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In inflammatory bowel disease (IBD), intestinal mucosa cell and intestinal epithelial cell are
severely damaged, and then their susceptibility to bacteria increases, so many
commensal bacteria become pathogenic. The pathogenic commensal bacteria can
stimulate a series of compensatory immune responses in the intestine. However, the
immune response prevents the intestinal tract from restoring homeostasis, which in turn
produces an indispensable inflammatory response. On the contrary, in IBD, the fierce
inflammatory response contributes to the development of IBD. However, the effect of
commensal bacteria on inflammation in IBD has not been clearly studied. Therefore, we
further summarize the changes brought about by the changes of commensal bacteria to
the inflammation of the intestines and their mutual influence. This article reviews the
protective mechanism of commensal bacteria in healthy people and the mechanism of
commensal bacteria and immune response to the destruction of the intestinal barrier
when IBD occurs. The treatment and prevention of IBD are also briefly summarized.
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INTRODUCTION

Inflammatory bowel disease (IBD) is chronic and recurrent and it mainly affects the ileum, rectum,
and colon. It includes ulcerative colitis (UC) and Crohn’s disease (CD). The global burden of IBD
remains a persistent health problem. The prevalence of IBD in Europe, North America, and other
Western countries exceeds 0.3% and is increasing in many newly industrialized countries (1, 2).

The affected bowel in UC and CD are quite different. UC is limited to the colon, it mainly invades
the lamina propria and crypts (3, 4). CD can cause transmural enteritis, it can affect any part of the
stomach and intestine, especially the terminal ileum and colon (5). The damage caused by IBD can
be attributed to the destruction of the intestinal barrier (3, 6). The etiology of IBD is not yet fully
understood, and it has been proven to be related to complex factors such as genetics, environment,
intestinal microbes, and immunity. Among them, intestinal commensal bacteria play a pivotal role,
including bacteria and fungi (3, 7).

Intestinal commensal bacteria do not play an independent role in host health. Under normal
circumstances, commensal bacteria and the intestinal immunity of the host are in a balanced state,
and they resist the invasion of pathogenic microorganisms and maintain homeostasis together (8).
The human intestinal barrier is the first line of defense for the invasion of pathogenic
microorganisms (9). It is associated with many diseases, such as IBD, acute pancreatitis, colon
org November 2021 | Volume 12 | Article 7619811

https://www.frontiersin.org/articles/10.3389/fimmu.2021.761981/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.761981/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.761981/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.761981/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:yanghuan2015@tmu.edu.cn
mailto:ahlxxiao@yeah.net
https://doi.org/10.3389/fimmu.2021.761981
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.761981
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.761981&domain=pdf&date_stamp=2021-11-11


Chen et al. Interaction in Inflammatory Bowel Disease
cancer (10–12). The direct communication between the
intestinal symbiotic flora and intestinal immunity controls the
development of the disease. Once the balance is broken, enteritis
will be induced in the form of positive feedback (13).

The commensal bacteria in IBD always have non-negligible
changes, including their quantity or products, and the coordination
of the immune response with the intestinal tract exposes the
intestinal barrier to danger (14). It causes the activation of
immune cells and an overload of cytokines, and the activation of
a series of receptors and proteins ultimately promotes the
occurrence and development of IBD (15). In addition, oral
commensal bacteria also contribute to the development of IBD.
Theywill be highly colonized in the unhealthy and fragile intestines
after swallowing. This has been verified. The pathogenic bacteria in
these conditionswill further threaten the intestinal tract (16).Many
risk factors for IBD, such as diet, smoking, and antibiotics (3), can
change the state of normal intestinal commensal bacteria and
immunity and increase the risk of IBD.

