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Ti6Al4V alloys are the primary materials used for clinical bone regeneration and restoration; however, they are substantially
susceptible to biomaterial-related infections. /erefore, in the present work, we applied a controllable and stable oxidative
nanopatterning strategy by applying H3PO4, a weaker dissociating acid, as a substitute for H2SO4 in the classical piranha reaction.
/e results suggest that our method acted as a concomitant platform to develop reproducible diameter-controlled TiO2 nanopores
(NPs). Interestingly, our procedure illustrated stable temperature reactions without exothermic responses since the addition of
mixture preparation to the nanopatterning reactions./e reactions were carried out for 30min (NP14), 1 h (NP7), and 2 h (NP36),
suggesting the formation of a thin nanopore layer as observed by Raman spectroscopy. Moreover, the antimicrobial activity
revealed that NP7 could disrupt active microbial colonization for 2 h and 6 h./e phenotype configuration strikingly showed that
NP7 does not alter the cell morphology, thus proposing a disruptive adhesion pathway instead of cellular lysis. Furthermore,
preliminary assays suggested an early promoted osteoblasts viability in comparison to the control material. Our work opens a new
path for the rationale design of nanobiomaterials with “intelligent surfaces” capable of decreasing microbial adhesion, increasing
osteoblast viability, and being scalable for industrial transfer.

1. Introduction

Titanium (Ti) and its alloy (Ti6Al4V) are the main bio-
compatible metallic options currently used to promote bone
formation and restoration [1]. However, contamination by
microbial adhesion can negatively compromise Ti effec-
tiveness and clinical success. Promising strategies have been
reported to generate nanopatterned surfaces to control
microbial adhesion. For example, roughness in texture,
deposition of antimicrobial nanocoatings, and nanoscale
tuned surfaces [2, 3]. Of particular interest, the fabrication of
controlled-sized TiO2 NPs has emerged as a current trend
for controlling microbial adhesion and colonization [4].
Interestingly, chemical oxidative nanopatterning has proven
to be a versatile strategy for the development of controlled
NP tuned surfaces [5]. /us far, the H2SO4/H2O2 system

(piranha solution) is the optimal etching/oxidative protocol
for the generation of reproducible NPs and the activation of
metallic surfaces. Nonetheless, the mixture with strong acids
exacerbates an extreme exothermic reaction that acts vio-
lently after organic matter contact (at low concentrations)
and on metallic surfaces [6]. Consequently, it is substantial
to develop a stable and nonexothermic etching solution for
chemical nanopatterning capable of producing NPs on
Ti6Al4V surfaces. /us, by applying H3PO4, a weaker dis-
sociation acid of pKa lower than H2SO4 [7, 8], we could
reduce the exothermic reactivity on Ti6Al4V without dis-
turbing the formation of reproducible NPs.

/erefore, our work aims to synthesize diameter-con-
trolled and reproducible NPs on Ti6Al4V to reduce microbial
adhesion and promote early osteoblast growth using an ox-
idative nanopatterning procedure with H3PO4/H2O2. /is
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strategy is an excellent alternative to the piranha solution
since it is more stable, ecofriendly, and nonexothermic sus-
pension without requiring heating conditions.

2. Materials and Methods

2.1. Synthesis and Characterization of NPs. Ti6Al4V foils
(ASTM F136) with 10.0mm2 and 1mm thickness were
polished with SiC emery paper following 1-µm alumina and
ultrasonically cleaned for 30min in absolute ethanol. /e
NPs were synthesized using a formulation of 85% H3PO4
and 30% H2O2 (Sigma-Aldrich, USA) in a 1 :1 volume ratio
at room temperature (RT) for 30 (NP14), 60 (NP7), and
120min (NP36), to fabricate different diameters. Afterward,
the materials were cleaned in ultrapure water for 15min
under sonication, rinsed with ethyl alcohol, and dried before
each analysis. /e experimental materials were sterilized in a
biosecurity cabinet using UV irradiation (285 nm UVB light
source) for 30min each side. Cleaned and sterilized Ti6Al4V
foils without any chemical treatment were used as controls
for the experimental testing.

