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Abstract

Andes virus (ANDV) is the most common causative agent of hantavirus pulmonary syndrome (HPS) in the Americas, and is
the only hantavirus associated with human-to-human transmission. Case fatality rates of ANDV-induced HPS are
approximately 40%. There are currently no effective vaccines or antivirals against ANDV. Since HPS severity correlates with
viral load, we tested small interfering RNA (siRNA) directed against ANDV genes as a potential antiviral strategy. We
designed pools of 4 siRNAs targeting each of the ANDV genome segments (S, M, and L), and tested their efficacy in reducing
viral replication in vitro. The siRNA pool targeting the S segment reduced viral transcription and replication in Vero-E6 cells
more efficiently than those targeting the M and L segments. In contrast, siRNAs targeting the S, M, or L segment were
similar in their ability to reduce viral replication in human lung microvascular endothelial cells. Importantly, these siRNAs
inhibit ANDV replication even if given after infection. Taken together, our findings indicate that siRNAs targeting the ANDV
genome efficiently inhibit ANDV replication, and show promise as a strategy for developing therapeutics against ANDV
infection.
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Introduction

Andes virus (ANDV), a New World pathogenic hantavirus,

causes hantavirus pulmonary syndrome (HPS) in humans, with

case fatality rates of 40% [1,2]. ANDV is the major cause of

HPS in South America, and has been associated with the most

HPS cases to date. It has been classified as a category A

pathogen, and is the only hantavirus known to be capable of

human-to-human transmission [3,4]. ANDV, a member of the

Bunyaviridae family, is an enveloped virus with a tri-segmented,

negative-sense, single-stranded RNA genome of approximately

11 kb [5]. The small (S), medium (M), and large (L) segments

encode the nucleocapsid (N) protein, 2 glycoproteins (Gn and

Gc), and an RNA-dependent RNA polymerase (RdRp or L-

protein), respectively. N interacts with host mRNA and viral

RNA during viral replication. Gn and Gc oligomerize to form

spikes on the virus particle, mediating receptor binding and

fusion with target cells. The L protein is responsible for

replicating and transcribing the viral genome.

ANDV infection in humans occurs by exposure to excreta

from the persistently-infected rodent reservoir [5]. The disease

is characterized initially by fever, muscle aches, and head-

aches, followed by pulmonary edema due to vascular leakage.

Patients with severe disease quickly develop respiratory failure

or shock, often leading to death [6]. Levels of ANDV RNA

peak at the time of pulmonary edema [7,8], and viremia levels

correlate with HPS severity [9]. Currently, no vaccines or

antiviral drugs are approved to prevent or to treat HPS.

Attempts to treat HPS with intravenous ribavirin have been

ineffective after hospitalization [10], indicating that the final

clinical stages of HPS progress too rapidly for ribavirin to exert

an antiviral effect. However, no firm conclusions can be drawn

from these studies given the low number of patients enrolled.

RNA interference (RNAi) is a post-transcriptional, se-

quence-specific RNA degradation process observed in eukary-

otic cells, and is considered a defense mechanism against viral

infection [11,12]. Upon recognizing exogenous double-strand-

ed RNA, the cytosolic ribonuclease Dicer cleaves it into small

interfering RNAs (siRNAs) 21–25 nt in length. These siRNAs

are incorporated into the RNA-induced silencing complex

(RISC), in which siRNAs directly bind to complementary

mRNA sequences to induce their cleavage, consequently

silencing the expression of the targeted gene [13].

The major advantage of siRNA treatment is its target

specificity. It has been shown that RNAi targeting viral genes

inhibits viral replication in vitro and has been explored as a

strategy to combat viral infection caused by, e.g., HIV-1,

poliovirus, nairovirus, and Lassa virus [14–17]. RNAi-based

therapy effectively reduces viral loads and increases survival

rates in humans and animals infected with a number of other

viruses [18–21]. Here, we investigate the potential of using

siRNA against ANDV infection. Our data suggest that siRNAs

targeting the ANDV genome can efficiently lower virus titers,

thus showing promise as potential in vivo therapeutic agents

against HPS.
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Materials and Methods

Cell lines and viruses
African green monkey kidney (Vero-E6) cells were obtained

from ATCC and maintained in DMEM (Life Technologies,

Grand Island, NY, USA) supplemented with 10% heat-inactivated

fetal bovine serum (FBS; Hyclone, Logan, UT, USA). Human

lung microvascular endothelial cells (HMVEC-L; Lonza/Clo-

netics, Walkersville, MD, USA) were grown with EGM-2MV

medium (Lonza/Clonetics) in cell culture flasks pre-coated with

phosphate-buffered saline (PBS) containing 0.2% gelatin (Sigma-

Aldrich, St. Louis, MO, USA). ANDV (strain Chile 9717869) was

propagated in Vero-E6 cells in a biosafety level 3 laboratory. Viral

titers were determined using immunostaining as described in the

Immunofocus assays section.