In this review, we focus on discussing the lesions of the colonic
mucosa of IBD, which are both present in CD and UC (17). We
describe the barrier protection of commensal bacteria and intestinal
immunity in a healthy state and focus on the changes in commensal
bacteria in IBD and the damage of commensal bacteria-dependent
immune responses to the intestinal barrier. Each of these
mechanisms is closely linked, with feedback mechanisms to
promote the final outcome, IBD. We then discuss the treatments
and prevention that rely on this series of mechanisms.
COMMENSAL BACTERIA MAINTAIN THE
HOMEOSTASIS OF THE INTESTINAL
MUCOSAL BARRIER

The intestinal barrier is mainly composed of mucus and
epithelial cells. Commensal bacteria and the immune system in
the intestine work together to regulate the homeostasis of the
intestinal barrier. The gastrointestinal tract provides 150-200 m2

of surface area for microorganisms (18), and about 1013 bacteria
are colonized, which is comparable to the number of human cells
(19). Because of pH and other factors, a small number of
microorganisms are colonized above the upper end of the
small intestine. The most abundant commensal bacteria are
found in the colon, accounting for about 70% of all bacteria in
the human body. Most are Bacteroidetes , Firmicutes,
Actinobacteria, Proteobacteria, and Verrucomicrobia (20, 21).
There are large differences in individual flora, which are closely
related to dietary and living habits (22).

Mucosal Barrier Isolates Commensal
Bacteria and Epithelial Tissue
The intestinal barrier is in constant dynamic renewal (Figure 1).
Stem cells continue to divide and proliferate, replenishing the
epithelial cells shedding into the intestinal lumen and becoming
epithelial cells (23).The secretory activity ofgoblet cells (secretionof
mucin, especially MUC2) gives intestinal epithelial cells an extra
protective gel mucus layer (24). Commensal bacteria can pass
Frontiers in Immunology | www.frontiersin.org 2
through the mucus in the small intestine (25). When a small
amount of commensal bacteria pass through the mucus, they are
presented to T cells andB cells by dendritic cells in the intestine and
induce B cells to produce IgA, which targets intestinal bacteria. At
this time, the macrophages in the lamina propria are activated, and
the macrophages exert their phagocytosis and secretion functions.
With the production of antibacterial substances such as defensins,
the commensal bacteria that are about to touch the epithelial cells
can be completely eliminated (26, 27). The defensins secreted by the
Paneth cells in the small intestine enhance this effect (28). The
mucus in the colon can directly prevent the contact of commensal
bacteria, and the outer mucus layer provides a living environment
for the commensal bacteria (24, 25), and IgA also exists in a large
amount in the outer mucus layer. The IgA of glycosylation,
however, no longer resists commensal bacteria. The IgA-MAFF
(Mucus-Associated Functional Factor) system can promote the
growth of Bacteroidetes, induce the proliferation of Clostridium,
promote the renewal of epithelial cells, and deal with the damage in
time, stabilizing the intestinal barrier (29).

Short-Chain Fatty Acids Are Positive for
Stabilizing the Intestines
Short-chain fatty acids (SCFAs) play a pivotal role in
maintaining intestinal homeostasis, especially butyrate, the
main source of energy for colon cells (30). SCFAs are
produced when the commensal bacteria metabolize dietary
fiber. Bacteroidetes and Firmicutes are the most abundant
bacteria in the intestine. The Bacteroidetes mainly produce
acetic acid and propionic acid, while Firmicutes mainly
produce butyrate in the human intestine (31, 32). Butyrate
can maintain the proliferation of small intestinal epithelial
cells (33). As butyrate is produced by anaerobic bacteria,
butyrate stabilizes hypoxia inducible factor (HIF, which is
able to coordinate barrier protection) during the process of
being absorbed and metabolized in an hypoxic environment
(34, 35) and can induce innate lymphocyte (ILCs) to produce
antimicrobial peptides (AMPs) to regulate commensal bacteria
(36). The b-oxidation of butyrate can maintain the low-oxygen
environment in the intestine so that butyrate in a healthy
intestine can be continuously produced (37). SCFAs activate
and release IL-18 through inflammasomes to maintain the
integrity of the intestinal epithelium (38). In addition, SCFAs
also have anti-inflammatory effects (39). They can increase the
IgA in the intestine, maintain the development of B cells, and
play an important role in promoting the differentiation and
expansion of Treg cells (38, 40).

Therefore, commensal bacteria help the intestines resist
pathogens at any time, and its function depends on a good
ratio of commensal bacteria.

