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Mechanical stimuli have profound effects on the cellular architecture and functions.
Over the past two decades, considerable progress has been made in unraveling the
molecular machineries that confer cells the ability to sense and transduce mechanical
input into biochemical signals. This has resulted in the identification of several force-
sensing proteins or mechanically activated ion channels distributed throughout most
cell types, whereby the plasma membrane, cytoskeleton, and the nucleus have
garnered much attention. Although organelles from the endomembrane system make
up significant portion of cell volume and play pivotal roles in the spatiotemporal
distribution of signaling molecules, they have received surprisingly little attention in
mechanobiology. In this mini-review, we summarize results that document participation
of the endomembrane system in sensing and responding to mechanical cues.
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INTRODUCTION

Cells in our body are continuously subjected to mechanical perturbations, to which they respond.
From a physical perspective, one can draw parallels between the cell and a tensegrity structure,
a term that refers to a system relying on pre-stressed (under tension) components balanced
by compressed elements (Ingber et al., 2014). In the cellular context, tensegrity is supported
mainly by the cytoskeleton, with actin filaments being the primary tense structures, balanced
by the compression-bearing microtubules (Ingber et al., 2014). More recently, a tensegral role
for the plasma membrane (PM) was also documented (Diz-Muñoz et al., 2013; Pontes et al.,
2017). Tensegral structures quickly balance external physical forces by reversibly rearranging their
shape. Accordingly, cells subjected to tensile, compressive, or shear stresses show cytoskeletal
rearrangements (Discher et al., 2005) and fluctuations in the PM tension (Le Roux et al., 2019).
Such changes in turn affect several behaviors of the cell, ranging from cell motility and endocytosis
(Keren et al., 2008; Houk et al., 2012; Thottacherry et al., 2018; Baschieri et al., 2020a) to cell fate
determination (McBeath et al., 2004; Przybyla et al., 2016; Belly et al., 2019).

The cellular response to physical forces proceeds in four phases: (i) force sensing, (ii) force
transduction, (iii) intracellular response, and (iv) cellular adaptation and restoration of tensional
homeostasis (Figure 1). The phases of this mechanobiology circuit involve molecules distributed
throughout the cell, which demand a coordinated action of multiple cellular structures. However,
mechanobiology research has focused largely on the cytoskeleton, the PM and the nucleus, but only
scant attention was directed to other cellular structures (Discher et al., 2005; Janota et al., 2020).
The endoplasmic reticulum, the Golgi, the endosomes and the autophagosomes are all directly
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FIGURE 1 | Schematic of a mechanobiology circuit.

linked to the cytoskeleton and could thus directly sense/transduce
forces. Additionally, several mechanosensitive proteins are
distributed along the membranes of these organelles.

Over the course of this review, we will highlight
the current knowledge on the mechanobiology of these
endomembrane compartments.

ENDOPLASMIC RETICULUM

In eukaryotic cells, the endoplasmic reticulum (ER) is one
continuous, complex membrane system characterized by
interconnected tubules and sheets, which extend throughout the
cytosol covering more than 20% of the cell volume (Bolender,
1974; Wiest et al., 1990; Voeltz et al., 2002). Even though the
ER is part of the nuclear envelope, we will not focus here on
the mechanobiology of the nucleus. We address interested
readers to other reviews (Aureille et al., 2017; Maurer and
Lammerding, 2019). The ER plays an instrumental role in
protein synthesis, folding and quality control, lipid synthesis,
and Ca2+ homeostasis. As the first station of the secretory
pathway, it provides budding platforms for COPII coated vesicles
that ensure delivery of proteins and lipids to other organelles
in the cell (McCaughey and Stephens, 2019). The ER is also a
target of signals emanating from extracellular and intracellular
stimuli, and of autoregulatory signals from the organelle itself
(Centonze and Farhan, 2019).

The highly dynamic nature of the ER-network reflects its
adaptability and responsiveness to intracellular and extracellular
changes. It undergoes constant rearrangements from tubule
branching to fusion (Lee and Chen, 1988), to expansion (Wiest
et al., 1990). Its widespread and dynamic morphology allows
the ER to establish physical contacts with almost all the
other cellular organelles (Wu et al., 2018) thereby making
this endomembrane compartment a putative platform for force
transmission inside the cell.

