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Abstract

Background: In biomarker discovery, applying domain knowledge is an effective approach to eliminating false
positive features, prioritizing functionally impactful markers and facilitating the interpretation of predictive
signatures. Several computational methods have been developed that formulate the knowledge-based biomarker
discovery as a feature selection problem guided by prior information. These methods often require that prior
information is encoded as a single score and the algorithms are optimized for biological knowledge of a specific
type. However, in practice, domain knowledge from diverse resources can provide complementary information. But
no current methods can integrate heterogeneous prior information for biomarker discovery. To address this
problem, we developed the Know-GRRF (know-guided regularized random forest) method that enables dynamic
incorporation of domain knowledge from multiple disciplines to guide feature selection.

Results: Know-GRRF embeds domain knowledge in a regularized random forest framework. It combines prior
information from multiple domains in a linear model to derive a composite score, which, together with other
tuning parameters, controls the regularization of the random forests model. Know-GRRF concurrently optimizes the
weight given to each type of domain knowledge and other tuning parameters to minimize the AIC of out-of-bag
predictions. The objective is to select a compact feature subset that has a high discriminative power and strong
functional relevance to the biological phenotype.

Via rigorous simulations, we show that Know-GRRF guided by multiple-domain prior information outperforms
feature selection methods guided by single-domain prior information or no prior information. We then applied
Known-GRRF to a real-world study to identify prognostic biomarkers of prostate cancers. We evaluated the
combination of cancer-related gene annotations, evolutionary conservation and pre-computed statistical scores as
the prior knowledge to assemble a panel of biomarkers. We discovered a compact set of biomarkers with
significant improvements on prediction accuracies.

Conclusions: Know-GRRF is a powerful novel method to incorporate knowledge from multiple domains for feature
selection. It has a broad range of applications in biomarker discoveries. We implemented this method and released
a KnowGRRF package in the R/CRAN archive.
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Background

Biomarker discovery aims to identify a concise molecular
signature of a biological phenotype from among a large
number of features. To facilitate this process, data-
driven feature selection methods have been widely
employed that prioritize features based on their discrim-
inative power. However, the low signal-to-noise ratio in
large-scale omics data and the complex dependencies
among features pose a grand challenge to data-driven
methods. Without additional constraints, these methods
often produce suboptimal solutions that include many
false positive markers and overlook functionally impact-
ful features. Consequently, predictive models built on
these features may suffer from under-fitting or over-
fitting problems [1-3].

One solution to these issues is integrating multi-omics
data that characterize different aspects of a complex bio-
logical system. Several computational methods have
been developed for this purpose (reviewed in [4]). An-
other solution is to combine expert knowledge with stat-
istical analysis [5-8]. The most straightforward and
common practice applies domain knowledge as a post
hoc filter by ranking statistically significant features
based on functional annotations from external databases
[9, 10]. A more sophisticated approach involves system-
atic evaluations of biomarkers on their discriminative
power and biological relevance. For example, Peterson
et al. considered gene-network as informative prior and
performed a joint Bayesian variable and graph selection
in regression models [11]. Park et al. proposed a /;-regu-
larized linear regression model that prioritizes cancer
genes showing dependence of copy number alterations
on expression levels [12]. Although these methods
perform well in specific domains, the feasibility of using
these methods to incorporate knowledge from other
domains remains unclear. Meanwhile, annotations from
diverse resources likely provide complementary informa-
tion. In a study of cancer prognostic biomarkers, Liu et al.
showed that a composite score of evolutionary conserva-
tion and pre-computed statistical p values was more in-
formative than individual scores when used as weights in
regularized logistic regressions [7]. Given the availability
of diverse functional annotations, a generalizable approach
that can evaluate domain knowledge from heterogeneous
resources and automatically determine the optimal com-
bination for guided feature selection is highly desirable.

