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Introduction
Huntington’s disease (HD) is a fully penetrant neurodegenerative disease caused by a dominantly 
inherited CAG trinucleotide repeat expansion in the Huntingtin gene (HTT). This results in the pro-
duction of  a mutant huntingtin protein with an abnormally long polyglutamine repeat (1). The full 
penetrance of  HD makes it possible to predict who will develop the disease many years before symp-
tom onset (2). In the premanifest stage, prior to disease onset, individuals show gray matter loss in 
the striatum and white matter volume loss around the striatum, within the corpus callosum and in the 
posterior white matter tracts (3). Micro-structural white matter changes have also been demonstrated 
in these regions in premanifest HD (preHD) (4–6).

While these findings provide strong evidence for the earliest white matter changes in preHD, it is still unclear 
the order in which white matter connections degenerate and why some white matter connections are more vul-
nerable than others. With the antisense oligonucleotide (ASO) huntingtin lowering trial (7) currently underway, 
there is an urgent need to understand the time course of white matter changes and the mechanisms that drive 
them so that brain areas can be identified that may benefit from the highest concentrations of ASO.

Medium spiny neurons (MSNs) of the striatum are selectively vulnerable to the effects of mutant hunting-
tin (8). One theory for this selective vulnerability is that the high-energy demands of MSNs (9) makes them 
particularly susceptible to mitochondrial dysfunction induced by the presence of mutant huntingtin (10). Given 
that long-range white matter connections are the most metabolically active (11) and mutant huntingtin causes 

We lack a mechanistic explanation for the stereotyped pattern of white matter loss seen in 
Huntington’s disease (HD). While the earliest white matter changes are seen around the striatum, 
within the corpus callosum, and in the posterior white matter tracts, the order in which these 
changes occur and why these white matter connections are specifically vulnerable is unclear. 
Here, we use diffusion tractography in a longitudinal cohort of individuals yet to develop clinical 
symptoms of HD to identify a hierarchy of vulnerability, where the topological length of white 
matter connections between a brain area and its neighbors predicts the rate of atrophy over 24 
months. This demonstrates a new principle underlying neurodegeneration in HD, whereby brain 
connections with the greatest topological length are the first to suffer damage that can account for 
the stereotyped pattern of white matter loss observed in premanifest HD.
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metabolic disturbance through mitochondrial dysfunction (12), we hypothesized that the topological length of  
white matter connections would determine their vulnerability in preHD.

To test this hypothesis, we studied white matter connectivity in a longitudinal cohort of preHD participants 
over 24 months. We classified white matter connections into subtypes based on connections between the cortex 
and striatum (cortico-striatal), between cerebral hemispheres (interhemispheric), within cerebral hemispheres 
(intrahemispheric), and within cortical modules (intramodular). We examined how these connections differ 
from controls both cross-sectionally and longitudinally. To test whether the topological length of white matter 
connections determined vulnerability, we then investigated whether shortest weighted path length, a network 
measure of distance between a pair of brain regions, determined cross-sectional and/or longitudinal change.

Results
White matter connection subtypes. Using a data-driven community Louvain approach (13), cortical 
regions of  interest (ROIs) were assigned to a cortical module, where each module represents a set of  
cortical ROIs that have maximum connections with each other but minimum connections with all 
other regions outside the module. This resulted in 6 modules, 3 in the left hemisphere and 3 in the right 
hemisphere. Module assignment was as follows: module 1, left-sided frontal regions, left caudal ante-
rior and rostral anterior cingulate regions, and left insula; module 2, right-sided frontal regions and 
right caudal anterior, rostral anterior, and posterior cingulate regions; module 3, left temporal regions; 
module 4, right temporal regions and right insula; module 5, left motor, occipital, parietal, and isth-
mus and posterior cingulate regions; and module 6, right motor, occipital, and parietal and left isthmus 
cingulate regions (Figure 1A and Supplemental Table 1; supplemental material available online with 
this article; https://doi.org/10.1172/jci.insight.92641DS1 for details). To ensure that our results did 
not depend on module partitioning, we repeated the connection-length atrophy analysis with 4 and 8 
module partitions. Key results were robust to varying the number of  module partitions (see Methods 
and Supplemental Figure 1 and Supplemental Figure 2).

Connections were then classified into subtypes: these included 6 cortico-striatal connections (between the 
striatum [caudate and putamen]and each cortical module), 9 interhemispheric connections (between modules 
in different hemispheres), 6 intrahemispheric connections (between modules in the same hemisphere), and 6 
intramodular connections (within each module). The strength of  each connection is represented by the sum 
of its connection weights. See Figure 1, B and C, for an illustration of  connection subtypes.

Hierarchy of  white matter connection vulnerability in preHD vs. controls. In order to maximize the robust-
ness of  our results, the cortico-striatal connections were analyzed using 2 complimentary tractography 
approaches: voxel connectivity profiles (VCPs) (14) and a connectome (15) approach. For the VCPs, 
streamlines are seeded in the striatum (caudate and putamen) and project to multiple regions in the cortex. 
Cortico-striatal connections are then normalized by the volumes of  the ROIs they connect, thus taking into 
account gray matter atrophy both in the cortex and striatum. In the connectome approach, streamlines are 
seeded throughout the white matter and terminate when they reach gray matter regions, such that connec-
tions between all pairs of  ROIs are investigated and are independent of  the origin of  specific tracts.