Despite these unique morphological features, only a few
studies have investigated the relationship between mechanical
cues and the ER. Nevertheless, recent evidence suggests that the
ER harbors mechanosensitive and mechanotranducing elements
(Nakayama et al., 2012; Kim et al., 2015; Lee et al., 2020;
Nava et al., 2020).

Mechanosensitive channels are present in the ER in fission
yeast (Nakayama et al., 2012) and in mammalian cells (Lee
et al., 2020). In fission yeast, hypo-osmotic shock-induced cell
swelling activated Msy1 and Msy2, two proteins that localize
to the perinuclear and the cortical ER, respectively. These
proteins played critical roles for cell survival by regulating cell
volume and intracellular Ca2+ levels (Nakayama et al., 2012).
In mammalian cells, the mechanosensitive Pannexin 1 (PANX1)
was previously shown to be localized in both the PM and the ER
(Vanden Abeele et al., 2006). At the PM, PANX1 organizes into
non-junctional hemichannels that are responsive to mechanical
input and permeable to ATP (Bao et al., 2004; Dahl, 2018).
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Recently, Lee et al. (2020) demonstrated that PANX1 at the ER
is also mechanosensory and functionally distinct from the PM
localized PANX1. The ER-localized PANX1 channel responded
to ultrasound stimulations in invasive cancer cells causing the
release of Ca2+ from the ER (Figure 2). This response involved
neither the cytoskeleton nor the PM PANX1 pool, thereby
pointing toward a direct response by the ER pool of PANX1 (Lee
et al., 2020). The Ca2+ channel Piezo1, localized both at the PM
and at the ER (McHugh et al., 2010; Gudipaty et al., 2017), was
also found to respond to cell stretching from both locations (Nava
et al., 2020). Skin epidermis stem cells soften their nucleus in
response to stretching in order to avoid DNA damage (Figure 2).
Intriguingly, such response is dependent on ER-localized Piezo1,
which is activated by an increase in ER membrane tension, hence
releasing Ca2+ (Nava et al., 2020).

Hinting for a broader role of the ER in mechanotransduction,
fragmentation of the ER network impaired meiotic cytoplasmic
streaming, a phenomenon wherein collective movement of
cytoplasm occurs even in the absence of preexisting polarity,
in C. elegans zygotes (Kimura et al., 2017). The study provided
conclusive evidence that the ER is instrumental in propagating
the force within the cytoplasm and dictating the alignment
of the microtubules to drive meiotic cytoplasmic streaming

(Kimura et al., 2017). This raises the intriguing question that
an intact ER is necessary to properly integrate a mechanical
response, which will need to be addressed in the future.

In other cases, de novo organelles derived from the ER may
alter mechanical properties or mechanosensing of cells. For
example, lipid droplets (LDs) are fat storage organelles that
originate from the ER (Walther et al., 2017). LDs are stiffer
than cell cytoplasm, and their expansion during adipogenesis
mechanically distorts the intracellular environment consequently
stiffening the cell (Figure 2; Shoham et al., 2014). Studies have
shown that constant mechanical strain arising from adipocytes
hypertrophy acts as a stimulus for preadipocyte differentiation
(Ben-Or Frank et al., 2015), Rho-kinase activation (Hara et al.,
2011), as well as cell spreading and cytoskeleton rearrangements
(Chin et al., 2020). Stiffness resulting from adipocyte expansion
also puts constant pressure on the extracellular matrix, and
possibly acts as a mechanical cue for extracellular matrix
remodeling. These findings highlight the fact that mechanical
stimuli can equally originate within the cells, triggering the
mechanical circuit (Figure 1) in an inside-out fashion. Whether
other processes happening at the ER, such as (mis-)folded protein
aggregation also acts as inside-out mechanical cue remains a
topic to be explored.

FIGURE 2 | Functions controlled by mechanical properties of the endomembranes. The figure highlights the cellular processes debated in this review that are
affected by mechanical changes occurring at endomembranes.
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GOLGI APPARATUS

Most secretory proteins leaving the ER reach the Golgi
Apparatus, where they undergo post-translational modifications.
The mammalian Golgi Apparatus is a compact, ribbon shaped
organelle usually found in proximity to the nucleus whose
primary functions concern protein modification, and lipids
and proteins trafficking (Rodriguez-Boulan and Müsch, 2005).
Structurally, it consists of flat cisternae piled on each other
organized into cis-, medial-, trans- stack, and ultimately, the
Trans-Golgi-Network (TGN), with each region hosting specific
enzymes to modify the secreted proteins (Potelle et al., 2015).
Cargos traffic between the ER and the Golgi in coatomer (COPI
or COPII) coated vesicles. Once at the TGN, cargos are packed
into AP1 coated vesicles and delivered to their final destination
(for more details see Lee et al., 2004; De Matteis and Luini, 2008;
Glick and Luini, 2011).

