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The first catalytic asymmetric synthesis of the key intermediate for beraprost has been achieved through an enantioselective

intramolecular oxa-Michael reaction of an a,B-unsaturated amide mediated by a newly developed benzothiadiazine catalyst. The

Weinreb amide moiety and bromo substituent of the Michael adduct were utilized for the C—C bond formations to construct the

scaffold. All four contiguous stereocenters of the tricyclic core were controlled via Rh-catalyzed stereoselective C—H insertion and

the subsequent reduction from the convex face.

Introduction

Prostacyclin (PGI,, Figure 1) is a physiologically active com-
pound known to inhibit platelet activation and also acting as an
effective vasodilator [1-3]. In addition to these properties, PGI,
derived from new vessels has attracted much attention due to its
ability to promote axonal remodeling of injured neuronal
networks after central nervous system disease [4,5]. However,
PGI, possesses an unstable enol ether moiety, which can be
hydrolyzed even under neutral aqueous conditions, resulting in
a loss of pharmacological action [6-8]. Therefore, an increasing
number of more stable PGI, derivatives have been developed.
Among these, beraprost (1) has already been used as a pharma-
ceutical or under clinical trial in several countries for the treat-
ment of arteriosclerosis obliterans and pulmonary hypertension
[9]. Beraprost can be dosed orally as its sodium salt, and sold as

a mixture of four diastereomers (1a, ent-1a, 1b, and ent-1b)
[10-13], although it was reported that each of the isomers have
different activities [11]. In order to reduce the adverse effects
while maintaining the pharmacological activities, an effective
route for the asymmetric synthesis of 1 is highly sought after,
and such methodologies should also lead to the expanded clinic-
al application of 1, as well as the development of more active

derivatives.

Due to the unique tricyclic core of 1, which bears four
contiguous stereocenters, various approaches for the synthesis
of key intermediate 2 (Scheme 1) have been reported [14-23],
including a few asymmetric syntheses relying on the optical

resolution of racemic intermediates [16-18,23]. Herein we
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Figure 1: Structure of PGI, and beraprost (1).

report the first catalytic asymmetric synthesis of the key inter-
mediate 2 through organocatalyzed-enantioselective intramolec-
ular oxa-Michael reaction [24-26].

Results and Discussion

Our retrosynthetic analysis for 2 is shown in Scheme 1, with the
derivatization of 2 to beraprost (1) having already been
reported. We planned to introduce the ester side chain on the

X =Br (5), Me (6)

Enantioselective
intramolecular

oxa-Michael reaction of
a,B-unsaturated amides

beraprost (1)
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aromatic ring at a later stage, utilizing radical-mediated reac-
tions with acrylate [22] when the functional group (X) at the
ortho position was methyl, or via coupling reactions with C4
units when X was a bromo substituent. The cis-fused tricyclic
core of 3 was assumed to be constructed by a stereoselective
C-H insertion of diazoester 4, which can be readily prepared
from the Weinreb amides 5 or 6 via Claisen condensation fol-
lowed by diazo-transfer reaction. The chiral dihydrobenzofuran
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OH
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Scheme 1: Retrosynthetic analysis of beraprost (1).
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scaffold (5 or 6) could be synthesized by asymmetric intramole-
cular oxa-Michael reaction (AIOM) of a,B-unsaturated amides 7
or 8. Such reactions are generally considered to be challenging
due to low nucleophilicity of the oxygen nucleophile and rela-
tively unreactive Michael acceptors [27-33]. We envisioned that
our recently developed powerful hydrogen bond (HB)-donor
bifunctional organocatalyst [33] could promote the desired reac-
tion of 7 or 8, which can be synthesized from commercial
sources 9 or 10. Overall, the proposed strategy offers an effi-
cient construction of all stereocenters of tricyclic core 2, based
on the initially established chiral stereocenter, as the configur-
ation at the C1 and C2 positions of 2 would presumably be
controlled by face-selective reduction of ketone 3.

The Michael precursor 7 could be readily prepared from ortho-
bromophenol (9, Scheme 2). O-Allylation of 9 followed by
Lewis acid-mediated Claisen rearrangement afforded ortho-
allylphenol 11, whose olefin moiety was ozonolyzed and subse-
quently treated with Wittig reagent 13 to provide amide 7 in
55% yield over four steps from 9. Amide 8 was similarly

synthesized in 48% yield from 10.