Linear mixed effects regression (LMER) was used to investigate longitudinal group differences in 
connection strength between preHD and controls (differences in slopes), with baseline (study entry) 
cross-sectional differences being represented by intercept differences. Baseline covariates included age 
at study entry, sex, education, and study site. The time metric was “time on study (years): 0 = baseline. 
Z-ratios of  fixed effects estimates were used to test the null hypothesis of  no group differences. The FDR 
correction was used for multiple comparisons, and unadjusted P values or FDR-adjusted q values are 
reported depending on the effects of  interest (P < 0.05 and q < 0.05).

The first question we asked was how different connection subtypes differ between groups at baseline. 
This was addressed by testing for intercept differences between the groups (preHD minus controls). For 
cortico-striatal connections, both VCP and connectome analyses showed statistically significant (q < 0.05) 
weaker connection strength in preHD relative to controls for all 6 cortico-striatal connections (100%). See 
Table 1 for connectome results and Supplemental Table 2 for VCP results.

For interhemispheric connections, preHD showed significantly (q < 0.05) weaker connection strength com-
pared with controls in 6 connections (67%). These included the connections between the posterior motor-occipi-
tal parietal modules and their connections with the anterior fronto-cingulate modules. Connections between left 
and right temporal modules and left and right fronto-cingulate modules were also affected.
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No significant cross-sectional FDR-corrected group differences were seen in intrahemispheric (0%) or 
intramodular connections (0%). PreHD showed weaker connection strength (P < 0.05) for one intrahemi-
spheric connection and one intramodular connection compared with controls. See Figure 2 and Table 1 for 
the cross-sectional results.

In summary, the weakest preHD connection strength at baseline was for cortico-striatal connections, 
followed by interhemispheric connections, intrahemispheric, and intramodular connections. This suggests a 
temporal hierarchical pattern of  degeneration. To verify whether this was the case, we looked at the group 
rate of  change over time (group slopes) and whether the same connections showed greater change over time.

Rate of  change in connection strength over time in preHD vs. controls. For cortico-striatal connections, 
both VCPs and connectome analyses showed significant decreases in connection strength over time 
in preHD relative to controls for the bilateral striatal motor-occipital-parietal connections, although 
for the left connection in the connectome analysis and the right connection in the VCP analysis, this 
reduction was only seen for P < 0.05. See Figure 2B and Table 2 for connectome results. The VCP 
analysis also showed significant reductions in the striatum fronto-cingulate connections bilaterally, 
although only for P < 0.05 in the left, while the connectome analysis revealed (P < 0.05) a decrease in 
connection strength over time in the left striatum-temporal connection in the preHD group compared 
with controls (Table 2).

No significant longitudinal changes were seen for interhemispheric connections (Supplemental Table 
3). We did find (only for P < 0.05) a longitudinal increase in connection strength in the right fronto-cin-
gulate to right temporal intrahemispheric connection in preHD relative to controls (Table 2). No signifi-
cant longitudinal changes were seen for intramodular connections (see Supplemental Table 3).

Figure 1. Module assignment and connection types. (A) Module assignment derived using the Louvain community 
detection algorithm on the average control baseline network. This results in 6 putative cortical modules: fronto-cingu-
late, temporal, and motor-occipital-parietal. (B) Cortico-striatal connections. For the connectome analysis, these are 
defined as the sum of streamline weights (connection strength) from the caudate and putamen to a cortical module. 
(C) Connection types in the cortex. Intramodular: sum of streamline weights (connection strength) within the same 
module (Red-Red). Intrahemispheric: sum of streamline weights (connection strength) between modules in the same 
hemisphere (Blue-Red). Interhemispheric: sum of streamline weights (connection strength) between modules in differ-
ent hemispheres (Red-Green).
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In summary, over 24 months, only cortico-striatal connections significantly degenerated in the preHD 
group relative to controls. We hypothesized that the reason these connections might be so vulnerable is 
because of  their length. Therefore, in the next stage of  our study, we performed an analysis to test the rela-
tionship between connection length and connection atrophy.

Relationship between connection length and connection subtype in healthy controls. Connection length 
was defined as the shortest weighted path length between 2 brain regions in the healthy brain network. 
An example schematic of  the shortest weighted path is shown in Figure 3A. For connections in the 
averaged healthy control brain, a one-way ANOVA was performed to assess differences in connec-
tion length for different connection subtypes: intramodular, intrahemispheric, interhemispheric, and 
corticostriatal. This was highly significant (F(3, 2691)= 739.23, P < 0.000; Figure 3B). Following this 
post-hoc test with the Tukey-Kramer test revealed clear step-wise differences in connection length 
across connection subtypes for healthy controls, such that all groups were significantly different from 
each other (P < 0.000; Supplemental Table 4). Cortico-striatal connections were the longest, followed 
by interhemispheric, intrahemispheric, and intramodular connections. See Supplemental Figure 3 for 
histograms of  connection lengths for each connection type.