Previously, we developed the know-guided regularized
random forest (Know-GRRF) algorithm that is a general-
ized form of regularized random forests (RRF) to enable
the incorporation of prior information in feature selec-
tion [13]. Know-GRRF achieves regularization by intro-
ducing a penalty coefficient for each feature that is
computed from a user-specified score (i.e., prior) and
several system-tuned parameters. In this study, we
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extended the Know-GRRF algorithm to allow each fea-
ture to be associated with multiple priors. Specifically,
Know-GRRF derives a linear model to combine multiple
priors into a composite score. In this linear model, the
contribution of each prior to the composite score is de-
termined via maximum likelihood optimization, which is
coupled with the optimization of other tuning parame-
ters to minimize the Akaike’s information criterion
(AIC) of out-of-bag (OOB) predictions [14, 15]. In vari-
ous simulated scenarios, we demonstrated that integrat-
ing multiple prior information using Know-GRRF
significantly improves feature selection accuracies. In a
real-world application, we illustrated that Know-GRRF
effectively aggregated knowledge from multiple domains
to facilitate the discovery of prognostic biomarkers of
prostate cancers.

Results

The Know-GRRF METHOD

We show the schematic representation of the data struc-
ture and the algorithm of Know-GRRF in Fig. 1. The data
set consists of N samples, each measured on one response
variable and P predictor variables. Each predictor is associ-
ated with a set of priors from M domains (Fig. 1a). We
denote Y; as the observed response value of sample i

where i =1, ..., N. We denote X{ as the observed value of

predictor j of sample i where j=1, ..., P. We denote A/, as
the prior relevance score on predictor j from domain d
where d=1, ..., M. A linear model combines priors from
all domains into a composite score; that represents the
biological relevance of predictor j. The objective of Know-
GRREF is to model the relationship between X and Y with
a compact feature subset such that the biological relevance
of selected features is maximized and the loss of predictive
accuracy is minimized. To achieve this goal, the core algo-
rithm of Know-GRRF consists of two components.

The first component selects features using RRF guided
by prior information from multiple domains. As in the
ordinary random forests algorithm [15], Know-GRRF
learns multiple decision trees (from bootstrapped sam-
ples) to model the relationship between X and Y. At a
splitting node v of a tree, a predictor j is evaluated based
on the regularized information gain as

, ; A;Gain(X’,v) j¢F
Gaing (X,v) = { éain()((/, v) )jeF (1)
where A;€[0,1] is a penalty coefficient, Gain (X, v) is the
Gini information gain [15], and F is a set of predictors se-
lected in previous nodes. Here F begins as an empty set. At
each splitting node, the selected predictor is added to F
(Fig. 1b). If predictor j is not selected in previous nodes, A;
penalizes it by reducing its information gain. The predictor

with the highest Gaing(X;, v) is then selected and added to
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Fig. 1 Schematic representation of the Know-GRRF method. (a) The data structure. The feature matrix X contains the observed values of P
predictors of N samples. The prior matrix A contains functional measures of each predictor from M domains. These functional measures are
combined in a linear model to derive a score representing the biological relevance of predictors. The vector Y contains the observed response
values of the samples. (b) The feature selection component. Non-leaf nodes are marked with the splitting features and colored by the
corresponding biological relevance. Know-GRRF starts with an empty feature set F. In tree 1, three features (X3, Xs and Xo) are sequentially added
to F based on information gains weighted by biological relevance. In tree 2, because Xs and Xy are already members of F, they are selected based
on information gains only. Because X; is not a member of F, it is selected based on information gain weighted by biological relevance.
(cmsubsup) The stability selection component. Know-GRRF first optimizes the tuning parameters on the complete dataset. It then uses
bootstrapped samples to select features. After T iterations, features selected in more than a user-define frequency cutoff ¢ are aggregated and
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the feature set F. Know-GRRF defines the penalty coeffi-
cient }; as

\; = score® (2)

where score;€ [0, 1] is the biological relevance of pre-
dictor j, and d € [0, o] is the tuning parameter. A higher
value of score; indicates higher biological relevance. If
multiple prior information is available for a predictor,
score; is computed as

" .
> a-1BaAy

SCOrej = —MN
mjax Zd:lﬁd d

(3)

where S, € [0, 1] is the weight given to the prior informa-
tion from domain d.