2.2. Surface Physicochemical Characterization. /e surface
morphology was analyzed using field-emission scanning
electron microscopy (FE-SEM; Tescan LYRA 3) at a 20 kV
accelerating voltage with a secondary electron detector. /e
NP distribution was generated from 50 NPs randomly
measured from a FE-SEM micrograph. Energy dispersive
X-ray spectroscopy (EDX, Brucker XFlash) coupled to the
FE-SEM was used for the chemical analysis. Raman spec-
troscopy (Raman Station 400F Perkin-Elmer) was applied at
RT using a 785 nm diode laser beam at a power of 15mW.
/e water contact angle (WCA) was quantified using an
automated tensiometer (/eta Attension; Biolin Scientific),
placing a 5 µL droplet of deionized water at RT and 45%
relative humidity.

2.3. Microbial Characterization. We prepared fresh over-
night grown cultures of Staphylococcus aureus (S. aureus,
ATCC 25923), Escherichia coli (E. coli, ATCC 25922), and an
isolated C. albicans strain as previously described [9]. /e
active fungal suspension was adjusted to 2×104CFU/mLwith
Sabouraud dextrose (SD) broth. /en, 50 µL of the working
C. albicans were cultured over the surfaces, which were in-
dividually placed in a 12-well plate (Corning, USA). Similarly,
the S. aureus and E. coli inoculums were tailored to
1× 107CFU/mL using tryptic soy (TS) broth and cultured.
/ematerials were incubated for 2 h and 6 h (defined as initial
and late adhesion, respectively) at 37°C in static conditions,
washed thrice with 1× phosphate-buffered saline (PBS) for
5min and ultrasonicated in 2mL of SD or TS broth [10]. /e
remaining suspensions were serially diluted and cultured in
SD (C. albicans) or TS (bacterial cells) agar for 24 h at 37°C.

2.4. FE-SEMMicrobial Analysis. For FE-SEM analysis, each
material was rinsed thrice with warm PBS, fixed in 3%
glutaraldehyde (Sigma-Aldrich, USA) at 4°C overnight,

rinsed thrice with PBS, and postfixed with 3% glutaralde-
hyde for 2 h at RT./e samples were dehydrated in a graded
series of ethanol for 2 h and placed into a desiccator until the
analysis.

2.5. Cytotoxicity Assessment Using MTT. In order to analyze
the cytotoxicity of the experimental surfaces, we applied the
MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) viability assay [11]. We used MG-63 human oste-
oblast-like cells (ATCC CRL-1427). Prior to cell culture, each
experimental material was placed in an individual well of a 12-
well polystyrene plate (Corning, USA). /e initial cell density
was 1× 104 cells/surface in passage three./ey were harvested
and cultured in complete medium constituted of Dulbecco’s
modified Eagle’s medium (DMEM, /ermo Fisher Scientific,
USA) supplemented with 10% heat-inactivated fetal bovine
serum (/ermo Fisher Scientific, USA) and 100 units/mL of
penicillin-streptomycin (/ermo Fisher Scientific, USA) at
37°C in a humidified 5% CO2 incubator for 24 h. Afterward,
the cells were washed thrice with warm PBS. 2mL of MTT
(Sigma-Aldrich, USA) in DMEM (5mg/mL) was added into
each well and further incubated at 37°C in a humidified 5%
CO2 incubator for 3 h. /e resulting formazan crystals were
dissolved after discarding the medium containing MTT and
transferring the 12-well plate into an orbital shaker at
200 rpm, 37°C with dimethyl sulfoxide (Sigma-Aldrich, USA)
for 20min. /en, the dissolved crystals were deposited into a
96-well polystyrene plate (Sigma-Aldrich, USA), and the
optical density (O.D.) was recorded at 590 nm using a
microplate reader (/ermoskan, /ermo Fisher Scientific,
USA).