Actin and microtubules (MTs) are both instrumental
for vesicle trafficking and for the maintenance of the
Golgi architecture (Egea et al., 2013; Fourriere et al., 2020;
Ravichandran et al., 2020). Hence, the Golgi and its processes
are intimately linked to the cytoskeleton, and are sensitive to
cytoskeletal perturbations, suggesting a potential role of this
organelle in the mechanobiology circuit (Figure 1). A first
indirect evidence for such conjecture was provided 20 years ago,
when a hyperactive mutant of Cdc42 was shown to interact with
COPI and increase ER to Golgi transport, resulting in cellular
growth in the absence of adhesion (Figure 2; Wu et al., 2000).

Several lines of evidence couple adhesion and Golgi
Apparatus. Cell spreading upon adhesion triggers exocytosis of
Golgi-derived vesicles delivering lipids required to expand the
cell area (Gauthier et al., 2011). Cells in suspension display
a fragmented Golgi already few minutes after losing contact
with their substrate, a phenomenon that can be rescued by
restoring Arf1 activity, which normally occurs downstream of
activated integrins (Singh et al., 2018). Integrins are the main
adhesion receptors of cells, and this observation suggests that the
Golgi responds to a mechanotransduced signal downstream of
integrins (Singh et al., 2018). Intriguingly, Golgi fragmentation
in suspended cells was correlated with an increase in glycosylated
proteins at the PM which did not depend on newly synthesized
proteins, but rather on increased trafficking from the Golgi
or increased Golgi-glycosylation activity (Singh et al., 2018).
Hence, signaling originated from cellular adhesion could also
affect the glycosylation function of the Golgi, but experimental
evidence will be needed to confirm this speculation. These results
frame the Golgi amidst the actors of a mechanotransduction
pathway starting with cell adhesion, although it is still not clear
whether the role of the organelle in this process is a passive
or an active one.

Further strengthening the connection between Golgi and
cell adhesion, vesicle fission from the TGN as well as Golgi
architecture were shown to be regulated by RhoA (Zilberman
et al., 2011; Eisler et al., 2018), a small GTPase tightly linked to cell
contractility (Ridley and Hall, 1992; Burridge and Wennerberg,
2004). MT depolymerization by nocodazole causes the release
of GEF-H1, a RhoA activator, and activated RhoA in turn

leads to fission of TGN vesicles (Eisler et al., 2018). While
MTs depolymerization is an artificial situation, a physiological
pathway involving the focal adhesion localized protein KANK,
a MTs capturing protein, was described to trigger GEF-H1
release without the need to depolymerize MTs (Rafiq et al.,
2019). Considering that post-Golgi vesicles traveling on MTs are
secreted at hotspots near cellular adhesions (Figure 2; Fourriere
et al., 2019), it would be of interest to determine whether Golgi
and adhesion structures can influence each other and whether
this putative connection plays any role in mechanosensing
and mechanotransduction.

Intriguingly, evidence suggests that the Golgi is
mechanosensitive. Stiffness of the Golgi decreased upon actin
depolymerization. Conversely, high acto-myosin contractility
increased the organelle’s rigidity (Guet et al., 2014). Furthermore,
direct application of a force to the Golgi reduced the number
of vesicles leaving the TGN, indicating that forces alter physical
properties and functions of the Golgi (Guet et al., 2014). More
recently, the Golgi was found to induce changes in the lipid
metabolism in response to extracellular forces (Romani et al.,
2019). The sterol regulatory element-binding proteins (SREBPs)
are transcription factors responsible for the transcription of genes
involved in lipid synthesis (Shimano and Sato, 2017). SREBPs
are kept inactive at the ER and get activated by proteolytic
cleavage upon translocation to the Golgi. Such translocation is
blocked by the phosphatase Lipin-1 in an Arf1 dependent fashion
and Romani et al. (2019) showed that reducing acto-myosin
contractility inhibits Lipin-1 activity at the Golgi (Figure 2).
Importantly, the stiffness of the Golgi was found to be coupled to
the stiffness of the ECM, implying that a force transmitted to the
Golgi is at the basis of this regulation of lipid metabolism.