Length of  white matter connection in healthy controls determines cross-sectional and longitudinal connection 
atrophy in preHD. Next, we investigated the relationship between connection length and its vulnerability 
to atrophy. For each connection within each subtype, connection strength and rate of  change in connec-
tion strength over 24 months for preHD were normalized for preHD relative to controls. These were then 
transformed to give positive atrophy and rate of  atrophy measures, where higher scores represent greater 

Table 1. Cross-sectional group differences at the first visit

Cortico-striatal connection (Connectome) γ SE P value q value
Left striatum fronto-cingulate –374.1861154 57.17 1.56 × 10–10 9.36 × 10–10A

Right striatum fronto-cingulate –267.05 47.17 2.62 × 10–8 7.87 × 10–8A

Left striatum temporal –50.83 14.20 3.8 × 10–4 3.8 × 10–4A

Right striatum temporal –151.69 28.60 1.75 × 10–07 3.5 × 10–7A

Left striatum motor-occiptial-parietal –100.50 24.23 3.98 × 10–5 4.78 × 10–5A

Right striatum motor-occiptial-parietal –98.34 22.57 1.6 × 10–5 2.44 × 10–5A

Interhemispheric connection γ SE P value q value
Left fronto-cingulate, right fronto-cingulate –4601.145 1,696.644 6.9 × 10–3 0.012A

Left temporal, right temporal –111.821 36.827 2.5 × 10–3 0.006A

Left motor-occipital-parietal, right motor-occipital-parietal –4,304.345 1,348.059 1.5 × 10–3 0.006A

Left fronto-cingulate, right motor-occipital-parietal –769.153 231.876 9.8 × 10–4 0.006A

Right fronto-cingulate, left motor-occipital-parietal –964.416 312.773 2.2 × 10–3 0.006A

Left fronto-cingulate, right temporal –159.441 59.985 8.1 × 10–3 0.012A

Right fronto-cingulate, left temporal –30.767 25.870 0.235 0.294
Left temporal, right motor-occipital-parietal –135.003 120.126 0.262 0.294
Right temporal, left motor-occipital-parietal –34.450 154.274 0.823 0.823
Intrahemispheric connection γ SE P value q value
Left fronto-cingulate, left temporal –1,644.658 821.438 0.046 0.208
Left fronto-cingulate, left motor-occipital-parietal 2,340.769 1,402.457 0.096 0.208
Left temporal, left motor-occipital-parietal –959.145 1,721.465 0.578 0.608
Right fronto-cingulate, right temporal –1,235.767 758.235 0.104 0.208
Right fronto-cingulate, right motor-occipital-parietal 1,299.804 1,312.485 0.323 0.484
Right temporal, right motor-occipital-parietal –1,017.823 1,984.348 0.608 0.608
Intramodular connection γ SE P value q value
Left fronto-cingulate 325.299 4,496.184 0.942 0.942
Right fronto-cingulate 6126.354 4,248.015 0.150 0.300
Left temporal –3,548.794 5,525.934 0.521 0.625
Right temporal –1,3643.181 6,685.873 0.042 0.251
Left motor-occipital-motor –6,054.634 6,344.644 0.340 0.511
Right motor-occipital-motor –9,391.770 6,333.663 0.139 0.300
γ, estimated group intercept difference (preHD minus control; see Equation 1); SE, standard error of the difference; q value, FDR corrected P value; Aq < 
0.05. Cross-sectional group difference at first visit was defined as the intercept main effect of group in the full linear mixed effects model.
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connection atrophy. The atrophy score was used in the cross-sectional analysis, while the rate of  atrophy 
score was used in the longitudinal analysis. These scores were then averaged across the preHD group 
and correlated with the connection length for the same connection in the average healthy control group. 
Positive correlation between connection length and connection atrophy across subtypes collectively was 
seen both cross-sectionally (ρ = 0.54, P < 0.000, degrees of  freedom [df] = 2,693) and longitudinally (ρ 
= 0.38, P < 0.000, df = 2,693; Figure 3, C and D). The cortico-striatal connections, the longest connec-
tions, showed both the greatest atrophy and the greatest rate of  change, followed by interhemispheric 
connections, intrahemispheric connections, and intramodular connections, confirming our hypothesis 
that their vulnerability is related to their length. Given the differences in age and sex between cohorts 
(Supplemental Tables 5 and 6), all analyses were performed on residuals of  connection strength after 
regressing out age and sex covariates for each participant. In order to establish whether our findings 
were influenced by study site, a split-site analysis was carried out. Sites were split based on type of  MRI 
scanner: Leiden-Vancouver (Philips) cross-sectionally (ρ = 0.41, P < 0.000, df = 2,693) and longitudinally 

Figure 2. Hierarchy of connection vulnerability. Mixed linear model results for connectome analysis: preHD vs. controls. Cortico-striatal connections are most 
affected, followed by interhemispheric connections and then intrahemispheric connections. (A) Cross-sectional cortico-striatal figure illustrates cross-sec-
tional cortico-striatal differences where premanifest Huntington’s disease (preHD) show reduced connection strength between the striatum (caudate and 
putamen) and cortical modules. Cross-sectional interhemispheric figure illustrates cross-sectional interhemispheric differences, where preHD show reduced 
connection strength between left and right hemisphere cortical modules. Cross-sectional intrahemispheric figure illustrates cross-sectional intrahemispheric 
differences, where preHD show reduced connection strength between left cortical modules and right cortical modules separately (F, front-cingulate; T, tempo-
ral; M, motor-occipital-parietal; S, striatum). (B) Connection strength at baseline and 24-month followup for cortico-striatal and interhemispheric connections. 
Cross-sectional group difference was defined as the intercept main effect of group in the full linear mixed effects model. Longitudinal change was defined 
as a significantly superior fit for the full Linear mixed effects regression (LMER) compared with the reduced LMER omitting group by time interaction (see 
Methods for further details), which means that the group by time interaction effect was significant and preHD patients show more connectivity loss over time 
compared with controls. Data presented as dot plots with group means ± 95% CI at each time point for control (magenta), preHD (green). *P < 0.05, **P <0.01. 
y-axis: connection strength, x-axis: follow-up time in years. y-axis differs between graphs, as connection strengths vary in range between different connec-
tions (486 data points displayed for each figure).
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(ρ = 0.30, P < 0.000, df = 2,693), and London-Paris (Seimens) cross-sectionally (ρ = 0.48, P < 0.000, df = 
2,693) and longitudinally (ρ = 0.34, P < 0.000, df = 2,693) (Supplemental Figures 4 and 5). Thus, results 
were consistent with the analysis across 4 sites, suggesting measures are robust across sites.