2.6. Statistical Analysis. Numerical data of three indepen-
dent studies performed each in triplicate were assessed by
one-way analysis of variance followed by Tukey’s multiple
comparison test using GraphPad Prism 7. A P< 0.05 was
considered statistically significant.

3. Results and Discussion

Figure 1(a) illustrates diameter-controlled NPs on Ti6Al4V
surfaces after the nanopatterning protocol. Moreover, the high-
zoom revealed the formation of homogeneous and ordered
nanostructures for each reaction. Figure 1(b) represents NPs of
≈7nm (1h),≈14nm (30min), and≈36nm (2h), indicating that
time could be the predominant thermodynamic parameter for
NP diameter control at room temperature using the H3PO4
system. /e EDX showed the materials’ elemental values
(Figure 1(c)), highlighting that phosphorous (P) was not in-
corporated as a doping complexing element in any treatment.
However, EDX is a technology that enables chemical profiling of
the X-ray photons generated from the beamed electrons of the
deeper layers of the surface [12]. /e X-ray photoelectron
spectroscopy (XPS) is recommended for clarifying this inter-
esting trend. It is important to note that phosphate coatings
could generate electrostatic interactions that might be favorable
for promoting bacterial adhesion [13]. Furthermore, the low
carbon levels suggest the absence of any organic pollutants
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(Figure 1(c)). /us, the lower carbon level and the nano-
structured distribution detected on the NPs, especially on NP7,
could be attributed to the reduced WCA (Figure 1(d)). /e
reactions achieved Ti4+ by an initial oxidation, followed by the
dissolution of the oxide layer, and the nucleation of a thin oxide
layer. /us, decomposing H2O2 into O2 and H+ generates
nanodefects [14].

2H2O2⟶ 2H2O + O2

Ti + 2H2O2 + 4H+⟶ Ti4+
+ 4H2O

Ti + 4H+⟶ Ti4+
+ 2H2

Ti + O2 + 2H2O⟶ Ti4+
+ 4OH−

.

(1)

/e enlarged atomic vacancies increased the pores,
surface area, and free energy of samples. Furthermore, Ti4+
generates unstable cationic complexes [Ti2O5(OH)2]+,
[Ti2O5(OH)2], and [Ti2O5(OH)4]+ that decompose into
(Ti(OH)4) [15]. In a previous study, Pisarek et al. suggested

that H3PO4/H2O2 at RT after 24 h conducted to form a
nanosponge-like surface morphology [16]. Similarly, the
authors detected the presence of Ti 2p3/2 and O1 s signals
that have been ascribed for the Ti-O bond gap, thus pro-
posing the formation of a consistent thick layer mainly of
TiO2. Interestingly, the Raman analysis (Figure 2) suggests
that a thinner TiO2 layer could be generated after the
nanopatterning process, as there was no bandgap between
800 and 200 nm corresponding to amorphous TiO2 [17, 18].
Although the presence of NPs was detected for all the
experimental materials, the EDX results also supported this
interesting finding, as no oxygen levels were detected. More
surface chemistry analyses are recommended in order to
support those interesting findings. On the other hand, the
study by Pisarek reported that the 24 h treatment phase
resulted in the deposition of phosphate ions [16], and far
more critical is the fact of possible corrosion detriments by
the extensive reaction period. Although this oxidative
strategy was applied in previous studies, the role of
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Figure 1: (a) FE-SEM of the synthesizedmaterials. (b) Diameter distribution of the NPs. (c) EDX of the surfaces. (d)WCA of the specimens.
/e symbols ∗ and ∗∗ show significant differences between the materials.
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treatment time for NPs diameter variations was not ex-
amined. Previously, Variola et al. synthesized NPs on
Ti6Al4V using the piranha solution at RT, interestingly,