The Main Immune Factors in a Healthy
Intestine That Inhibit Inflammation
In a healthy gut, immunity is the main factor that maintains
homeostasis. The proliferation and differentiation of T cells are
inhibited, but Treg cells are active. IL-10 may be produced by
most immune cells, especially Treg cells. IL-10 directly inhibit the
production of IL-12 and IL-23, which is equivalent to limiting the
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differentiation of Th1 cells and the response of pathogenic Th17
cells (41). IL-10 deficiencymainly induceTh17 cells, and thenTh17
could promote colitis (42). The activation of the aryl hydrocarbon
receptor (AHR) is another mechanism of intestinal homeostasis.
Once activated, AHR releases IL-22, induces IL-10R expression,
and strengthens the tight junctions of the intestinal epithelium to
maintain the integrity of the intestine (43). AHR is highly expressed
in ILC2 and can inhibit the expression of IL-33 receptor ST2 [this
receptor is highly expressed in IBD (44)] and the production of
some pro-inflammatory factors, such as IL-13 (45). Overall, the
homeostasis of the intestine needs to be maintained by inhibiting
inflammatory factors to prevent excessive inflammation.When the
intestinal commensal bacteria change, the “balance” of immunity
will be broken and tilted toward proinflammatory effects, and the
body will be in a state of inflammatory stress.
INTERACTION BETWEEN COMMENSAL
BACTERIA AND THE INTESTINAL
BARRIER IN IBD

Commensal Bacteria Degrade
More Mucus
During IBD, the microbial genes detected in feces were reduced by
about 25%, and the abundance and diversity of commensal bacteria
Frontiers in Immunology | www.frontiersin.org 3
decreased overall (46, 47). Patients with IBD have more harmful
bacteria and fewer beneficial bacteria. In fact, under the protection
of the mucus barrier, the intestinal tract can maintain a steady state
even though the bacteria in the intestinal tract undergo minor
changes (48). However, the total abundance of mucus-degrading
bacteria in IBD patients is increased significantly (49). The mucus-
degrading bacteria in healthy humans degrade the skeletal structure
of mucus-mucin (MUC2) to release the product for use by other
bacteria (50), but the sharp increase in mucus-degrading bacteria,
such as Ruminococcus gnavus (R. gnavus) and Ruminococcus
torques (R. torque), will dissolve more mucus and increase the
exposure of epithelial cells (49). In addition, IBD is usually
accompanied by truncated O-glycans in intestinal epithelial cells,
which may be related to glycosidase produced by microorganisms
and oxidative stress caused by inflammation (51). The truncated
intestinal sugar chain makes the mucosa thinner, and the SCFAs are
reduced in IBD and cannot regulate mucin glycosylation normally
(52). This makes mucin lose its stability. The decreased Bacteroides
and Faecalibacterium prausnitzii also failed to promote the
differentiation of goblet cells, and they could not regulate the
glycosylation of the mucosa (Figure 2) (53–55).

The Structure of Commensal Bacteria
Is Changed in IBD
With the increase of R. gnavus and R. torque, more mucosa is
broken down, and the inflammation of IBD makes the intestinal
FIGURE 1 | The stable intestinal barrier of a healthy small intestine and colon. The homeostasis of the intestinal tract of a healthy body depends on the regulation of
many factors, including commensal bacteria, short-chain fatty acids, and the immune system. In health, commensal bacteria are diverse. The antibacterial substances
produced in the small intestine are sufficient to resist pathogenic bacteria, making it difficult to cross the intestinal epithelial cells. There is also an internal mucus layer in
the colon that cannot be crossed by these bacteria. The production of short-chain fatty acids keeps the colon in a hypoxic state and maintains tight epithelial junctions,
increasing anti-inflammatory effects. At this time, the immune system has a large anti-inflammatory effect, which is enough to prevent the inflammatory load caused by
the invasion of pathogenic bacteria.
November 2021 | Volume 12 | Article 761981
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mucosa become thinner. The change in oxygen gradient is
conducive to the survival of intestinal facultative aerobes and
reduces the proportion of anaerobic bacteria. This should be the
main reason for the changes in the structure of intestinal
commensal bacteria (Figure 2) (56, 57). Therefore, the thin
intestinal mucus cannot stop the invasion of the increased
pathogenic bacteria. Proteobacteria , Escherichia coli ,
Fusobacteria, Klebsiella pneumoniae, Clostridium difficile and
other pathogenic commensal bacteria in the intestine of
patients with IBD are increased significantly (58–61). This is
an extremely serious phenomenon for intestinal homeostasis.
Among them, Klebsiella pneumoniae is most likely swallowed
through the mouth to the intestines and colonized, which may be
before or after IBD. In fact, oral commensal bacteria take
advantage of IBD to take advantage of it. At this time, the
colonization resistance of the intestinal tract of a healthy body no
longer exists. Ectopic colonization of conditional pathogens,
including Porphyromonas gingivalis, Streptococcus mutans,
Fusobacterium nucleatum, Campylobacter concisus, and
Frontiers in Immunology | www.frontiersin.org 4
Klebsiella pneumoniae, will aggravate the development of IBD
(15, 62).