The objective of Know-GRRF is to select a compact
collection of predictors that constitute F without loss of
predictive information about Y. We use AIC of OOB
predictions as the loss function

AIC = 2k-2 In(L) (4)
where k is the number of predictors in F and In(L) is a
is goodness-of-fit measure [14]. Know-GRRF then uses
the BFGS quasi-Newton method [16] to optimize the
tuning parameter § and the prior information weight S
within a user-specified range to minimize AIC.

The second component performs a stability selection
that chooses a set of reliable predictors across multiple
runs (Fig. 1c). In RRF, a challenge is the large variance
from run to run due to the randomness of bootstrap-
ping. To address this problem, after obtaining the opti-
mal values of § and S, we perform a stability selection.
Specifically, with the optimal § and S values, we build
Know-GRRF models ¢ times, each time using 90% of
randomly selected samples, which returns ¢ sets of se-
lected predictors. To derive the final feature set, Know-
GRRF offers two options. For the first option, users can
specify a frequency cutoff ¢ € [0, 1] such that predictors
selected in greater than or equal to ct iterations
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constitute the final solution. The default values of ¢ and
¢ are 10 and 0.5, respectively. For the second option, fea-
tures selected in any of the ¢ iterations are aggregated
and are subject to a stepwise selection procedure to
minimize the AIC, which then produces the final feature
set.

Performance on simulated data

We have previously compared Know-GRRF with other
RRF-based feature selection methods and demonstrated
the superior performance of Know-GRRF [13]. In this
study, we focused on evaluating the influence of multiple
domain knowledge on the feature selection results. We
first present simulation results and then applied Know-
GRRF to a gene expression study of metastatic prostate
cancers to discover prognostic biomarkers.

Datasets

We simulated three scenarios with varying levels of
complexity, including linear relationship, higher-order
relationship and interaction. For each scenario, we gen-
erated 200 samples. Each sample was measured on 100
features (i.e., j=1, ..., 100). Each feature follows a nor-
mal distribution X’/ ~ N (4,0?) with the mean and
standard deviation drawn from continuous uniform dis-
tributions as pu~U(0,5) and o~U(1,2). We used the first
10 features as true predictors and computed the re-
sponse values (Y) following the predefined equations
(Table 1). In scenario 1, informative features are inde-
pendent and their linear combinations determined the
response. In scenario 2, the second order product of fea-
ture X' contributed to the response. In scenario 3, fea-
tures X° and X' had interactions. The remaining
features were uninformative (i.e. false predictors). For re-
gression tasks, we used the original values of Y. For clas-
sification tasks, we dichotomized Y to a binary vector
with the median value as the cutoff.

We simulated complementary prior knowledge from
two domains. Specifically, we used high relevance scores
sampled from a normal distribution N (5,1) to indicate
informative features, and low relevance scores sampled
from a normal distribution A(0,1) to indicate unin-
formative features. In domain one, features 1 to 5 re-
ceived high relevance scores. In domain two, features 6
to 10 received high relevance scores. The other features

Table 1 True Relationship in Simulated Scenarios
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received low relevance score. Negative scores were reset
to zero.

We applied Know-GRRF to identify informative fea-
tures with priors only from the first domain, with priors
only from the second domain, and with priors from both
domains. As negative controls, we applied RFF [17] and
Lasso [18] to selecting features with no prior informa-
tion and chose their regularization parameters (y and A,
respectively) corresponding to the highest accuracies via
grid searches (details in Methods). To quantify the simi-
larity between two feature sets (ie. simulated true pre-
dictor set F; vs. method selected set F,), we computed
the Jaccard Index (JI = |F;nF,|/|Fiu F,]), true positive
rate (TPR = |F1 n F,|/| F;|) and false positive rate (FPR =
|Fo— F1|/| F3|). We also reported false negatives (FN)
that are true informative features not selected by a
method.