Transfection of plasmid and siRNA
Vero-E6 cells were transfected with a plasmid containing

ANDV-GPC [22] using TransIT-LT1 (Mirus Bio, Madison, WI,

USA). siRNA sequences targeting ANDV S, M, and L segments

were designed by Dharmacon (Lafayette, CO, USA) based on

NCBI reference sequence database entries (assession numbers

NC_003466.1, NC_003467.2, and NC_003468.2, respectively).

The siRNA sequences are listed in Table S1. Vero-E6 cells and

HMVEC-L were transfected with 100 nM siRNA using 0.2% and

0.05% DharmaFECT-1 (Dharmacon), respectively. Incubation

times are indicated in figure legends.

Western blotting
Vero-E6 cells or HMVEC-L were seeded at a density of 26105

cells/well in 12-well plates, or 56105 cell/well in 6-well plates, and

incubated for 24 h. After transfection and ANDV infection, cells

were lysed in RIPA buffer (Sigma-Aldrich). Lysate samples

containing an equivalent of 5 mg protein were loaded and

separated on NuPAGE 4–12% Bis-Tris gels (Life Technologies),

then transferred onto PVDF membranes. After blocking with PBS

containing 0.05% v/v Tween-20 and 5% w/v skim milk, the

membranes were incubated overnight at 4uC with mouse

monoclonal antibodies against Puumala virus N protein (1:4000),

ANDV Gc protein (1:2000; US Biological, Swampscott, MA,

USA), or b-actin (1:4000; Sigma-Aldrich). Samples were washed in

PBS containing 0.05% Tween-20 before adding horseradish

peroxidase (HRP)-conjugated secondary antibody, and developed

using SuperSignal West Dura Extended Duration Substrate

(Thermo Scientific, Pittsburgh, PA, USA). Image analysis and

densitometry were performed on the public domain program NIH

ImageJ.

Immunolabeling and immunofluorescence assays
The immunolabeling method used in this study was adapted

from [23], with minor modifications. Vero-E6 cells or HMVEC-L

were seeded at a density of 16104 or 26104 cells/well in 96-well

plates, respectively, and incubated for 24 h. After siRNA

transfection and ANDV infection, plates were washed 3 times

with PBS containing 0.1% v/v Tween-20 (PBS-T), blocked with

5% skim milk in PBS-T, and incubated at 37uC for 30 min. Plates

were then washed twice with PBS-T, incubated with anti-N

protein antibody (mouse monoclonal anti-Puumala virus N

protein, 1:4000) for 30 min at 37uC, and washed as above. Plates

were incubated with 1% H2O2 (Sigma-Aldrich) for 15 min at

room temperature, and washed as above. For immunolabeling,

goat anti-mouse IgG1-conjugated HRP (1:25,000; SouthernBio-

tech, Birmingham, AL, USA) was added for 30 min at 37uC
before washing as above. Signal was detected with chemilumines-

cent peroxidase substrate-3 (CPS-3, Sigma-Aldrich) on a Synergy

HT Microplate Reader (Biotek, Broadview, IL, USA) using 0.1 s

integration. For immunofluorescence, goat anti-mouse IgG1-

FITC (1:1000, SouthernBiotech) was used as the secondary

antibody. Images were obtained with a fluorescence microscope

(Nikon, Melville, NY, USA) using 106magnification; all pictures

were captured using the same exposure and gain settings.

Cell viability assays
Cytotoxic effects of the siRNA pools in Vero-E6 and HMVEC

cells were determined using the CellTiter-Glo Luminescent assay

(Promega, Madison, WI, USA) according to the manufacturer’s

instructions. Briefly, after cells were treated with siRNA and

infected with ANDV, CellTiter-Glo reagent was added to each

well of a 96-well plate. After 10 min incubation at room

temperature, luminescent signals were read as above.

Immunofocus assays
The virus titers were determined by an immunostaining plaque

assay. Viral plaques were detected using anti-Puumala virus N

protein and rabbit anti-mouse IgG (H+L) conjugated with Alex

Fluor 488 antibodies (Life Technologies), and counted under a

fluorescence microscope.