White matter connection subtypes are associated with global cognitive performance. Our next aim was to 
investigate the pathophysiological relevance of  white matter connection loss with respect to connec-
tion subtype. We used a global cognitive composite score (16), as this encompasses many of  the cog-
nitive tests that have been shown to be sensitive in HD (17). Association between connection strength 
and cognition was assessed by the main effect of  global cognitive composite score at baseline for an 
LMER. Age, site, education, CAG, and time-by-CAG interaction were included as covariates.

Significant (q < 0.05) positive association was seen between connection strength and global cogni-
tive composite score for the interhemispheric connection between the left and the right motor-occipi-
tal-parietal modules. Intramodular left fronto-cingulate connection strength also showed significant (q 
< 0.05) positive association with global cognitive composite score. Only P < 0.05 positive association 
was seen for cortico-striatal and intrahemispheric connections and global cognitive composite score 
(Table 3). See Supplemental Table 7 for VCP results.

Longitudinally, no (q < 0.05) significant associations were seen between connection strength and global 
cognitive composite score. Negative association (P < 0.05) was seen for the connection strength in the inter-
hemispheric connections between the left temporal and right temporal modules and the interaction between 
global cognitive composite and follow-up; similarly, negative association (P < 0.05) was seen for intramodular 
left fronto-cingulate connection strength and the interaction between global cognitive composite and followup 
(Table 4, Supplemental Table 8, Supplemental Table 9). Our results therefore provide a link between con-
nectivity loss and global cognitive impairment and suggest that loss of  interhemispheric and intramodular 
connectivity, which seems to occur later in preHD, is the main driver of  global cognitive impairment.

Discussion
In this study, we reveal a hierarchy of white matter connection vulnerability in preHD relative to controls, where 
greatest loss in connection strength is seen in cortico-striatal connections, followed by interhemispheric, intra-
hemispheric, and intramodular connections. The topological length of white matter connections determined 

Table 2. Longitudinal results: Group slope differences in the cortico-striatal and intrahemispheric connections

Cortico-striatal connection (Connectome) δ SE P value q value
Left striatum fronto-cingulate 25.98 37.38 0.490 0.584
Right striatum fronto-cingulate –4.96 29.21 0.870 0.865
Left striatum temporal –18.57 8.57 0.030 0.062
Right striatum temporal 28.24 17.39 0.110 0.158
Left striatum motor-occiptial-parietal –40.59 17.39 0.020 0.060
Right striatum motor-occiptial-parietal –48.77 16.34 0.003 0.018A

Cortico-striatal connection (VCP) δ SE P value q value
Left striatum fronto-cingulate –0.024 0.012 0.037 0.055
Right striatum fronto-cingulate –0.020 0.007 0.004 0.010A

Left striatum temporal –0.011 0.008 0.177 0.212
Right striatum temporal 0.006 0.006 0.32 0.320
Left striatum motor-occiptial-parietal –0.057 0.015 1.54 × 10–4 8.74 × 10–4A

Right striatum motor-occiptial-parietal –0.015 0.007 0.0331 0.055
Intrahemispheric connection (Connectome) δ SE P value q value
Left fronto-cingulate, left temporal 941.135 510.914 0.068 0.198
Left fronto-cingulate, left motor-occipital-parietal –784.515 907.122 0.389 0.659
Left temporal, left motor-occipital-parietal –467.636 1,288.415 0.717 0.717
Right fronto-cingulate, right temporal 1,095.422 478.544 0.023 0.135
Right fronto-cingulate, right motor-occipital-parietal –590.595 863.816 0.495 0.659
Right temporal, right motor-occipital-parietal –865.472 1,443.641 0.549 0.659

δ, estimated group slope difference (preHD minus controls; see Equation 1); SE, standard error, q value, FDR corrected P value, 
Aq < 0.05. Longitudinal change was defined as a significantly superior fit for the full LMER compared with the reduced LMER 
omitting group by time interaction.
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this hierarchy with evidence of a positive association between topological white matter connection length and 
both cross-sectional and longitudinal loss of connection strength over 24 months (Figure 4). Furthermore, the 
pathophysiological relevance of these changes was demonstrated by correlations with global cognition.

This is the first study in HD to identify a temporal neuroanatomical pattern of  white matter connection 
vulnerability. In preHD, reduced connection strength is seen in cortico-striatal connections both longitu-
dinally and cross-sectionally compared with controls. While longitudinal change is seen in predominantly 
posterior cortico-striatal connections, cross-sectional differences were seen in all cortico-striatal connec-
tions. Interhemispheric connections also show significant cross-sectional reductions in preHD compared 
with controls between the posterior motor-occipital parietal modules and in their connections with the 
anterior fronto-cingulate modules. These findings are consistent with the cortico-striatal (18–20), corpus 
callosum (5, 21–23), and posterior (3, 6) white matter changes that have been identified in preHD.