Classification tasks

For the two-class classification tasks in different scenar-
ios, we summarized the performance of Know-GRRF
with priors from different domains and the performance
of RRF and Lasso with no priors in Table 2.

As expected, Know-GRRF consistently outperformed
RRF and Lasso. We observed the greatest improvement in
scenario 1 where Know-GRRF using priors from both do-
mains had a large JI value of 0.80 and RRF and Lasso had
small JI values of 0.18 and 0.26, respectively. In all scenar-
ios, Know-GRRF using priors from both domains outper-
formed Know-GRRF using single-domain priors. This is
not surprising because we simulated complementary
priors from the two domains. However, it was worth not-
ing that Know-GRRF using priors from a single domain
identified some of the informative features even if they
were not indicated as relevant by the priors. This impli-
cated that both the discriminative power and the prior in-
formation were considered when selecting features.

Know-GRRF provides two options in the stability se-
lection step to construct the final feature set. The first
option uses selection frequency > 50% as the criteria and
the second option uses stepwise selection to minimize
the AIC value. The simulation results showed that these
two options were complementary to each other if priors
from a single domains was used. When priors from both
domains were used, the stepwise selection approach had
a better performance.

Scenario

Relationships

1. Linear
2. Higher order

3. Interaction

Y=16+26X +1.7C +13C + 14X = 25X + 1.9X° + 23X +4.5x% — 03X° + 0.4X'°
Y=43+ 21X + 21 +34C + 26X + 32 + 59X + 15X + 11X = 1.0 + 26X'%°
Y=23+26X +3.9¢ + 28 + 55X +33X° — 25X + 1.0X" + 2.5x% + 1.3x°X°

Superscripts indicate the indices of feature X
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Table 2 Methods Comparison in Two-Class Classification Tasks
Method Lasso RRF Know-GRRF

prior 1 prior 2 prior both

Freq>50% Stepwise Freq>50% Stepwise Freg>50% Stepwise
Scenario 1
Jl 0.26 0.18 040 040 0.50 0.33 0.80° 0.80°
TPR 0.90 0.30 040 040 0.50 040 0.80 0.80
FPR 0.27 0.08 0 0 0 0.03 0 0
FN 10 1,2,3,4,7,9,10 4,6,7,8,9 10 4,6,7,8,9 10 1,2,3,45 1,2,3,4,510 2,4 4,10
Scenario 2
J 0.38 0.19 047 0.55 0.50 0.30 0.60 0.80°
TPR 0.80 040 0.70 0.60 0.50 0.30 0.60 0.80
FPR 0.12 0.12 0.06 0.01 0 0 0 0
FN 3,9 1,2,4,7,89 7,89 4,7,89 1,2,3,45 1,2,3,47,89 1,359 1,9
Scenario 3
Jl 0.31 0.27 040 0.27 0.50 0.30 0.50 0.90°
TPR 1.00 040 040 0.30 0.50 0.30 0.50 0.90
FPR 0.24 0.06 0 0.01 0 0 0 0
FN 1,3,5,6,7,8 1,6,7,89 10 1,3,6,7,89 10 1,2,3,45 1,2,3,47,8,9 1,3,4,57 3

%indicates the best JI value in each scenario

Regression tasks

We summarized the performance of Know-GRRF and
RRF in Table 3. Except in scenario 1, Know-GRRF using
priors from both domains had the highest JI value in all
other scenarios. The superior performance of Lasso in
scenario 1 was expected because Lasso is specifically

Table 3 Methods Comparison in Regression Tasks

optimized for first-order linear regressions with no inter-
actions. Furthermore, in regression tasks, the TPR of
Know-GRRF was significantly higher than in classifica-
tion tasks (mean TPR =0.73 vs. 0.51, paired two-sided t
test p-value< 10™*); and the FPR was also significantly
higher (mean FPR=0.006 vs. 0.10, paired two-sided t