Results

siRNA inhibits ANDV protein synthesis
To determine if siRNA against the ANDV genome inhibits

ANDV infection in vitro, we generated siRNA pools targeting each

of the 3 ANDV genomic segments (Table S1). Each siRNA pool

included 4 individual siRNAs targeting 4 separate regions of each

virus segment. Vero-E6 cells were transfected with each siRNA

pool prior to ANDV infection. We found that siRNA targeted

against the S segment (siS) greatly reduced levels of viral protein

expression. siS reduced ANDV N level by .60% (relative to non-

targeting scrambled siRNA controls) as measured by immunola-

beling (Figure 1A), and reduced N and Gc protein levels by .70%

and 40%, respectively, as measured by Western blot analysis

(Figure 1B and 1C). Furthermore, siS-induced reduction of N

protein expression can be readily observed directly by immuno-

fluorescence staining (Figure 1D).

We also found that siL marginally reduced levels of ANDV N

and Gc by 28% and 25%, respectively (Figure 1A and C). While

the siM pool reduced Gc protein levels by 36%, it had no effect on

N protein levels (Figure 1A, C). The weak inhibition by the siM

pool was not due to poor design of the siRNAs, as these same

siRNAs completely suppressed virus glycoprotein synthesis when

Gc was expressed from an ANDV GPC expression plasmid

(Figure S1).

Cell viability assays showed no significant cytotoxicity after

transfection with any of the siRNA pools, nor after 48 h of ANDV

infection (data not shown). These initial results indicate that

siRNAs targeting the ANDV genome can block ANDV infection,

with the S segment being the most efficient target for inhibition in

Vero-E6 cells.

siRNA inhibits production of infectious ANDV
To test whether these siRNA pools could act synergistically, we

also transfected Vero-E6 cells with combinations of the siRNA

pools (Figure 2A). Despite using less of each siRNA (33 nM), the

individual siRNA pools gave similar results (Figure 2A) to those

seen in the initial experiments using 100 nM of siRNA (Figure 1).

siS inhibited N and Gc protein expression by over 50% and 80%,

respectively, whereas siL and siM were less potent.

siRNA Inhibition of ANDV
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Figure 1. siRNA inhibits ANDV protein synthesis. Vero-E6 cells were transfected with 100 nM of either scrambled siRNA (Ctrl) or pools of siRNAs
targeting the small (S), large (L), or medium (M) segment of ANDV using DharmaFECT 1. After 6 h, siRNAs were removed, and cells were infected with
ANDV at multiplicity of infection (MOI) = 0.5 for 48 h. (A) Cells were lysed, and expression of the N protein was quantitated by an immunolabeling
assay. (B) The levels of Gc glycoprotein, N protein, and b-actin were analyzed by Western blotting, and quantified by densitometry. (C) Data are

siRNA Inhibition of ANDV
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In addition, while treatment with either siS or siM pools

individually inhibited infectious virus production by over 83% or

50%, respectively (Figure 2B), combinations of the 3 siRNA pools

did not significantly enhance the inhibitory effect. We conclude

that in Vero-E6 cells, pretreatment with the siS pool was the most

effective for blocking ANDV protein synthesis and infectious virus

release.

siRNA inhibits ANDV replication and release when
administered post-infection

To explore the potential for using siRNAs to treat already

initiated ANDV infections, we sought to determine how long after

ANDV infection we can transfect each siRNA pool and still reduce

virus replication. Transfecting with siS 2, 6, or 12 h after ANDV

infection resulted in a dramatic decrease of virus protein synthesis,

as demonstrated by N protein reduction by over 70, 60, or 40%,

respectively (Figure 3A). Transfecting siL 2 or 6 h post-infection

modestly decreased N protein expression by 30%, while the

siRNA pool targeting M had no effect on virus protein synthesis

(Figure 3A).

Since siS was again the most effective siRNA pool, we tested its

effect on virus titers. siS transfected 24 h post-infection had the

strongest inhibitory effect, reducing viral production by over 75%

(Figure 3B). The efficiency of siS was lower when transfected 48 h

post-infection, with 21% inhibition (Figure 3B). These results

indicate that siRNA pools targeting the S segment can effectively

presented as % of scrambled siRNA control, and are normalized to b-actin internal controls. (D) N protein was detected by immunofluorescence
staining 48 h post-infection. Green: N protein; blue: DAPI.
doi:10.1371/journal.pone.0099764.g001