Proteus has a low abundance in healthy intestines and are the
first reported pathogenic bacteria in gastrointestinal diseases.
Because of its adhesion and ability to produce urease, hemolysin,
and virulence factors, its pathogenicity is significantly manifested
in IBD with the increase in number (63, 64). Adherent invasive
Escherichia coli (AIEC) is a well-known pathogen. AIEC
penetrates the mucus layer and resists antibacterial proteins,
adheres to intestinal epithelial cells to release enterotoxins, and
can block the autophagy process of lysosomes (autophagy plays
an important role in maintaining the body’s immune
homeostasis) (65, 66). For patients with IBD who lack PTPN2
(an autoimmune susceptibility gene) or mutations in PTPN2,
this is more like a help. Macrophages won’t against AIEC (67). At
the same time as the increase in pathogenic bacteria, the
proportion of beneficial commensal bacteria such as
Firmicutes, Clostridiales, Bacteroides, Ruminococcaceae,
Lactobacillus, Bifidobacteria, Faecalibacterium prausnitzii and
FIGURE 2 | The structural changes of commensal bacteria during IBD lead to the destruction of the intestinal barrier. When the structure of the commensal bacteria
changes, the mucus in the colon becomes thinner, mainly due to the increase in the proportion of some major mucus-degrading bacteria. The O-glycans on the
intestinal epithelial cells would normally stabilize the mucus, but they are reduced in IBD. At this time, goblet cells cannot differentiate normally, so the mucus
becomes thinner, and pathogenic bacteria enter the inner mucus layer and contact the epithelium. As the proportion of pathogenic bacteria greatly increases, the
pathogenic factors produced directly attack the intestinal cells. With the reduction of short-chain fatty acid-producing bacteria, the tight junctions of the intestine
cannot be maintained. The red arrow highlights the reduction.
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other butyrate- producing bacteria in the intestine is significantly
reduced, which is also an important factor in the development of
IBD (53, 54, 68). O-GlcNAcase (OGA) that is enriched in
Bacteroides and Firmicutes can hydrolyze O-GlcNAcylated
protein in epithelial cells and immune cells, which can inhibit
the development of colitis. However, because of the reduction of
bacteria, the level of OGA in IBD decreases, which is also an
important mechanism for the continuous development of IBD
(69). Indeed, the diversity of intestinal commensal bacteria
decreases, especially anaerobic bacteria. In this case, there is no
surprise that SCFAs, well-known nutritional and anti-
inflammatory substances in the intestine, are drastically
reduced, especially butyrate (37, 40). The actin-binding protein
synaptopodin (SYNPO) is an important protein that maintains
the tight junctions of the intestinal epithelium and is
interdependent with butyrate. Therefore, SYNPO in IBD is
naturally lost with the decrease of butyrate, which directly
affects the connections intestinal epithelium (70).

In recent years, scientists have discovered that fungi also
coordinates commensal bacteria, and there is an intricate
relationship between them. Although the bacterial changes of
UC and CD are similar, fungi are very different. This is mainly
related to the ileum due to the unique function of the ileum, it
can produce antimicrobial peptides and absorb bile acids. The
ileum CD is conducive to the growth of fungi, while the diversity
of UC and CD fungi that do not involve the ileum is reduced.
This is also inseparable from some commensal bacteria in the
intestine. The abundance of bifidobacteria and brucella in IBD is
positively correlated with yeast, but these bacteria are reduced in
IBD. In fact, bacteria and fungi are two mechanisms in CD, but
they are closely related in UC (71, 72). The common mechanism
in IBD is that the ratio of Basidiomycetes/Ascomycetes increases,
the ratio of Candida albicans increases, and the ratio of
Saccharomyces cerevisiae decreases, which reduces AIEC-
induced colitis (72, 73).
INTERACTION BETWEEN COMMENSAL
BACTERIA AND IMMUNE RESPONSE
IN IBD