Method Lasso RRF Know-GRRF

Prior 1 Prior 2 Prior 3

Freg>50% Stepwise Freg>50% Stepwise Freg>50% Stepwise
Scenario 1
JI 091° 0.07 0.28 0.54 033 0.54 0.56 048
TPR 1.00 0.20 0.70 0.70 0.70 0.70 1.00 1.00
FPR 0.01 022 0.17 0.03 0.12 0.03 0.09 0.12
FN - 2,3,4,56,9 10 6,7,10 6,7,10 2,34 2,34 - -
Scenario 2
JI 0.09 0.11 0.25 0.28 026 047 063° 053
TPR 0.10 030 0.70 050 0.60 0.80 1.00 1.00
FPR 0.01 0.19 0.20 0.09 0.14 0.08 0.07 0.10
FN 2,3,4,56,7,80910 1,2,3,47,89 6,89 4,6,7,89 1,2,34 3,4 - -
Scenario 3
JI 067 0.19 0.29 057 0.26 047 0.56 067°
TPR 1.00 050 0.70 0.80 0.60 0.80 1.00 1.00
FPR 0.06 0.18 0.16 0.04 0.14 0.08 0.09 0.06
FN - 1,3,578 7,8,10 7,8 1,2,3,5 1.3 - -

%indicates the best JI value in each scenario
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test p-value<10~7). This can be explained by the trade-
off between sensitivity and specificity, although the ob-
jective of Know-GRRF is to minimize the AIC value in-
stead of the AUC value of an ROC curve. We also
noticed that prior information on features with higher-
order effects (feature 10 in scenario 2) or interactions
(features 9 and 10 in scenario 3) were important. If the
priors indicated these features were relevant, Know-
GRRF could successfully identify these features. Other-
wise, as previously reported [13, 19], it is a challenging
task for Know-GRRF and other methods to detect inter-
actions in the absence of main effects.

Application to discovering prognostic biomarkers for
prostate cancers

We applied Know-GRRF, RFF and Lasso to a biomarker
study to discover gene expression signatures that are pre-
dictive of metastasis of prostate cancers in 5 years [20]. In
these analyses, these three methods accessed the same
information on patient samples and gene expressions.
However, RFF and Lasso were not capable of incorporating
prior information of genes while Know-GRRF was tested
on single-domain priors and multi-domain priors.

Dataset and pre-processing

This data set consisted of expression levels of 1021 genes
in two cohorts of patients who were diagnosed with
prostate cancer and received prostatectomy [20]. One
cohort consisted of 201 patients showing no evidence of
disease progression. The other cohort consisted of 200
patients who had metastatic recurrence within 5 years.
Because none of these patients had increased level of
prostate-specific antigen (PSA), novel biomarkers were
needed to monitor the disease progression.

We downloaded the dataset from the NCBI GEO data-
base (accession number: GSE10645). Using z-
transformation, we normalized the expression levels of
each gene to have a distribution with a mean of 0 and a
standard deviation of 1. We then split the dataset into a
training set that consisted of 360 randomly selected pa-
tients (181 with metastasis and 179 in remission) and a
testing set that consisted of the remaining 41 samples
(19 with metastasis and 22 in remission). For each gene,
we performed two-sided Student t test to compare the
expression level between the metastasis cohort and the
remission cohort using the training data. We kept 251
genes with p-value <0.01 as candidate biomarkers for
Know-GRRF analysis.

Domain knowledge

We defined three types of prior information, each from
a different domain. The first type of prior information
was based on 526 genes that have been previously asso-
ciated with prostate cancer aggressiveness [20] (see
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Methods for details). Among the 251 genes passing t-
test, 169 genes were in this list and were assigned a prior
score of 10 (cancer gene prior). Genes not in this list re-
ceived a prior score of 1. The second type of prior infor-
mation was based on evolutionary conservation. For
each gene g, We computed the evolutionary rate (R,)
using multiple alignments of 46 vertebrate genomes
[21]. Because functionally essential genes are more con-
served than non-essential genes [22], we defined a con-
servation prior score as 1/R, (Consv. prior). The third
type of prior information (VI prior) was based on the
variable importance produced by RRF. We scaled all
prior scores to a range between of 0 and 10 (see
Methods for details).