With the Michael precursors in hand, we next investigated the
key AIOM reaction of 7 and 8 (Table 1). When the methylated

Table 1: Optimization of asymmetric intramolecular oxa-Michael reaction.
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1. allyl bromide
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Scheme 2: Preparation of Michael precursors 7 and 8.
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X temp. Me
7 (X=Br) 5 (X =Br)
8 (X =Me) 6 (X =Me)
entry X cat. y temp time (h) yield (%)2 ee (%)°
1 Me A 10 rt 192 95 90
2 Me B 10 rt 72 90 91
3 Me (o] 10 rt 72 90 93
4 Br B 10 rt 72 82 75
5 Br Cc 10 rt 120 72 70
6 Br D 10 rt 120 92 80
7 Br E 10 rt 96 83 85
8 Br E 1 35 96 93 86
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a|solated yields. PDetermined by HPLC.
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substrate 7 was employed, the thiourea B [34,35] or benzothia-
diazine C [33,36-38] catalysts efficiently promoted the reaction
to furnish the dihydrobenzofuran 6 in 90% yield with high
enantioselectivities (Table 1, entries 2 and 3). Conversely,
thiourea A showed less catalytic activity, and the reaction
required a much longer time for completion (Table 1, entry 1),
indicating that the HB-donor moiety played an important role in
facilitating the AIOM reaction. In addition, the AIOM reaction
of bromo-substituted substrate 7 resulted in lower chemical
yields (72-82%) and enantioselectivities (70-75% ee) even
when catalysts B or C were employed for 72—120 hours
(Table 1, entries 4 and 5). These results suggest that the rela-
tively bulky bromo-substituent prevents recognition of the sub-
strate by the catalyst. In order to improve recognition of the
substrate through increased HB-donating abilities, we then tried
catalyst D bearing a fluorine atom on the C6 position of the
benzothiadiazine ring (Table 1, entry 6) [33]. As expected, both
the chemical yield and enantioselectivity were improved, and
the adduct 5 was obtained in 92% yield with 80% ee. In our
preliminary DFT calculation, the HB-donor moiety would
recognize an oxyanion generated from phenolic OH of
substrates with tertiary amine moiety of the catalyst. It was also

Beilstein J. Org. Chem. 2015, 11, 2654—-2660.

suggested that the SO, moiety of benzothiadiazine catalyst
would interact with the N-methyl substituent of the substrate by
a non-classical hydrogen-bonding [39], improving the catalytic
activities (see Supporting Information File 1 for details). The
absolute configuration of 5 and 6 were assigned as (2R) by
reference from the previous work [32,33]. Encouraged by this
result, we next designed the new catalyst E with a stronger elec-
tron-withdrawing CF3 group on the aromatic ring, and applied it
to the present AIOM reaction of 7 (Table 1, entry 7). To our
delight, the enantioselectivity was improved to 85% ee while
maintaining the high reactivity. Employing catalyst E we
further investigated the reaction conditions and found that a
scale-up synthesis can be performed using only 1 mol % of E
with no loss of enantioselectivity, although gentle heating was

required to ensure a high chemical yield (Table 1, entry 8).

With both the AIOM adducts 5 and 6 in hand, we next investi-
gated the construction of the tricyclic core (Scheme 3 and
Scheme 4). The cross-Claisen condensation of 6 with lithium
tert-butyl acetate afforded the corresponding B-ketoester, which
was then treated with 2-azido-1,3-dimethylimidazolinium hexa-
fluorophosphate (ADMP) [40-42] to give the diazoester 14.

1. AcOt-Bu
LHMDS, THF
; .OMe ' -~
Mé O/\)kry 2. ADMP, K,HPO, Me O/\)J\H/Km Bu
Me CH3CN/THF, 0 °C N2
6 14
1. Rhy(OAc), | 2. NaBH,, MeOH
(1 mol %) —40°Ctort
CH,Cly, rt 60%
(dr > 18:1, 4 steps)
0\( 1. LiBH,, Et,0, rt
O 2. CHsCH(OEt), o OtBu
H/~ pTsOH-H,0, THF, 60 °C . oH
A 78% (2 steps) H S
Z =0 H
o H
Me 46
AIBN, NBS Me 15
CCly, reflux
14% o %
o{
H 0
H O ref 22) B
————— - TIITL 2
Z~0 H
o H
002Me
Br 17 18

Scheme 3: First attempt at the synthesis of 2 from 6.
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Scheme 4: Achievement of a formal synthesis of 2.