Innate Immune Response
Dendritic cells form an extensive network under the intestinal
epithelium. After a large number of Proteobacteria pass through
the mucosal barrier, pathogen-associated molecular patterns
(PAMP), lipopolysaccharide and flagellin on the surface of the
proteobacteria, are recognized by the toll-like receptors on the
surface of dendritic cells (74, 75). The immature dendritic cells
produce IL-23, which causes local intestinal inflammation (76).
At the same time, macrophages have a phagocytic effect. In
addition, the production of cytokines such as IL-1b, IL-6, IL-18,
and TNF by dendritic cells and macrophages further aggravates
inflammation (77). In addition, IL-10, which inhibits
inflammation, is produced by intestinal dendritic cells.
Bifidobacteria can increase its release, but this is inhibited in
IBD by the decrease of these bacteria. Its related Saccharomyces
Frontiers in Immunology | www.frontiersin.org 5
cerevisiae also promotes this effect (72, 78). The inflammatory
overload caused by macrophages plays a pivotal role in the
immune response in IBD, and treatment for it may be able to
effectively alleviate the inflammation of IBD (79).

Natural killer (NK) cells are activated by cytokines, bind to
infected epithelial cells, release toxic particles, and induce
apoptosis. IL-1b further promotes the production of IFN-g, IL-
17, and other cytokines by ILCs, and promotes the development
of inflammation (80). gd T cells are another way to produce IL-17
(81), but it can be inhibited by propionate, a metabolite of
symbiotic bacteria. However, because of the lack of SCFA-
producing bacteria, this effect is also inhibited, which is also
one of the reasons for the rampant inflammatory factors. IL-13
can be produced by ILC2 dependent on commensal bacteria (82).
A large number of cytokines produced by antigen-presenting
cells (APC) not only bring about an overload of inflammation
but a l so prov ide condi t ions for spec ific immune
responses (Figure 3).

Adaptive Immune Response
Dendritic cells activate T cells after ingesting antigens, and Th0
cells differentiate into Th1 cells, Th2 cells, and Th17 cells. Th1
cells induce cytotoxic T cells to activate, proliferate, and attack
the infected intestinal epithelial cells. Th2 cells activate B cells,
proliferate and differentiate into plasma cells, and secrete
antibodies to neutralize pathogens. Th17 cells mainly secrete
IL-17A to mediate inflammation (83). Moreover, Th1 cells are
induced to produce a large amount of IFN-g by IL-12 and IL-18,
which mainly induces CD (84). Th2 cells release IL-4, IL-5, and
IL-13 (85), which mainly play a role in UC. Th2 cells can also
activate B cells as well and secrete antibodies (mainly IgG) to
attack infected epithelial cells, but this response seems to be
secondary (84, 86). SCFAs can induce the production of anti-
inflammatory Treg cells and the c-MAF transcription factor
produced by Treg cells that can maintain the function of Tregs
and inhibit the activation of Th17 cells (87). However, because of
the reduction of anaerobic bacteria and the lack of anaerobic
environment, SCFAs are greatly reduced. Not only that, the
colonization of segmented filamentous bacteria in IBD can
trigger the secretion of serum amyloid A proteins (SAA1 and
SAA2). The increase of these two has been confirmed in IBD,
which also promotes the differentiation of pathogenic Th17 cells
(88, 89). Conversely, RORgt+Treg in IBD was reduced, which is
all due to changes in commensal bacteria (90). For example,
Bacteroides fragilis is reduced in IBD. It normally acts on
immune cells through outer membrane vesicles and relies on
the IBD-related gene ATG16L1. Because of the lack of this gene
and these bacteria, the Treg cell response is defective, which also
leads to the inhibition of IL-10 release (91–93). Therefore, once
inflammation develops, the axis of Th17 and Treg is destined to
tilt, biasing the role of Th17 (94). When oral inflammation such
as periodontitis occurs, the pathogenic commensal bacteria
expand and at the same time produce Th17 cells and migrate
to the intestine (95), which will only aggravate the development
of IBD and cause the inflammation of the intestines to persist.
Recently, studies have found that tissue-resident memory T cells
(TRM cells) play an important role in promoting the
November 2021 | Volume 12 | Article 761981
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development of inflammation in IBD (96). Although the
mechanism is not yet clear, it is still very likely to become an
effective therapeutic target in the future. In general, as the
immune system of the lamina propria is successively activated,
the body can no longer regulate inflammatory effect brought by a
large number of inflammatory cells and inflammatory factors,
which is accompanied by irreversible destruction of the intestinal
barrier (97).