Identify biomarkers using know-GRRF, RRF and lasso

We formulated biomarker discovery in this dataset as a
two-class classification task. The metastasis status is the
response variable (1 for metastasis and 0 for remission).
Each gene represents a feature. We then applied Know-
GRRF to identifying informative genes using the training
dataset. We tested Know-GRRF with prior knowledge
from a single domain and using prior knowledge from
all thee domains. In each case, Know-GRRF optimized
the values of § and S concurrently to minimize the AIC
in training data. In the stability selection step, because
the frequency-based option and the stepwise selection
option are complementary to each other, we used both
options and took the union of the selected genes as the
final set. We also applied RRF that uses no prior infor-
mation. RRF requires a user-specified regularization par-
ameter (y<[0,1]). To determine the best value of y, we
performed grid searching with 20 values equally spaced
between 0 and 1. Because the highest prediction accur-
acy in the training data was achieved at y = 0.7, we used
this value in RRF to select features. Similarly, Lasso re-
quires a user-specified regularization parameter (A € [0,
1]), and we determined the optimal value of A =0.03 via
grid search (details in Methods). We reported the genes
selected by each method in Table 4.

We found that Know-GRRF using priors selected
fewer genes than RRF or Lasso using no priors, with the
only exception of using cancer-related genes as a single
prior. This was likely because a majority of the candidate
genes were associated with cancer progression and we
assigned the same priority score to all these genes, which
lacks the resolution to distinguish one from another.

With the genes selected by each method, we built a
random forests model of 500 trees using the training
dataset. We then applied the model to predicting the
metastasis status of samples in the testing dataset. We
presented the ROC curves and the area under the ROC
curve (AUROC) values in Fig. 2. As expected, genes se-
lected by Know-GRRF using priors from all three
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Table 4 Genes selected by different approaches

Page 7 of 10

Method Parameters  Number of Selected Genes
Selected Genes
Lasso A=0.03 15 ATP5J, AURKA, GNPTAB, GPR137B, HSD17B4, IFNGR2, IGFBP5, MED30, MFF, SDC2, SMARCCT,
TAF2, TUBB, UBE2J2, ZHX1
RRF y=07 13 ARID4A, CASP3, CAVI, CCND1, CCNH, CDC25C, CDK10, FGFS8, IGFBPS5, MENT, MMP3, PDGFB,
SEMA3F
Know-GRRF Cancer gene 6=1 169 Omitted due to space limits.
(t=10,c=05) prior
Consv. prior  §=0.5 9 BCL2L1, BMP4, COL1AT, E2F1, FAS, MENT, PLAT, RAD23A, TSG101
VI prior 6=02 6 CSF2, DDX6, JUND, MMP3, NOTCH4, PURA
All priors 6=05 7 BMP4, CCNA2, FAS, MENT, PTPRF, RAD23A, TSG101
Bdr/ver =03
consy = 0.6
5w =01

domains gave rise to the classification model with the
highest accuracy (AUROC = 0.85). Conversely, genes se-
lected by RRF had the lowest classification accuracy
(AUROC =0.73). Lasso using no prior reported an
AUROC value of 0.79, which was similar to previously
reported models for this dataset [7]. Know-GRRF using
single-source prior information reported AUROC values
ranging from 0.78 to 0.81, implicating that each type of
domain knowledge captured the biological relevance of a
gene to a certain extent. However, such information was
not complete and integrating multi-domain knowledge
was helpful.

