area or collide with the
cylinder are treated as unsuccessful. The second two terms are
scaled by 10 to be on the same order of magnitude as the first
term, which we found significantly improved training speed and
navigation success rates. We also investigated a non-linear reward
function, in which the second two terms are the reciprocal of the
distance to the target, however it exhibited lower performance.
The RL algorithm seeks to maximize the total reward, which is
the sum of the reward function across all N time steps in an
episode:

N X

— Xiarget |
start target
Tiotal = n§1 Ty = _Tf +10

U + bonus. (4)

swim

The evolution of 7y, during training for each swimmer is
shown in Fig. 2. All RL swimmers were trained for 20,000
episodes.

The reward function can be tuned to optimize for specific
objectives such as minimum fuel consumption by including
additional terms (e.g.?’). Here, the reward function acts to
optimize for two objectives: minimal arrival time to the target
(—Tp and maximum success rate of reaching the target (second
two terms). The ability of RL to achieve these two objectives is
explored in the following sections.

Success of RL navigation. After training, Deep RL discovered
effective policies for navigating through this unsteady flow. An
example of a path discovered by the velocity RL swimmer is
shown in Fig. 3. Because the swimming speed is less than the
freestream velocity, the swimmer must utilize the wake region

Flow-Blind Swimmer Vorticity Swimmer  Velocity Swimmer
s={Az, Ay} s={Az,Ay,wn,wn1} s={Az,Ay,u,v}

200t I o,
150 r
100+

T'total

5070 1

2x10° 0 1 2x10' 0 1 2x10'

Number of Training Episodes

Fig. 2 Evolution of the cumulative reward during training for the three RL
swimmers. The cumulative rewards for each episode are plotted as points,
and a moving average with a window of 201 episodes is plotted with a solid
line. Because the swimmer gains a bonus of 200 for reaching the target,
successful episodes are clustered around a reward of 200 while
unsuccessful episodes are clustered below zero.
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Fig. 3 Example trajectory of the velocity RL swimmer. a Trajectory plotted
in a cylinder-fixed frame, showing the swimmer successfully navigate from
its starting location to the target. b Segment of this trajectory plotted in a
wake-stationary frame of reference on top of the background flow field,
which highlights the swimmer exploiting low-velocity regions in the cylinder
wake to swim upstream. The swimming direction is plotted at each time
step along the trajectory, revealing that this RL swimmer adjusts it
swimming direction in response to the changing background flow, enabling
time-efficient navigation.

Flow-Blind RL Swimmer
Success Rate: 39.4 + 5.8%

Naive Swimmer
Success Rate: 1.3 £ 0.4%
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Vorticity RL Swimmer
Success Rate: 47.2 + 8.7%

Velocity RL Swimmer
Success Rate: 99.9 + 0.1%

Fig. 4 Average success rate with 30 example trajectories for each
swimmer type. Successful attempts to reach the target are green, while
unsuccessful attempts are red. a Naive policy of swimming towards the
target is rarely successful. b The flow-blind RL swimmer navigates more
effectively than the naive swimmer. ¢ The vorticity RL swimmer is more
successful than the flow-blind swimmer, showing that sensing the local
flow can improve RL-based navigation. d Surprisingly, the velocity RL
swimmer nearly always reaches the target using only the local flow velocity.
The stated success rates are averaged over 12,500 episodes and are shown
with one standard deviation arising from the five times each swimmer was
trained.

where it can exploit slower background flow to swim upstream.
Once sufficiently far upstream, the swimmer can then steer
towards the target. The plot of the swimming direction inside the
wake (Fig. 3b) shows how the swimmer changes its swimming
direction in response to the background flow, enabling it to
maintain its position inside the wake region and target low-
velocity regions.