ENDO/LYSOSOMAL SYSTEM

The endo/lysosomal system is constituted of pleomorphic
membranous carriers that mediate exchange of material
between the cell and its extracellular environment. Progressive
invagination of the PM lipid bilayer generates an early endocytic
vesicle, which gets released in the cytoplasm (Doherty and
McMahon, 2009; Thottacherry et al., 2019). Virtually all
known endocytic mechanisms have proved to be affected
by physical parameters such as substrate stiffness (Baschieri
et al., 2018), cell stretching (Sinha et al., 2011; Thottacherry
et al., 2018), and compression (Ferguson et al., 2017; Baschieri
et al., 2020a). Since our focus here is on endomembranes, we
address interested readers to other reviews for a thorough
discussion on the mechanobiology of the early phases of
endocytosis at the PM (Nassoy and Lamaze, 2012; Lacy et al.,
2018; Baschieri et al., 2020b).

All early endocytic vesicles undergo a series of maturation
and transition to the late endosomes. The fission and fusion
events that are a part of the maturation process, lead to cargo
sorting into tubular extensions or intraluminar vesicles (ILVs)
(Gautreau et al., 2014), processes mediated respectively by the
ESCRT complex (Williams and Urbé, 2007) and Arp2/3 actin
nucleators (Derivery et al., 2009). Early endosomes are generally
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highly mobile and more peripherally localized, while late
endosomes/lysosomes are relatively immobile and cluster close
to the Golgi (Neefjes et al., 2017). This spatial organization of
endosomes is functional for their maturation and is instrumental
for the fine tuning of receptor tyrosine kinases (RTK) which
will be turned off by the phosphatases concentrated at the
cell center (Neefjes et al., 2017). Endosome-originated signaling
controls a plethora of cellular functions (Sadowski et al., 2009;
Scita and Di Fiore, 2010; Phuyal and Farhan, 2019) and
recently a putative mechanotransducing role for endosomes was
unveiled in collectively migrating epithelia (Malinverno et al.,
2017; Palamidessi et al., 2019). In epithelial tissues, groups of
closely associated cells flow in a fluid-like fashion. The flow
stops in a process called jamming, when the cells become too
dense and compressed. Reactivation of the endosomal protein
Rab5A was sufficient to restart the movement of the jammed
epithelia (Figure 2; Malinverno et al., 2017). Such jamming-to-
unjamming transition was due to an increased ERK signaling
from endosomes and was shown to promote breast cancer cell
invasion by increasing cell motility of densely packed cancer cells
(Palamidessi et al., 2019). These observations demonstrate that
endosomes are cell density sensors.

The spatial segregation of endosomes can also be influenced
by adhesive cues (Schauer et al., 2010). Micropatterned cells
show an asymmetry in transferrin and EGF endocytosis which
is not due to an unequal distribution of the transferrin and EGF
receptors at the PM, but rather to the actin cytoskeleton. In fact
a mild actin disruption results in complete loss of such spatial
segregation (Grossier et al., 2014). Intriguingly, this peculiar
distribution of endosomes translates into asymmetrical signaling
downstream of the EGF receptor (Grossier et al., 2014) which
could be instrumental for the cells to interpret their surroundings
(Schauer and Goud, 2014). Considering that endosomes respond
to adhesive cues, it would be interesting to test whether they
can also interpret changes in the mechanical properties of the
substrates. In fact, a recent work showed that culturing bladder
epithelial cells on soft surfaces resulted in increased endosomal
escape of intracellular bacteria, implying that substrate stiffness
could affect endosomal integrity via a yet unidentified mechanism
(Moorthy et al., 2020).

There appears to be a strong connection between the
endo/lysosomal system and membrane tension (King et al., 2020;
López-Hernández et al., 2020; Mercier et al., 2020). An increase in
the PM tension is balanced by the exocytosis of a subpopulation
of recycling endosomes (Gauthier et al., 2009) while a burst
of endocytosis occurs when the PM tension decreases (Shi and
Baumgart, 2015; Loh et al., 2019). Additionally, endosomes play
a fundamental role in the adaptation of the cell to osmotic stress,
situation where the cell confronts itself with ionic imbalance,
leading in turn to water influx or efflux and volume changes
(Figure 2). Both hypo-osmolarity and hyper-osmolarity are
well-known to affect membrane tension. Recycling endosomes
translocate the ion channel NHE7 from the TGN to the PM
in response to hyperosmotic stress. This translocation causes a
disequilibrium in the cytoplasmic ions, the net result being an
increase in the number of lysosomes (López-Hernández et al.,
2020). Such increase in lysosomes number is instrumental to

scavenge the protein aggregates that form as a consequence of
hyper-osmolarity (Willermain et al., 2014; Hock et al., 2018).