An advantage of the Know-GRRF algorithm is that
the weights (5 values) can be helpful for interpret-
ation. By examining the weights estimated by Know-
GRRF, we found that the conservation prior had the
largest contribution to the composite score (B.ons =

0.6). This was consistent with previous reports
£ A [T T 1
| I H
B I I '
0.8 4 I =d
| | ’
[
06 1| | ______ H
m 1
o r=
= Know-GRRF (driver prior) 0.81
0.4 1 ——Know-GRRF (consv. Prior) 0.81
- ——Know-GRRF (VI prior) 0.78
) ——Know-GRRF (3 priors) 0.85
02 4
) ---RRF 0.73
3 0.79
Lasso
0 T T : : ,
0 0.2 0.4 0.6 0.8 1
FPR
Fig. 2 ROC curves of random forests models using genes selected
by different approaches. AUROC values are displayed. Data of 41
testing samples were used to construct the curves

showing mutations and expression changes of evolu-
tionarily conserved genes likely drive the oncogenesis
and tumor progression [22].

Discussion

In high-dimensional data, the number of samples is
much smaller than the number of features. This curse
of dimensionality causes many features to share simi-
lar information gain. When a data-driven algorithm
learns a model, it is likely to select a feature that is
irrelevant to the classification or regression problem
but is associated with another relevant feature by ran-
dom chance. In these cases, prior knowledge on the
relevance of candidate features to the biological ques-
tion can help eliminate impertinent features and se-
lect the truly impactful ones. The fast accumulation
and increasing availability of biological knowledge on
health phenotypes and quantitative traits offer a great
opportunity to employ knowledge-based approaches
in biomarker discovery. In this study, we presented
the Know-GRRF method that unites the merits of
data-driven and knowledge-based approaches and en-
ables the integration of prior knowledge from mul-
tiple heterogeneous domains.

Know-GRRF achieves this goal by utilizing a penalty
coefficient to regularize the underlying random forests
models. Through simulations, we demonstrated that
Know-GRRF using multiple complementary prior
knowledge was more robust than existing methods that
do not use prior information or using incomplete prior
information from a single source. Furthermore, Know-
GRRF determines the contribution of prior knowledge
from each domain in an automated and objective man-
ner. While this is a clear advantage of Know-GRREF, it
can potentially introduce a large number of variables
for optimization if prior knowledge from many domains
on tens of thousands of features need to be combined.
In these cases, the computational burden can be
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prohibitive. Based on our experience in analyzing em-
pirical data, we propose a pre-filtering step using statis-
tical significance to reduce the number of features
before running Know-GRRF analysis. For large-scale
omics datasets, even using a less-stringent statistical
cutoff can remove a majority of uninformative features.
We employed this strategy when analyzing the prostate
cancer dataset. We showed that the predictive accuracy
of genes selected by Know-GRRF was significantly
higher than previously reported. We then investigated
the seven genes identified by the Know-GRRF model
using three types of prior information. All of these
genes have been characterized as oncogenes or tumor
suppressor genes. In particular, both the CCNA2 gene
and FAS gene are activated by the androgen receptor
that is the therapeutic target of prostate cancers [23].
Therefore, these gene markers not only provide dis-
criminative power to forecast metastasis, but directly
participate in the molecular pathways of prostate can-
cer progression as well.

It is worth noting that Know-GRREF is not for integrat-
ing multi-omics data in a general sense. Instead, data
from a specific —omic domain (e.g., whole-exome se-
quencing or RNA-Seq) needs to be first abstracted into
a score for each gene. Then Know-GRRF can use one or
more such scores to prioritize genes in a study. On the
one hand, this is a limitation of our method. On the
other hand, this is an advantage of Know-GRRF to
utilize priors from unrelated samples, e.g., sequence con-
servation during species evolution. Indeed, in our ana-
lysis of the prostate cancer microarray data, we defined
three sets of independent priors. The first set was de-
rived from literature reviews of multiple gene expression
and exome sequencing studies of prostate cancers. The
second set was based on sequence conservation of 46
vertebrate species. And the third set was based on vari-
able importance statistics. To our best knowledge, this is
the first study that is able to dynamically incorporate
such a diverse set of priors for biomarker discovery.