under extreme caution [1]. /e authors showed NP di-
ameters comparable to those of NP7 and NP14. However,
the opposite effect was detected in NP36, probably by
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Figure 2: Raman characterization of the experimental materials.
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Figure 3: Antibacterial behavior on the experimental materials. (a) Bacterial viability after 2 h of incubation. (b) S. aureus morphology on
the control and NP7material at early adhesion phase. (c) S. aureus growing viability after 6 h. (d) S. aureus phenotype characterization at the
late adhesion. /e symbol ∗ shows significant cell viable differences between the material groups.
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generating new single nanocavities and pits growing to-
gether increasing the diameter. Moreover, it has been
described that oxidative etching procedures favor the at-
tack of ß-grains over the α-grains, therefore altering the
surface microtexture over time [1, 19]. Nonetheless, those
discrepancies could not be comprehensively harbored in
the nanopatterning onsets. Further it is considered that the
chemical nature of the acids (H3PO4 versus H2SO4) can
influence the kinetics and thermodynamics of the reac-
tions. /is phenomenon could have been due to the ap-
plication of a weaker acid such as H3PO4, which may
demand prolonged etching periods as compared to H2SO4.
Correspondingly, this result is in accordance with the thin
nanostructured coatings generated on Ti6Al4V using
weaker acids/oxidants that also require extreme care
protocols [5]. On the contrary, the H3PO4/H2O2 system
showed hallmarked constant temperature stability begin-
ning from the mixture preparation to each performed
reaction. /erefore, we need to take into consideration that
H3PO4 can also work as a stabilizer to suppress the dis-
proportionation of H2O2 when reacting with trace levels of
metal cations [20] and the resulting decomposition [21].
/e mixture with H3PO4 can suppress the H2O2 reduction
resulting in the promotion of H+. Furthermore, Shiraishi

et al. applying Raman spectroscopy and cyclic voltam-
metry, suggested that H3PO4 suppresses the reduction of
H2O2 by a stronger interaction between H3PO4 and H2O2
compared with water due to the H-bonding interaction to
form an H2O2-H2PO4- bidentate complex [22]./e authors
also advocated that H3PO4 associates with H2O2 via
H-bonding to form a stabilized complex, which may inhibit
the H2O2 reduction and decrease the enthalpy required to
conduct an exothermic reaction, as observed here, thus far
proposing that H3PO4 is safer and more manageable than
H2SO4.

Medical implant contamination is a paramount concern
that negatively compromises the biomaterials’ “gold suc-
cess”: achieving complete clinical healing and restoration
[23], thus highlighting that nanotextured surfaces are an
important and acceptable strategy to reduce microbial ad-
hesion. Our results suggested that smaller NPs (NP7) could
avoid the S. aureus adhesion for each growing phase (Fig-
ure 3). Interestingly, similar outcomes of bacterial coloni-
zation were detected for the NP14, NP36, and control.
Moreover, we can focalize that SEM micrographs illustrated
an analogous spherical phenotype commonly observed for
coccus bacteria (Figure 3, insets). Furthermore, the mi-
crographs suggest that higher biofilm colonization agrees
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Figure 4: Antibacterial behavior of E. coli on the experimental materials. (a) Viability evaluation after 2 h of incubation. (b) E. coli
morphology on the control and NP7 material at early adhesion phase. (c) E. coli growing viability after 6 h. (d) E. coli phenotype
characterization at the late adhesion. /e symbol ∗ shows significant cell viable differences between the material groups.
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with the increased viability detected. A similar behavior was
detected for the E. colimodel evaluated on the experimental
materials (Figure 4). /e E. coli growing ability was reduced
on the NP7 material in comparison with the study surfaces.
Of particular interest is the fact of similar bacterial mor-
phology conducted by the Ti6Al4V alloy and the NP7. /e
high-zoom micrographs (Figure 4, insets) clearly show that
bacilli configuration is present in plenty on the evaluated
surfaces. However, from the low-zoom micrographs, we can
highlight that the NP7 reduced the bacterial adhesion, as
mainly detected at the late adhesion phase. Importantly, the
NP7 supported antifungal behavior (Figure 5), following
comparable results to those of S. aureus and E. coli. In the
early adhesion, we detected that the control caused enlarged
cell alterations, which were further transformed into hyphae
and pseudohyphae morphologies. Meanwhile, NP7 con-
served a downregulated proliferating phenotype. Principally,
we discovered a substantially growing fungal viability for the
larger NPs, further proposing that smaller NPs can present
detrimental fungal outcomes, as previously reported [24].
Notably, these results suggest that the smaller NPs could
disrupt the formation of nanoscale bonds required to
conduct a proper microbial adhesion, in accordance with
previous works [9, 25]. In particular, the significant