Figure 3. Connection length varies according to connection type and correlates with rate of connection degeneration over 2 years in premanifest 
Huntington’s Disease (preHD). (A) Illustration of shortest weighted path length between A and D in an example network. Numbers represent connection 
weights. When calculating shortest weighted path, length connections are weighted by the inverse of streamline weights, as stronger connections repre-
sent shorter paths in graph theory. (B) Comparison of shortest weighted path length for different classes of connection. Intra-M, intramodular (magenta); 
Intra-H, intrahemispheric (green); Inter-H, interhemispheric (red); CS, cortico-striatal (blue). Lower line, minimum; upper line, maximum; middle-box line, 
median; lower-box line, 1st quartile; upper-box line: 3rd quartile. Red crosses indicate outliers. (C) Cross-sectional analysis: Z-scores, denoting loss of con-
nection strength, were transformed into positive atrophy measures using a logistic transform. Average transformed connection strength Z-score for preHD 
participants was plotted against connection-weighted path length for average control, and Spearman rank correlations were performed. Connections are 
color coded according to type. (D) Longitudinal analysis: Z-scores, denoting connection rate of atrophy over 3 time points, were transformed into a positive 
rate of atrophy measure using a logistic transform. Average transformed connection rate of change Z-scores for preHD participants were plotted against 
connection-weighted path length for average control, and Spearman rank correlations were performed. For both C and D, each data point represents a 
brain connection. The black line represents a least-squares linear regression line. df, degrees of freedom (2,695 data points displayed for each figure).
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Striatal pathology in HD occurs along a caudo-rostral, medio-lateral, dorso-ventral gradient (24), and 
thus, the posterior vulnerability of  cortico-striatal white matter connections is in keeping with striatal 
pathology. Of  the interhemispheric connections that did not differ cross-sectionally, all were connected 
to the temporal modules, again following the medial-lateral gradient of  striatal pathology in HD (24) and 
temporal sparing that has been demonstrated previously (25). Cortical regions that show either vulnera-
bility or resilience in preHD should be taken into account when assessing the distribution of  ASOs in the 
cortex, such that higher concentrations in posterior cortical regions may be more beneficial than an equal 
distribution throughout the cortex.

Only one other study has investigated longitudinal change in brain networks in preHD (26). However, only 
regional changes in graph theory metrics were investigated. Changes in white matter connections were not 
examined; therefore, it is difficult to draw comparative conclusions regarding the longitudinal cortical-striatal 
connectivity changes we demonstrate here. In the aforementioned study, no group differences were seen at base-
line, and longitudinal changes were only seen in the left orbitofrontal cortex and left paracentral lobule, with 
no regional changes seen in the striatum. These findings are not consistent with our previous cross-sectional 
structural connectivity study in HD (20). This may be due to the very small sample size and the fact a streamline 
filtering algorithm, such as SIFT (27) or SIFT2 (28), was not applied following diffusion tractography.

Prion-like spread is the spread of  pathogenic proteins throughout the brain from cell to cell and is 
seen in a number of  neurodegenerative diseases (29, 30). Systems level evidence for this has been shown 
in fronto-temporal dementia (FTD) (31, 32), where the distance from the brain region showing the earliest 

Table 3. Cross-sectional global cognitive composite effects in preHD

Cortico-striatal connection (connectome) γ SE P value q value
Left striatum fronto-cingulate 562.333 651.429 0.389 0.467
Right striatum fronto-cingulate 251.436 612.182 0.682 0.682
Left striatum temporal 159.245 169.057 0.347 0.467
Right striatum temporal 243.611 269.113 0.366 0.467
Left striatum motor-occiptial-parietal 376.561 254.410 0.140 0.421
Right striatum motor-occiptial-parietal 525.147 222.911 0.019 0.116
Interhemispheric connection γ SE P value q value
Left fronto-cingulate, right fronto-cingulate 3,840.496 2,081.724 0.066 0.199
Left temporal, right temporal 69.685 44.214 0.116 0.260
Left motor-occipital-parietal, right motor-occipital-parietal 4,455.082 1,483.113 0.003 0.027A

Left fronto-cingulate, right motor-occipital-parietal 360.318 274.994 0.191 0.260
Right fronto-cingulate, left motor-occipital-parietal 490.271 383.611 0.203 0.260
Left fronto-cingulate, right temporal 52.603 61.856 0.396 0.396
Right fronto-cingulate, left temporal 30.365 30.368 0.318 0.358
Left temporal, right motor-occipital-parietal 271.731 138.939 0.052 0.199
Right temporal, left motor-occipital-parietal 259.001 179.950 0.152 0.260
Intrahemispheric connection γ SE P value q value
Left fronto-cingulate, left temporal 2,214.495 981.634 0.025 0.063
Left fronto-cingulate, left motor-occipital-parietal 129.625 1,725.264 0.940 0.940
Left temporal, left motor-occipital-parietal 4,641.127 2,142.948 0.031 0.063
Right fronto-cingulate, right temporal 2,095.088 964.824 0.031 0.063
Right fronto-cingulate, right motor-occipital-parietal 1,507.943 1,667.724 0.367 0.440
Right temporal, right motor-occipital-parietal 2,365.293 2,507.079 0.347 0.440
Intramodular connection γ SE P value q value
Left fronto-cingulate 18,183.414 5,498.320 0.001 0.007
Right fronto-cingulate 8,072.412 5,483.045 0.142 0.241
Left temporal –9,647.675 6,848.409 0.160 0.241
Right temporal 5,385.428 7,470.754 0.472 0.537
Left motor-occipital-motor 5,059.337 8,175.221 0.537 0.537
Right motor-occipital-motor –1,1969.077 7,782.574 0.126 0.241