There are some limitations of Know-GRRF. First, fea-
tures selected by Know-GRRF have some randomness
because the algorithm is based on random forests. Al-
though we cannot eliminate bootstrapping completely,
we have added a stability selection step to reduce the
variation and to increase the reproducibility. Second, the
computational cost of Know-GRRF is higher than RRF
because it optimizes more variables and builds more en-
sembles. Third, Know-GRRF does not guarantee global
optimization. Thus, several runs with varied initial set-
tings may be required, which further increases the com-
putational cost. Fortunately, these runs are independent
from each other and can be executed in parallel. In the
future, we will improve Know-GRRF to allow distributed
computations.
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Conclusions

In summary, our new method, Know-GRRF is a power-
ful method to incorporate domain knowledge from mul-
tiple resources for feature selection. It has a broad range
of applications in biomarker discovery. We implemented
this method and released the KnowGRRF package at R/
CRAN archive.

Methods

Know-GRRF implementation

We have described the algorithm of Know-GRRF in a
previous section (see New Method for details). To reiter-
ate, the first component of Know-GRRF aims to find a
set of parameters, namely § and S, within a user-
specified range to minimize AIC of OOB samples in a
random forests model. For implementation, we used the
R packages. Specifically, we wrapped the RRF:RRF ()
function [17] in the optim () function to perform the
BFGS quasi-Newton optimization with box constraints
[16]. After the optimal values of § and 5, are deter-
mined, we computed the penalty coefficient of each fea-
ture according to equations [2, 3]. We then used these
penalty coefficients in the second component of Know-
GRRF to perform stability selection. After ¢ iterations,
we took a union of all selected features and used the
MASS::stepAIC () function [24] to choose the final set of
features.

Feature selection with RRF: We used the RRF package
[17]. To determine the best value of the regularization
parameter ye€ [0, 1], we performed grid searching with
20 values equally spaced between 0 and 1. For each
value, we selected features and estimated the accuracy in
the training set. The value corresponding to the highest
training accuracy was taken in the final execution.

Feature selection with Lasso: We used the glmnet
package [18]. To determine the best value of the
regularization parameter A€ [0, 1], we used the glmnet
built-in cross-validation function. The A value corre-
sponding to the highest cross-validation accuracy was
taken in the final execution.

Preprocessing of the cancer dataset

We downloaded the gene expression dataset from the
NCBI GEO database. The GSE10645 file contains signal
values of 1021 probes and the annotation files (GPL5858
and GP5873) mapped the probes to RefSeq genes. For
each probe, we used the median value to impute the
missing expression data. If multiple probes mapped to
the same gene, we took the average expression value of
these probes. We then performed z-transformation for
each gene to have a distribution with a mean of 0 and a
standard deviation of 1 over all samples. These values
were subject to further analysis.



Guan et al. BMC Bioinformatics 2020, 21(Suppl 2):77

Constructing priors from domain knowledge for the
cancer dataset

(1) The cancer gene prior: Nakagawa et al. compiled a
list of 526 genes that have been previously associated
with prostate cancer progression via literature reviews
and previous biomarker studies [20]. We retrieved this
list of genes from the annotation file GPL5873 in the
GEO database. We then queried the Cancer Gene Con-
sensus [25] and identified 28 driver genes of prostate
cancers. Although these 28 driver genes were annotated
based on cancer hallmarks and mutational signatures,
they are a subset of the 526 genes. We regarded these
526 genes as cancer-related and assigned them a prior
score of 10. The other genes received a prior score of 1.

(2) The conservation prior: Given a gene, we first re-
trieved the multiple alignments of its orthologs in 46
vertebrate species [26] and used the fitch algorithm [27]
to compute the absolute substation rate of each position.
We then used the average substitution rate over all posi-
tions as the evolutionary rate of this gene. Low evolu-
tionary rates indicate high conservation. Therefore, we
took the reciprocal of the evolutionary rate as the con-
servation score of the gene. If a gene had a conservation
scores > 10, we reduced it to 10 such that the conserva-
tion prior is within the range of 0 and 10.

(3) The variable importance (VI) prior: We first built
an RRF model using the training set with the default
penalty coefficient value of 0.8. We then retrieved VI
values from this model as the priors for Know-GRRF.
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