However, the ability of Deep RL to discover these effective
navigation strategies depends on the type of local flow
information included in the swimmer state. To illustrate this
point, example trajectories and the average success rates of the
flow-blind, vorticity, and velocity RL swimmers are plotted in
Fig. 4, and are compared with a naive policy of simply swimming
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Fig. 5 Swimming direction policy plotted across the domain for a fixed
target (green circle) at a given time instant. a The naive swimmer swims
towards the target. b The red outline highlights how the flow-blind
swimmer navigates irrespective of the background flow, while the vorticity
swimmer ¢ adjusts its swimming direction modestly. d The velocity
swimmer appears even more sensitive to the unsteady background flow.

towards the target (Opave = tan™! (Ay/ Ax)). An example
trajectory from each swimmer is also shown in Supplementary
Video 1.

A naive policy of swimming towards the target is highly
ineffective. Swimmers employing this policy are swept away by
the background flow, and reached the target only 1.3% of the time
on average. A RL approach, even without access to flow
information, is much more successful: the flow-blind swimmer
reached the target locations nearly 40% of the time.

Giving the RL swimmers access to local flow information
increases the success further: the vorticity RL swimmer averaged a
47.2% success rate. Surprisingly however, the velocity swimmer
has a near 100% success rate, greatly outperforming the zebrafish-
inspired vorticity approach. With the right local flow information,
it appears that an RL approach can navigate nearly without fail
through a complex, unsteady flow field. However, the question
remains as to why some flow properties are more informative
than others.

To better understand the difference between RL swimmers
with access to different flow properties, the swimming direction
computed by each RL policy is plotted over a grid of locations in
Fig. 5. The flow-blind swimmer does not react to changes in the
background flow field, although it does appear to learn the effect
of the mean background flow, possibly through correlation
between the mean flow and the relative position of the swimmer
in the domain. This provides it an advantage over the naive
swimmer. The vorticity swimmer adjusts its swimming direction
modestly in response to changes in the background flow, for
example by swimming slightly upwards in counter-clockwise
vortices and slightly downwards in clockwise vortices. The
velocity swimmer appears most sensitive to the background flow,
which may help it respond more effectively to changes in the
background flow.

Station-keeping inside the wake region may be important for
navigating through this flow. In the upper right of the domain,
the velocity swimmer learns to orient downwards and back to the
wake region, while the other swimmers swim futilely towards the
target. Because the vorticity depends on gradients in the
background flow, that property cannot be used to respond to
flow fields that are spatially uniform. These differences appear to
explain many of the failed trajectories in Fig. 4, in which the flow-
blind and vorticity swimmers are swept up and to the right by the
background flow. Other swimmers with partial access to the
background flow fared similarly to the vorticity swimmer, further
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suggesting that sensing both velocity components are required for
best performance (see Supplementary Note 3).

While sensing of point vorticity is insufficient to detect
spatially uniform flow fields, it can be useful for distinguishing
the vortical wake from the freestream flow. This can explain why
the vorticity swimmer performs better than the flow-blind
swimmer. A similar reasoning could apply to swimmers that
sense other flow quantities such as pressure or shear. Indeed,
Alsalman et al. found that velocity sensors outperformed vorticity
sensors for neural network-based flow classification?8.

In addition to providing environmental cues, however, the
background flow velocity may be particularly important for
navigation, as it affects the future state of the swimmer. Because
the flow advects the swimmers according to linear dynamics
(Equation (2)), the local velocity can exactly determine the
swimmer’s position at the next time step. This may explain the
high navigation success of the velocity swimmer, as it has the
potential to accurately predict its next location. To be sure, the
Deep RL algorithm must still learn where the most advantageous
next location ought to be, as the flow velocity at the next time step
is still unknown.

For real swimmers, vorticity may also affect the future state of
the swimmer, for example by causing a swimmer to rotate in the
flow?? or by altering boundary layers and skin friction drag!2.
Real robots would also be subject to additional sources of
complexity not considered in this simplified simulation, which
would make it more difficult to determine a swimmer’s next
position from local velocity measurements alone.

Comparison with optimal control. In addition to reaching the
destination successfully, it is desirable to navigate to the target
while minimizing energy consumption or time spent traveling.
Biferale et al.20 demonstrated that RL can approach the perfor-
mance of time-optimal trajectories in steady flow for fixed start
and target positions. Here, we find that this result also holds for
the more challenging problem of navigating unsteady flow with
variable start and target points.