Figure 2. siRNA inhibits production of infectious ANDV. (A) Viral
protein levels determined by Western blot analysis. Vero-E6 cells were
transfected with 33 nM of each siRNA pool (S, L, or M) alone or in
combination (S+L, S+M, L+M, or S+L+M) for 6 h. The total concentration
of each transfection was brought up to 100 nM with scrambled siRNA.
Cells treated with only scrambled siRNA were used as control. The cells
were then infected with ANDV at MOI = 0.5. ANDV Gc and N protein
levels were determined by densitometry. (B) ANDV production and
release were determined by immunofocus assays. All experiments were
performed in quadruplicate.
doi:10.1371/journal.pone.0099764.g002

Figure 3. siRNA inhibits ANDV replication and release when
administered post-infection in Vero-E6 cells. Vero-E6 cells were
infected with ANDV at MOI = 0.5. After virus adsorption for 2 h, the
virus inoculum was removed and replaced with fresh media. Cells were
then transfected with 100 nM siRNA 2, 6, 12, or 24 h post-infection.
Time shown in parentheses indicates the total h post-infection. (A) N
protein levels as determined by immunolabeling assays. (B) Infectious
virus release as measured by immunofocus assays. After virus
adsorption for 2 h, virus was removed and fresh media replaced. The
cells were transfected with 100 nM siS for 6, 12, 24, or 48 h post-
infection. Cell supernatants were harvested after 2 days, and infectious
virus production was determined by immunofocus assays. All experi-
ments were performed in triplicate. Data indicated above each bar
represent percentage reduction in comparison to scrambled siRNA
control.
doi:10.1371/journal.pone.0099764.g003

siRNA Inhibition of ANDV
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block ANDV replication and virus release in vitro even if

administered 24 h post infection.

siRNA inhibits ANDV replication in human primary lung
endothelial cells

As lung microvascular endothelial cells are the primary cellular

targets of ANDV infection in vivo, we were interested in testing

whether similar siRNA inhibitory effects could be obtained in

HMVEC-L. As in the initial Vero-E6 cell experiments, we first

examined the effects of treating HMVEC-L with the 3 siRNA

pools prior to ANDV infection. Inhibitory effects were observed,

but the relative efficiency of the siRNA pools differed from the

effects seen in the Vero-E6 continuous cell line. In HMVEC-L,

siM inhibited Gc expression by 80% (Figure 4A), and reduced

infectious virus titers by .85%. In addition, siL reduced both Gc

and N protein levels (40 and 90% reduction, respectively;

Figure 4A), and reduced infectious virus titers by 50%. Surpris-

ingly, while siS reduced Gc and N protein levels (67 and 76%,

respectively; Figure 4A), it failed to inhibit viral release from

HMVEC-L (Figure 4B). This difference is likely related to the

significantly different virus replication dynamics and cellular

localization of virus protein pools in lung endothelial cells versus

in the Vero-E6 continuous cell line, as ANDV-infected HMVEC-

L released .20-fold less virus than infected Vero-E6 cells

(Figure 2B and 4B).

siRNA administered to HMVEC-L post-infection inhibits
ANDV replication and infectious virus release

Finally, we determined the effects of treating HMVEC-L with

siRNA at various times after ANDV infection. We found that siS

transfected 6, 12, and 24 h post-infection reduced virus N protein

levels by more than 50% in comparison to the scrambled control

siRNA treatment (Figure 5A). siM transfected 6, 12, and 24 h

post-infection reduced virus Gc protein levels by more than 80%.

More importantly, siS or siM alone significantly inhibited virus

production in HMVEC-L when transfected 6–24 h post-infection

(Figure 5B).

Discussion

To determine whether siRNA has potential as a therapeutic

agent against ANDV, we tested pools of siRNAs targeting the

ANDV genome. These pools were tested in vitro in both continuous

and primary cell lines. The siS pool targets the virus S segment,

which encodes the virus N protein. Treatment with this siRNA

pool very efficiently reduced virus protein levels, a result consistent

with previous findings in other bunyaviruses [14,24–26]. The N

mRNA can be detected as early as 2 h post ANDV infection, and

is the first viral RNA detected during infection [27,28]. The N

protein has several important roles in viral replication, as it

encapsidates and protects viral RNA [29–31], and participates in

initiating viral transcription and translation by binding cellular 59

mRNA caps [32]. N protein gradient in the host cell cytoplasm

also determines the switch from viral transcription to replication

[33]. Based on all these critical functions of N in the virus life cycle,

it is not surprising that siS knockdown of the S segment readily

decreased virus replication.

Another protein important for virus replication is the L protein.