Cytokines Destroy Tight Junctions
A large number of proinflammatory factors produced at this time
not only increase the burden of inflammation but also seriously
affect the tight junctions of cells. IL-1b can recruit granulocytes
to infiltrate the infection foci and directly destroy the connection
and tightness of intestinal epithelial cells (98). IL-13 can activate
STAT6 in epithelial cells and affect the tight junctions of the
intestinal epithelium (82). In addition, TNF-a and IL-1b induce
endoplasmic reticulum stress, affect Caco-2 cells (intestinal
epithelial cells), and significantly change key proteins from the
Frontiers in Immunology | www.frontiersin.org 6
apical and basolateral membranes, such as E-cadherin. This
further destroys the tight junctions of the intestinal epithelium
(99). TNF will promote the expression of myosin light chain
kinase (MLCK) in the intestinal epithelium, which is also one of
the mechanisms by which the permeability of intestinal epithelial
tight junctions increases (100). The NLRP1 inflammasome in the
intestinal inflammation area of IBD patients increases sharply,
which is a known negative factor for butyrate-producing
commensal bacteria, and the promoted IFN-g will promote
IBD (101). IFN-g and IL-13 can induce apoptosis of intestinal
epithelial cells and further increase intestinal permeability (102,
103). In addition, after AIEC colonization, AIEC can also induce
the expression of IL-33 receptor ST2 in intestinal epithelial cells,
thereby enhancing the IL-33 signaling pathway, up-regulating
TGF-b, promoting the expression of collagen in fibroblasts, and
promoting the development of intestinal fibrosis (44). Once the
immune system is activated, the cytokines produced will further
attack the tight junctions of intestinal epithelial cells, severely
exceeding the self-healing ability of the intestinal barrier.
FIGURE 3 | After the intestinal mucosa are degraded, pathogenic commensal bacteria trigger intestinal overload immunity. When the mucosa become thinner, a sharp
increase in pathogenic commensal bacteria activates dendritic cells. Because of the destruction of the tight junctions of the intestine, pathogenic commensal bacteria
cross the epithelial layer and reach the lamina propria, activating macrophages and NK cells and releasing a large number of cytokines. APC binds antigens to T cells and
B cells and differentiates and matures in an environment rich in cytokines. Eventually, a large number of activated immune cells and a large number of proinflammatory
factors are dominant, exceeding the body’s ability to inhibit inflammatory effects, epithelial cells are severely attacked, and tight junctions are further destroyed.
November 2021 | Volume 12 | Article 761981
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TREATMENT AND PREVENTION

In order to improve the balance of commensal bacteria, fecal
microbiota transplantation has great potential (104). It seems
that the direct replacement of the microbial system in the
patient’s body can directly treat IBD, using the healthy
microbiota to reestablish a more perfect intestinal barrier.
However, because the underlying mechanism of IBD-related
core microbiota and pathogenesis is not fully clear, this
method still needs further research. Most importantly, this
method is not completely safe. Two IBD patients had
persistent diarrhea after Fecal microbiota transplantation
(FMT) treatment, and enterotoxigenic C. perfringens type A
was detected in the stool (105). At the end of 2018, a patient
was infected with extended-spectrum beta-lactamase-producing
Escherichia coli after FMT treatment and eventually died (106).
In addition, probiotics can also be used as therapeutic agents to
treat IBD, but it seems that its efficacy on CD still needs to be
explored (107). Scientists are trying to use the metabolites of
commensal bacteria as therapeutic targets, such as the use of
commensal bacteria that specifically produce butyrate, which has
very great therapeutic potential (108). Researchers are also trying
to block the overloaded immune response in IBD. Many new
drugs reduce the inflammatory response by preventing immune
cell migration and communication, such as anti-integrins, anti-
MAdCAM-1, and anticytokines. Antibody blocking of the IL-6
signal shows considerable therapeutic effect in the treatment of
Frontiers in Immunology | www.frontiersin.org 7
CD patients (109, 110). ILCs that release a variety of
proinflammatory cytokines may also be a new therapeutic
target (111). Recently, studies have found that the calcium
channel TRPV1 is s ignificantly upregulated in the
inflammatory colon of IBD, which may also be a therapeutic
target for IBD (112). In addition, proteins that affect intestinal
epithelial connections could become therapeutic targets,
including NLRP3 inflammasome, STAT6, and MLCK (82, 100,
113). Methods that directly target the mucosa are also being
explored, such as stem cell transplantation (114). A high-fiber
diet is extremely beneficial for glycosylation of the intestinal
mucosa. Strengthening the intestinal barrier seems to be more
promising than simply inhibiting the development of
inflammation (55). More scientists are also paying attention to
dietary therapy and improving the composition of commensal
bacteria in the intestine through food intake, which could
become an effective treatment plan in the future (Figure 4) (115).