Rhodium catalysed C—H insertion [43,44] of 14 proceeded
smoothly to furnish the tricyclic ketoester, which was found to
be unstable to purification on column chromatography, presum-
ably due to decomposition of the ketoester moiety. Therefore,
the product was isolated as alcohol 15 after a one-pot reduction
of the ketone moiety (60% in four steps from 6), along with the
minor diastereomer at C1 position (dr > 18:1). These results
mean that the stereochemistry at the C2 position was fully
controlled, presumably due to hydride attack from the less-
hindered convex face. The relative configuration of 15 was
unambiguously determined by NOESY analysis (see Supporting
Information File 1 for details). As all four desired stereocenters
were constructed, we next investigated the introduction of the
ester side chain on the aromatic ring via benzylic bromination
followed by elongation of the C3 unit [22]. To this end, the
ester group at the C1 position of 15 was reduced by lithium
borohydride, and the resultant 1,3-diol protected to give acetal
16 [16]. After various experiments, selective bromination of the
methyl group on the aromatic ring of 16, however, was found to

be difficult due to competitive bromination of the electron-rich

aromatic ring, and thus the desired bromide 17 was obtained in
only 14% yield.

We then investigated an alternative route from adduct 5, even
though the enantiomeric excess of 5 (86% ee) was a little lower
than that of adduct 6 (93% ee) (Scheme 4). Fortunately the
diazoester 20, as similarly derived as in Scheme 3, was obtained
as a crystalline solid, and one recrystallization increased the ee
to 95%. The tricyclic scaffold 21 with all four stereocenters of
the desired configuration was synthesized in 67% yield
(dr > 10:1) via the method established in Scheme 3. After
derivatization to acetal 22 in 2 steps, we then turned our atten-
tion to the introduction of the C4 ester substituents. Amongst
various different conditions investigated — including
Pd-catalyzed coupling reactions — a halogen-lithium exchange
and subsequent addition to methyl 4-oxobutanoate was found to
be the best method to introduce the C4 subunit with repro-
ducibility in the case of scale-up synthesis. Deprotection of the
resultant ester 23 followed by reduction of the benzylic OH
group finally afforded the key intermediate 2.
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Conclusion

We have developed the first asymmetric catalytic synthesis of
the key intermediate for beraprost in 14 steps, via an organocat-
alyzed AIOM reaction of o,B-unsaturated amides. During the
course of this study, it was revealed that a bromo substituent
ortho to the phenolic OH group significantly decreased the re-
activity and enantioselectivity. However, we found that the
newly developed organocatalyst E, bearing increased
HB-donating abilities, could improve both the reactivity and
selectivity. In addition, the Weinreb amide moieties of the
AIOM adduct were shown to be efficiently converted to
B-ketoesters and diazoesters, a reactivity that could be further
extended to various other molecular transformations. We
believe that these findings could be applied to the synthesis of
other biologically active oxo-heterocycles, and thus this is
currently under investigation in our laboratory and will be
reported in due course.

Experimental
General procedure for asymmetric oxa-

Michael reaction

The benzothiadiazine catalyst E (8.6 mg, 0.022 mmol, 1 mol %)
was added to a solution of 7 (661 mg, 2.20 mmol) in CH,Cl,
(20 mL), and the resulting mixture was stirred at 35 °C for 96 h.
The reaction mixture was then evaporated and the resulting
crude residue purified by column chromatography on silica gel
eluting with n-hexane/ethyl acetate (60/40) to give the analyti-
cally pure compound 5 (614 mg, 93%). The enantiomeric ratio
was determined by HPLC on a chiral stationary phase (86% ce).

Supporting Information

Supporting Information File 1

Experimental procedures and characterization data.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-11-285-S1.pdf]
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