γ, parameter estimate of baseline cognitive composite effect; SE, standard error; q value, – FDR corrected P value; Aq 
< 0.05. Association between connection strength and cognition was assessed by the main effect of global cognitive 
composite score at baseline for the full LMER.
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atrophy to other brain regions in the brain network predicts atrophy. However, in our previous study, we 
were unable to replicate this finding in an HD cohort (20). While we did find selective vulnerability of  
highly connected hub or “rich club” brain regions, this finding is generalizable across a number of  brain 
disorders (33) and may be due to the high metabolic demands (34, 35) of  hub brain regions, as opposed 
to a disease-specific mechanism such as prion-like spread. Indeed, hub brain regions with long-range con-
nections have genetic transcription profiles enriched for oxidative metabolism and mitochondria (36, 37).

In this study, we provide evidence for the underlying cause behind the hierarchical loss of  connectiv-
ity by showing a direct relationship between topological connection length and rate of  atrophy over 24 
months. As longer white matter connections are more metabolically active (11), the fact that these show the 
greatest rate of  atrophy in preHD suggests the metabolic disturbances in HD (38–40) may be driving the 
degenerative process. However, we acknowledge that the data we present demonstrates association between 
topological connection length and connection atrophy and not causality. Furthermore, we do not assess the 
relationship between these white matter changes and either metabolism or mitochondrial function. Addi-
tionally, while path length is a topological measure of  white matter length between 2 brain regions (41), the 
relationship of  this measure to biological white matter tract length has not been established.

Cortico-striatal VCP and connectome cross-sectional analyses were in agreement; however, the longi-
tudinal results differ slightly. VCPs show significant difference in the fronto-striatal connections, whereas 
the connectome analysis did not. This is likely due to methodological differences between each technique. 
VCPs calculate the number of  voxels in the striatum that connect to a cortical region and are normalized by 
striatal and cortical volumes. The connectome analysis is based on the strength of  connections between the 
striatum and cortical regions. Volume normalization was not performed in the connectome analysis, as we 
have shown previously that it can lead to spurious results (20).

Despite the fact that cortico-striatal connections show the largest change in connection strength, they 
did not show a strong association with the global composite score. Interhemispheric and intramodular con-
nections show the strongest relationship with global composite cognitive score, showing FDR-corrected sig-
nificance cross-sectionally and uncorrected significance longitudinal. The absence of  a strong relationship 

Table 4. Longitudinal global cognitive composite effects in preHD: Cortical connections

Interhemispheric connection δ SE P value q value
Left fronto-cingulate, right fronto-cingulate 290.472 1,352.185 0.830 0.914
Left temporal, right temporal –76.655 31.395 0.015 0.139
Left motor-occipital-parietal, right motor-occipital-parietal 582.052 780.157 0.456 0.781
Left fronto-cingulate, right motor-occipital-parietal –18.155 168.517 0.914 0.914
Right fronto-cingulate, left motor-occipital-parietal 221.011 235.550 0.349 0.781
Left fronto-cingulate, right temporal 27.539 42.800 0.521 0.781
Right fronto-cingulate, left temporal –9.478 21.281 0.657 0.844
Left temporal, right motor-occipital-parietal –91.957 108.829 0.399 0.781
Right temporal, left motor-occipital-parietal –286.764 140.863 0.043 0.193
Intrahemispheric connection δ SE P value q value
Left fronto-cingulate, left temporal –1,138.861 586.779 0.054 0.225
Left fronto-cingulate, left motor-occipital-parietal –343.698 1,123.016 0.760 0.760
Left temporal, left motor-occipital-parietal –2,756.217 1,581.689 0.083 0.225
Right fronto-cingulate, right temporal –974.896 611.831 0.113 0.225
Right fronto-cingulate, right motor-occipital-parietal –686.440 1,115.276 0.539 0.647
Right temporal, right motor-occipital-parietal –1,664.563 1,803.591 0.357 0.536
Intramodular connection δ SE P value q value
Left fronto-cingulate –6,636.924 3,203.536 0.039 0.207
Right fronto-cingulate –3,984.763 3,729.899 0.286 0.430
Left temporal 6,582.062 5,131.308 0.201 0.402
Right temporal 548.183 5,749.975 0.924 0.964
Left motor-occipital-motor –253.806 5,633.787 0.964 0.964
Right motor-occipital-motor 10,993.406 6,017.274 0.069 0.207

δ, parameter estimate of baseline cognitive composite effect; SE, standard error; q value, FDR corrected P value; Aq < 0.05. Longitudinal change was 
defined as a significantly superior fit for the full LMER compared with the reduced LMER omitting global cognitive composite time interaction.
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between cortical-striatal connection strength and global cognition may be the reason why there is relatively 
little longitudinal change in cognitive performance in preHD over 24 months (17), as our results suggest 
degeneration of  interhemispheric and intramodular connections is slower and occurs after cortico-striatal 
connection loss. Alternatively, by using a modular approach in order to simplify the interpretation of  large 
numbers of  brain connections, summing connections from multiple regions may result in loss of  associations 
between cognitive variables and specific cortico-striatal connections that would otherwise be detectable.