The main risk factors for IBD are diet, smoking, and antibiotics
(Figure 4). Diet is a key factor in the development of IBD. High-
calorie food rich in saturated fats, carbohydrates, and animal protein
has a negative impact on the composition of intestinal
microorganisms (116). A decrease in fiber intake leads to a
decrease in the number of commensal bacteria that ferment
dietary fiber, and SCFAs are derived from the decomposition of
dietary fiber and resistant starch. Diet’s positive effect on anti-
inflammatories is well known (117). Regional differences in diet
highlight its effect in IBD. The incidence of IBD in many western
FIGURE 4 | Prevention and treatment of IBD. Diet, smoking, and antibiotics are all predisposing factors for IBD. The first thing they destroy is the normal structure of
commensal bacteria. With the research on the mechanism of IBD, there are some therapeutic targets of IBD, including the regulation of diet, the replacement of flora
(including FMT and probiotics), and the suppression of immunity (including antagonistic cytokines, antagonistic cytokine receptors and other measures).
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countries with low-fiber diets is significantly higher than incidence
in the eastern countries with high-fiber diets (118, 119). In addition,
a high-salt diet will reduce the proportion of Enterobacteriaceae and
affect the intestinal ecological balance (120). Smoking and
antibiotics are both inducers and promoters of IBD. Studies have
shown that they all start by affecting commensal bacteria and
disrupting the balance of the intestinal barrier (121–123).
Smoking has made a great contribution to increasing Clostridium,
reducing Firmicutes, segmented filamentous bacteria. Smoking has a
significant effect on mucin and inflammation genes (124). Besides,
antibiotics are susceptible to AIEC in host (125). Overall, the best
way to prevent IBD is to form good habits. Quitting smoking and
adopting high-fiber diets need to be promoted. A healthy diet may
be the best prevention. The correct use of antibiotics also requires
our focus. In addition, oral health also requires our attention. Avoid
causing or advancing the development of IBD due to tooth decay or
periodontitis (62).
SUMMARY AND OUTLOOK

Intestinal mucus separates commensal bacteria from intestinal
epithelial cells, which keeps intestinal epithelial cells tightly
aligned. The commensal bacteria degrade food in the intestine
to supply energy to cells, and the degradation products SCFAs play
a major role in immune regulation and reducing inflammation in
the intestine. However, when some risk factors destroy the balance
of the intestinal tract, the polymorphism and abundance of
commensal bacteria reduce, the mucus cannot maintain the
normal thickness, and the permeability increases, which allows
invasive bacteria to contact intestinal epithelial cells, and induce a
series of immune reactions. A large number of immune cells are
Frontiers in Immunology | www.frontiersin.org 8
activated, and the production of immune factors exceeds the limit
that the body can maintain. The most prominent effect of IBD is
the decrease of beneficial bacteria and the increase of pathogenic
bacteria. Understanding the effect of commensal bacteria in the
healthy gut and IBD and the dysregulated immune response can
lead to developing new therapeutic strategies. In addition, we
should pay attention to the risk factors of IBD, promote healthy
diet and lifestyle, and establish healthy and strong intestinal
barriers and commensal bacteria systems. In the future,
scientists should pay more attention to the mutual regulation
between commensal bacteria and immune system and explore
more effective treatment options. Additional mechanisms of
commensal bacteria and the immune system need to be studied.
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