Assuming the swimmer reaches the target location, the only
term in the cumulative reward ry, that depends on the
swimmer’s trajectory is — Ty (Equation (4)). Therefore, maximiz-
ing the cumulative reward of a successful episode is equivalent to
finding the minimum time path to the target. Because the velocity
RL swimmer always reaches the target successfully, we compare
the velocity RL swimmer to the time-optimal swimmer derived
from optimal control.

To find time-optimal paths through the flow, given knowledge
of the full velocity field at all times, we constructed a path planner
that finds locally optimal paths in two steps. First, a rapidly-
exploring random tree algorithm (RRT) finds a set of control
inputs that drive the swimmer from the starting location to the
target location, typically non-optimally). Then we apply
constrained gradient-descent optimization (i.e. the fmincon
function in MATLAB) to minimize the time step (and therefore
overall time T¥) of the trajectory while enforcing that the swimmer
starts at the starting point (Equation (1)), obeys the dynamics at
every time step in the trajectory (Equation (2)), and reaches the
target (|| Xy — Xiargedl| < = D/6). The trajectories produced by this
method are local minima, so the fastest trajectory was chosen out
of 100 runs and validated to be globally optimal by comparing it
with the output of the level set method described in Lolla et al.1
computed using a MATLAB level set toolbox?!. Other algorithms
could also be used to find optimal trajectories for unsteady flow
given knowledge of the entire flow field3.

A comparison between RL and time-optimal navigation for
three sets of start and target points is shown in Fig. 6. These

@&\ ) ’ [ @&N » [ @N ’

RL: 7t = 8.80
Optimal: 7¢=5.38
(39% faster)

RL: 7t =18.4
Optimal: 7t =15.4
(16% faster)

RL: 7t = 33.3
Optimal: Tt =25.7
(23% faster)

Fig. 6 Comparison between time-optimal and RL trajectories. Time-
optimal trajectories are shown in red and RL trajectories are shown in black.
The RL swimmer used the state s = {Ax, Ay, u, v}. Time to reach the target
T is made non-dimensional using the timescale D/U...

points were chosen to represent a range of short and long
duration trajectories. Despite only having access to local
information, the RL trajectories are nearly as fast and qualitatively
similar to the optimal trajectories, which were generated with the
advantage of having full global knowledge of the flow field. A
comparison between the swimmers is also shown in Supplemen-
tary Video 2.

The surprisingly high performance of the RL approach
compared to a global path planner suggests that deep neural
networks can, to some extent, approximate how local flow at a
particular time impacts navigation in the future. In other words, a
successful RL swimmer must simultaneously navigate and
identify the approximate current state of the environment using
only a single flow measurement at one instant in time at an
unknown absolute location in the flow field. In comparison, the
optimal control approach relies on knowledge of the environment
in advance. There are limitations to the RL approach, however.
For example, the optimal swimmer on the right of Fig. 6 enters
the wake region at a different location than the RL swimmer to
avoid a high velocity region, which the RL swimmer may not have
been able to sense initially.

In addition to approaching the optimality of a global planner,
RL navigation offers a robustness advantage. As noted in2%, RL
can be robust to small changes in initial conditions. Here, we
show that RL navigation can generalize to a large area of initial
and target conditions as well as random starting times in the
unsteady flow. Additionally, we found that the velocity RL
swimmer is robust to realistic amounts of sensor noise from
turbulent fluctuations (see Supplementary Note 4).

In contrast, the optimal trajectories here are open loop: any
disturbance or flow measurement inaccuracy would prevent the
swimmer from successfully navigating the target. While robust-
ness can be included with optimal control in other ways’,
responding to changes in the surrounding environment is the
driving principle of this RL navigation policy. Indeed, the related
algorithm of imitation learning has been used for drone control
by employing a neural network to mimic an optimal flight path
while reacting to local disturbances32.

Policy transfer to double gyre flow. The RL swimmer showed
robustness to large changes in the start and target positions, and
to realistic amounts of sensor noise (Supplementary Note 4).
However, it is worth considering if a learned navigation policy
can transfer between different flow fields, which would reduce the
amount of training required for navigating a new flow field and
increase the robustness of a swimmer to sudden changes in its
environment.