In this study, we chose to focus on the caudate and putamen subcortical structures. This was based on 
observations from our cross-sectional structural connectivity study (20) and from the earlier Track-HD stud-
ies (3, 42) that show the caudate and putamen are the subcortical structures most affected in preHD both in 
terms of  gray matter volume and white matter connections. While some studies have shown changes in the 
thalamus, globus pallidus, and nucleus accumbens in preHD, these tend to occur in preHD participants closer 
to disease onset (6, 43). Furthermore, automatic segmentation of  globus pallidus and nucleus accumbens is 
not sufficiently reliable (44). Loss of  white matter connections within the striatum was not examined, as our 
previous cross-sectional study did not show loss of  these connections in preHD relative to controls (20).

Conclusion. Topological length of  white matter connections predicts their rate of  atrophy in preHD; this 
results in a hierarchy of  vulnerability where cortico-striatal connections are most affected, followed by inter-
hemispheric, intrahemispheric, and intramodular connections. This demonstrates a new principle underlying 
neurodegeneration in HD, whereby the brain connections with the greatest topological length are the first to 
suffer damage that can account for the stereotyped pattern of  white matter loss observed in preHD.

Methods

Cohort
The cohort included preHD gene carriers and control participants from the Track-On HD study (16), fol-
lowed up at 3 time points over 24 months at 4 sites (London, England; Leiden, Netherlands; Paris, France; 
and Vancouver, Canada). The total number of  participants at each year was as follows: year 1 (72 preHD, 
85 controls), year 2 (82 preHD, 87 controls) and year 3 (80 preHD, 80 controls). Track-On is an extension 
of  the Track-HD (45) study, but with only preHD and control participants carried over (early HD partici-
pants from Track-HD were excluded). Of  the participants included, 31 preHD and 29 controls had partic-
ipated previously in Track-HD (45). The preHD participants required a disease burden score (DBS) > 250 
(46), on the basis of  their medical records at the time of  assessment. Controls were selected from the spous-
es or partners of  preHD individuals or were gene-negative siblings, to ensure consistency of  environments. 
For this study, we excluded participants who had manifest disease at baseline, were left handed or ambi-
dextrous, or had poor quality diffusion-weighted imaging (DWI) data, as defined by visual quality control.

With respect to missing data, 56 preHD and 65 controls had data at 3 time points, 28 premanifest 
and 24 controls had data at 2-time points, and 10 preHD and 9 controls had data at one time point. An 

Figure 4. Schematic showing empirically determined hierarchy of white matter connection vulnerability in premani-
fest Huntington’s disease. Connections with the largest shortest weighted path length have a higher rate of degen-
eration and show significant (q < 0.05) longitudinal change. Both cortico-striatal and interhemispheric connections 
showed significant (q < 0.05) cross-sectional change, while neither intrahemispheric or intramodular connections 
showed significant (q < 0.05) group differences. Red arrow indicates increasing path length with respect to connection 
type. Blue wedge indicates rate of degeneration: slow rate represented by thin wedge and fast rate represented by thick 
wedge. Full black arrow represents q < 0.05; dashed black arrow represents P < 0.05.
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LMER was used to account for missing data (see Statistics section), such that all data were included in 
the LMER analysis. See Supplemental Table 5 for baseline demographic information. For the rate of  
connection atrophy vs. shortest weighted path length (longitudinal) analysis, only preHD participants 
who had diffusion data from all 3 time points were included (56 preHD, 65 controls). See Supplemen-
tal Table 6 for demographic information of  this cohort.

MRI Acquisition
Data were acquired on 4 different 3T MRI scanners from 2 different manufacturers (Philips Achieva at 
Leiden and Vancouver and Siemens TIM Trio at London and Paris), both using a 12-channel head coil. 
T1-weighted image volumes were acquired using a 3-D MPRAGE acquisition sequence with the following 
imaging parameters: repetition time (RT) = 2,200 ms (Siemens [S])/ 7.7 ms (Philips [P]), time of  echo (TE) 
= 2.2 ms (S)/3.5 ms (P), fractional anisotropy (FA) = 10◦ (S)/8◦(P), field of  view (FOV) = 28 cm (S)/ 24 cm 
(P), matrix size 256 × 256 (S) / 224 × 224 (P), and sagittal slices 208 (S)/164 (P) to cover the entire brain 
with a slice thickness of  1.0 mm with no gap.

Diffusion-weighted images were acquired with 42 unique gradient directions (b = 1,000 sec/mm2). 
Eight images with no diffusion weighting (b = 0 sec/mm2) and one image with no diffusion weighting (b = 
0 sec/mm2) were acquired from the Siemens and Philips scanners, respectively. For the Siemens scanners, 
TE = 88 ms and RT = 13 s; for the Phillips scanners, TE = 56 ms and RT = 11 s. Voxel size for the Siemens 
scanners was 2 × 2 × 2 mm, and voxel size for the Phillips scanners was 1.96 × 1.96 × 2 mm. Seventy-five 
slices were collected for each diffusion-weighted and non–diffusion-weighted volume. Scanning time was 
approximately 12 minutes for T1-weighted and 10 minutes for diffusion-weighted acquisitions.