hydrophilicity on NP7 may positively influence the reduced
electrostatic interactions for microbial bonding [26] and the
amorphous nature of the TiO2 thin coating [27]. However,
we recommend more physicochemical studies to explain the
current antimicrobial results.

It is well known that the modification of a conventional
surface material to its nanostructured counterpart can alter
the cellular activity [2, 28, 29]; a critical result presented from
this work is the finding that nanoporous surfaces developed
by etching with an H3PO4/H2O2 mixture can improve os-
teoblast activity. In Figure 6, it is presented the osteoblast
viability on the experimental materials after 24 h of culture.
/e results suggested that the NP7 and NP36 nanostructured
surfaces promoted higher cellular proliferation in contrast to
the control alloy and the NP14. It is essential to consider that
MTT assays take advantage of mitochondrial activity,
pointing toward the fact that a higher quantification of
resulting formazan crystals is directly proportional to a
healthy and active osteoblast growing population [30, 31].
/erefore, we can hypothesize that nanoporous distribution
may play a more critical role in promoting early osteoblast
proliferation instead of the NP size. /is information can be
in part supported by the fact that NP7 and NP36 share a more
distributed porous size than NP14. On the other hand, NP7
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Figure 5: Antifungal analysis on the materials specimens. (a) C. albicans viability behavior after 2 h of growth. (b) Fungal morphology
characterization on the control and NP7 surfaces at early adhesion phase. (c) C. albicans viability counts after 6 h of incubation. (d) Fungal
phenotype evaluation at the late adhesion stage. /e symbol ∗ illustrates significant differences among the experimental groups.
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showed higher osteoblast activity and more hydrophilicity,
indicating improved surface energy and enhanced early
cellular growth. /is current trend opens the concept that a
high surface-area-to-volume ratio and improved surface
energy can establish a stimulating microenvironment that can
accelerate the bone-growing functionality, as depicted in
previous studies of different size-controlled nanostructured
coatings [32–35].

4. Conclusions

Our results established an oxidative nanopatterning protocol
using H3PO4/H2O2 as a feasible, safer, and controllable
system for developing homogeneous nanotextured surfaces
on Ti6Al4V. /e H3PO4/H2O2 resulted in a stable mixture
that did not show violent exothermic reactions during the
preparation of the solutions and the alloy surface modifi-
cation. Inherently, our protocol resulted in NPs of 7, 14, and
36 nm outlining the reaction time as the main variable for
diameter control under the studied synthetic conditions.
Importantly, we have demonstrated that smaller NPs can
reduce the early adhesion of S. aureus, E. coli, and more
strikingly, C. albicans. /us, more attractively, NP7 tailored
a long-lasting antimicrobial action for 6 h of incubation,
particularly with the absence of cellular phenotype alter-
ations. On the other hand, the cytotoxicity analysis sug-
gested that the surfaces might not disrupt the initial
osteoblasts’ proliferation, tailoring the nanostructures as a
stable surface for osteoactive conditions. Our work opens a
new path for the rationale design of nanobiomaterials with
“intelligent surfaces” capable of decreasing microbial ad-
hesion and being scalable for industrial transfer.
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