L mRNA is the least abundant during infection, so we anticipated

that it could be more efficiently suppressed by siRNA, leading to a

significant decrease of ANDV replication. To our surprise, siL had

minimal effects on viral protein synthesis and virus release in Vero-

E6 cells. Similar to siL, siM only modestly reduced protein levels in

Vero-E6 cells. This weak inhibition by siM was not the result of

designing ineffective siRNAs, since siM completely suppressed Gc

protein when Gc was expressed from an ANDV GPC plasmid

(Figure S1). Surprisingly, co-transfection of siS and siM, or siS and

siL, did not suppress viral protein expression and virus production

any more than did siS alone. Overall, the results reported here for

ANDV infection of a continuous cell line (Vero-E6) are similar to

previous findings that siRNAs targeting the L and M segments of

other bunyaviruses are weaker inhibitors than those targeting the S

segment [14,25,34].

Vascular endothelial cells are the main target cells of ANDV

infection in humans [35]. To our surprise, the pattern of viral

replication inhibition observed using the 3 siRNAs pools in

primary human lung cells was different from that observed in

Vero-E6 cells. While siM minimally affected ANDV growth in

Vero-E6 cells, it very efficiently inhibited virus protein expression

(80%), and, more importantly, infectious virus release (86%) in

HMVEC-L. This reduction of virus replication was not due to the

induction of IFN-b by the siM (data not shown). The differing

abilities of the siRNAs to inhibit ANDV replication in Vero-E6

cells compared with HMVEC-L are likely related to differences in

virus replication dynamics and protein pools in these different

Figure 4. siRNA inhibits ANDV replication in human primary
lung endothelial cells (HMVEC-L). HMVEC-L were transfected with
siRNAs for 6 h, and then infected with ANDV at MOI = 0.5. After 2 h of
virus adsorption, the virus inoculum was removed and replaced with
fresh media. (A) Viral protein levels as determined by Western blotting.
Percent downregulation (%Q) of N or Gc protein represents percent
decrease compared to non-targeting siRNA control. (B) Viral production
as measured by immunofocus assays 48 h post-infection.
doi:10.1371/journal.pone.0099764.g004

siRNA Inhibition of ANDV
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cells. Unlike in Vero-E6 cells, ANDV titers in endothelial cells are

relatively low despite considerable accumulation of intracellular

viral proteins [36]. In addition, unlike in Vero-E6 cells, viral

glycoproteins are detected mainly in the lysosome rather than at

the cell surface in endothelial cells [36,37]. It is plausible that in

endothelial cells, viral glycoproteins are a limiting factor for virus

production, and reducing the glycoprotein levels with siM has

greater impact on virus replication and release. Such significantly

different siRNA inhibitory profiles between a continuous cell line

that supports ANDV growth and primary lung endothelial cells (a

target relevant to natural human infections) stress the importance

of testing siRNAs in a variety of infection settings.

While the delivery of siRNA is still a challenge to their actual

clinical use, the ability of siRNAs to efficiently block ANDV

replication up to 24 h post-infection is very encouraging. Although

suggesting the use of siRNA as a treatment for HPS based on the in

vitro results presented here is quite premature, our study can be

considered as proof of principle that siRNAs directed against

ANDV genome can effectively lower virus replication and

infectious virus release. As ANDV viremia levels correlate with

HPS severity, and ANDV RNA peaks at the time of pulmonary

edema, siRNA suppression has potential as a therapeutic HPS

treatment [7–9].

Supporting Information

Figure S1 Silencing efficiency of siM. Vero-E6 cells were

mock-transfected or transfected using TransIT-LT1 with 2 mg of

pCAGGS-GPC (pM) for 24 h, and then transfected with 100 nM

of non-targeting control, siM, or mock-transfected for 2 days. Cells

were subsequently lysed, and Gc and b-actin levels determined by

Western blotting.

(TIF)

Table S1 siRNAs targeting Andes virus (ANDV) genome.
siRNAs were designed based on NCBI reference sequences

NC_003466.1, NC_003467.2, and NC_003468.2 for ANDV S,

M, and L segments, respectively.

(DOCX)

Figure 5. siRNA administered to HMVEC-L post-infection inhibits ANDV replication and infectious virus release. Cells were infected
with ANDV at MOI = 0.5. After virus adsorption for 2 h, the virus inoculum was removed and replaced with fresh media. The cells were then
transfected 6, 12, or 24 h post-infection with 100 nM of siS, siL, or siM using DharmaFECT 1. Time shown in parentheses indicates total h post-
infection. (A) Viral protein levels as determined by Western blotting. (B) Viral release as determined by immunofocus assays. All experiments were
performed in triplicate. Data shown above each bar indicates percent decrease in comparison to the scrambled siRNA control.
doi:10.1371/journal.pone.0099764.g005
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