Colabrese et al. demonstrated that an RL swimmer trained on a
vortical flow field can navigate successfully in a new, but
topologically similar, flow field without additional training®®.
However, they noted that learned navigation strategies may not
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Double Gyre Navigation Problem
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Naive Swimmer
Success Rate: 40.9+1.1%

e

Trained on Cylinder Wake
Success Rate: 4.1+2.0%

Success Rate: 87.4+3.1%

Fig. 7 RL navigation in the double gyre flow field. a Navigation problem setup. The start and target regions are L/2 in diameter and located at (3L/2, L/2)
and (L/2, L/2), respectively. b A naive policy achieves 40.9% success rate on average. ¢ The velocity RL swimmer trained on the cylinder wake navigates
the double gyre flow poorly, indicating its navigation policy did not generalize. d After receiving training for the double gyre flow, the velocity RL swimmer is
able to adapt and navigate more effectively than either swimmer. As with the cylinder flow, successful attempts to reach the target are green, while
unsuccessful attempts are red. An episode is successful when a swimmer reaches within a radius of L/50 around the target location. The stated success
rates are averaged over 12,500 episodes and are shown with one standard deviation arising from the five times each swimmer was trained.

transfer between dissimilar flows, thus requiring additional
training to form a new navigation strategy. Here, we consider if
the learned policy for navigating the cylinder flow can transfer to
a double gyre flow, which is topologically dissimilar.

The double gyre flow is a 2D, unsteady, periodic flow field that
is a simplified representation of circulation patterns found
frequently in the ocean223334 The velocity field is defined
analytically in33, where all length units are non-dimensional (i.e.
L=1). Here, we wused A=2/3Ug;, €=03, and
w = 20nU,,;,/3L, which presents a challenging navigation
problem that is unsteady on a similar time scale as the cylinder
flow. Swimmers were started at a random time step in the right
gyre and are tasked with navigating to a randomly chosen target
in the left gyre. The problem setup is shown in Fig. 7a.

To see if the learned RL policy transfers to the double gyre
flow, two versions of the velocity RL swimmer were tested: one
trained on the unsteady cylinder flow and one trained for the
double gyre flow. Additionally, the naive swimmer was included
for comparison. The success rates of these swimmers are shown
in Fig. 7b-d.

The learned policy for navigating the cylinder wake did not
transfer effectively to the double gyre flow, resulting in only a
4.1% average success rate (Fig. 7c) compared to the naive
swimmer’s 40.9% average success rate (Fig. 7b). Poor perfor-
mance was also observed when the problem coordinates were
rotated and scaled to match the start and target regions of the
cylinder flow navigation problem.

With training, however, new and effective navigation strategies
can be learned. The velocity RL swimmer trained on the double
gyre flow achieved a high average success rate of 87.4%,
leveraging the background flow to escape the right gyre and
navigate to its target locations in the left gyre. These results
suggest that learned policies may indeed only transfer between
similar flows, and that effective navigation in new flow fields
requires additional training. Additionally, while all investigations
here are in simulated flow environments, future studies may
benefit from investigating the transfer of learned behaviors
between simulated and real environments, which can reduce
in situ training time for physical robots.

Discussion

We have shown in this study how Deep RL can discover robust
and time-efficient navigation policies which are improved by
sensing local flow information. A bio-inspired approach of sen-
sing the local vorticity provided a modest increase in navigation
success over a position-only approach, but surprisingly the key to
success was discovered to lie in sensing the velocity field, which
more directly determined the future position of the swimmer.
This suggests that RL coupled with an on-board velocity sensor
may be an effective tool for robot navigation. While the learned
policy for navigating an unsteady cylinder wake did not transfer
to a dissimilar double gyre flow, additional training enabled the
RL swimmer adapt to the new flow field. Future investigation is
warranted to examine the extent to which the success of the
velocity approach extends to real-world scenarios, in which
robots may face more complex, 3D fluid flows, and be subject to
non-linear dynamics and sensor errors.

Data availability
All data generated and discussed in this study are available within the article and its
supplementary files, or are available from the authors upon request.

Code availability
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