AUTOPHAGOSOMES

Several cellular stressors are known to induce autophagy,
a catabolic pathway that has its roots in the secretory
pathway (Farhan et al., 2017). Its function is to enclose
damaged intracellular components in autophagosomes for their
degradation by the lysosomal machinery. The various types
and importance of the autophagic processes in maintaining
proper cellular homeostasis have been thoroughly discussed
elsewhere (He and Klionsky, 2009; Kawabata and Yoshimori,
2020; Melia et al., 2020).

While the link between autophagy and various chemical
stressors has been well-documented, only a handful of
studies have explored the possible impact of mechanical
stress on autophagy.

King et al. (2011) noted an upregulation in the rate of
autophagosomes formation in Dictyostelium cells exposed to
compressive forces, a finding they corroborated in mammalian
cells. Induction of autophagy was observed with application of
continuous compressive forces (∼0.2 kPa) within physiological
range in both Dictyostelium and mammalian cells, a response
that gradually decreased and returned to basal level once cells
adapted to the compression by remodeling their cytoskeleton
(King et al., 2011). A similar finding was reported in human
trabecular meshwork (TM) primary cells (Porter et al., 2014).
An important function of the TM is to maintain intraocular
pressure, which is sensitive to pressure gradients and fluid
movement. Hence, the cells in TM must sense and rapidly
adapt to changes in mechanical forces in order to avoid
mechanical injury and maintain proper function. Porter et al.
(2014) found quick induction of autophagy in these cells when
exposed to biaxial static mechanical stretch, thereby potentially
linking autophagy to cellular adaptation to stretch. Finally,
BAG3, a member of chaperone-assisted autophagy (Arndt et al.,
2010), is presumably capable of tension sensing, coordinating
autophagosome formation, and transcription regulation during
mechanotransduction, hence contributing to the protection of
mechanically strained muscle tissue (Ulbricht et al., 2013).
These studies suggest that cells deploy autophagy to cope
with mechanical forces and preserve tissue structure and
cellular activity.

CONCLUDING REMARKS

In this review, we have highlighted the emerging role of
the endomembrane system in force sensing and transduction.
Although the concept of physical forces eliciting a biological
response is more than a century old (Wolff, 1892), the field
of mechanobiology has garnered attention only in the past two
decades, owing to the development of enabling technologies
(Roca-Cusachs et al., 2017; Goujon et al., 2019). Seminal works
describing the impact of mechanical forces on cell differentiation
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(Engler et al., 2006; Dupont et al., 2011), transformation (Paszek
et al., 2005) and on several other processes have highlighted the
important interplay between mechanical and biochemical signals.
Much of the current mechanobiology research investigates
mechanosensing and mechanotransducing pathways at the PM
and the cell cytoskeleton underneath (Bershadsky et al., 2006; Lim
et al., 2010). However, mechanical forces are not restricted to the
PM. On the contrary, they can penetrate much deeper into the
cells, thereby affecting all intracellular organelles (Kim et al., 2015;
Feng et al., 2019). With the exception of the nucleus (Aureille
et al., 2017; Maurer and Lammerding, 2019), the mechanical
properties of intracellular organelles and their participation in
the propagation of mechanical signals remain largely unknown.
Tools and sensors to probe and quantify forces within the
cell have recently experienced tremendous advancements, and
are likely to aid in the integration and the expansion of
mechanobiology to endomembranes (Mohammed et al., 2019;
Straková et al., 2020). As shown by the researches highlighted
in this short review, the organelles that constitute the secretory
pathway are more than a passive cargo delivery system. Their
intricate link to the cytoskeleton, the PM and the nucleus, and
their propensity to assemble into dynamic signaling platforms
suggests that they could play a paramount role in coordinating

cellular responses to mechanical perturbations (Figure 2). This
warrants careful characterization of the mechanical properties of
this pathway to gain further insight into cellular mechanobiology.
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