MRI data analysis
Structural MRI data. Cortical and subcortical ROIs were generated by segmenting a T1-weighted image using 
FreeSurfer (47). These included 70 cortical regions and 4 subcortical regions (caudate and putamen bilater-
ally). We chose to focus on the caudate and putamen subcortical structures based on observations from our 
cross-sectional structural connectivity study (20) and from the earlier Track-HD studies (3, 42) that show the 
caudate and putamen are the subcortical structures most affected in preHD both in terms of  gray matter vol-
ume and white matter connections. While some studies have shown changes in the thalamus, globus pallidus, 
and nucleus accumbens, in preHD, these tend to occur in preHD participants closer to disease onset (6, 43). 
Furthermore, automatic segmentation of  globus pallidus, nucleus accumbens, and amygdala are not suffi-
ciently reliable (44). The cerebellum was not included, as associated diffusion data was incomplete.

Diffusion tensor imaging data
Data preprocessing. For the diffusion data, the b = 0 image was used to generate a brain mask using FSL’s brain 
extraction tool (48). Eddy current correction was used to align the diffusion-weighted volumes to the first b=0 
image and the gradient directions updated to reflect the changes to the image orientations. Finally, diffusion 
tensor metrics were calculated, and constrained spherical deconvolution (CSD) was applied to the data as imple-
mented in MRtrix (49). FreeSufer ROIs were warped into diffusion space by mapping between the T1-weighted 
image and fractional anisotropy (FA) map using NiftyReg (50) and applying the resulting warp to each of the 
ROIs. A foreground mask was generated by combining FreeSurfer segmentations of white matter and gray mat-
ter. For the VCPs, 2 foreground masks were generated — one for the left hemisphere and the other for the right 
hemisphere — allowing investigation of intrahemispheric connectivity for each subcortical region.

Diffusion tractography. Whole brain probabilistic tractography was performed using the iFOD2 algorithm 
in MRtrix (49). Specifically, 5 million streamlines were randomly seeded throughout the white matter, in all 
foreground voxels where FA > 0.2. Streamlines were terminated when they either reached gray matter or exited 
the foreground mask. The spherical deconvolution informed filtering of tractograms (SIFT2) algorithm (28) was 
used to reduce biases. The resulting set of streamlines was used to construct the structural brain network.

For the VCPs, 5,000 streamlines were seeded for each voxel within the subcortical ROIs and termi-
nated when they reached the cortical mask or exited the hemisphere mask. The probability of  connec-
tivity between every seed voxel and every target region was established for each subject, and the data 
were stored as individual subject connectivity probability maps. The connectivity maps were first bina-
rized such that any voxel within the subcortical ROI with at least 1% of  streamlines reaching a given 
cortical target was regarded as being connected to that target. The number of  voxels connected to the 
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cortical target were then calculated and normalized by the sum of  the volumes of  the corresponding 
subcortical ROI and cortical target, providing a normalized estimate of  the volume of  the region con-
nected to the target. The procedure was repeated for all cortical targets, resulting in a vector describing 
the connectivity between the striatum and cortex for each subject.

Construction of  structural connectivity matrices. For structural connectivity matrices, ROIs were defined as 
connected if  a fibre originated in ROI 1 and terminated in ROI 2. Structural connections were weighted by 
streamline count and a cross-sectional area multiplier, as implemented in SIFT2 (28). Connections were 
then combined into 76 × 76 undirected and weighted matrices. As there is no consensus in the literature 
regarding the optimal graph thresholding strategy (51) and results can vary widely based on the chosen 
approach (52), SIFT2 was our preferred method of  bias correction. Indeed, the creators of  SIFT2 argue 
against the use of  graph theory thresholding, as it introduces an arbitrary threshold value (53). SIFT2 was 
chosen in preference to SIFT, as it requires much less processing time and retains the full connectome (28).

Modular organization
The cortex was split into distinct modules using the community Louvain algorithm (13) as implemented in 
the brain connectivity toolbox (BCT) (54) version 2016-01-16. This was performed on a group connectivity 
matrix created by averaging connectivity matrices across all participants. As module assignment can vary 
between runs of  the algorithm, the algorithm was run 1,000 times and the most common assignment cho-
sen using a consensus approach, also implemented in BCT. We chose the default resolution parameter γ = 
1, as this represents classic modularity. This resulted in a module partition number of  6. We also generated 
module partition numbers of  4 and 8 using γ = 0.6 and γ = 1.7, respectively, to ensure this parameter did 
not affect our key results (Supplemental Figure 1 and Supplemental Figure 2).

Statistics
All statistical analysis was performed in MATLAB v8.3. LMER was used as implemented in the MATLAB 
statistics and machine learning toolbox with the fitlme() function. An LMER was used, as it provides unbi-
ased estimates under the assumption that the missing data is ignorable. LMER accounts for the dependence 
due to repeated measures, and our application was similar to a previous approach used in a longitudinal 
HD imaging study (55). Suppose that Yij is the connection strength for the ith participant ( i = 1, ... , N) at 
the jth time point (j = 1, ... , ni), with time metric tij = visitij – 1, so that ti1 = 0 . Furthermore, groupi is a dummy 
variable taking the value of  0 if  a participant is in the control group and the value of  1 if  preHD. Then the 
LMER model was shown as Equation 1 below:

Yij = α + βtij + γ (groupi) + δ (groupi) (tij) + θXi + ai + bi tij + eij

where Greek letters denote fixed effects; α is the control group mean at the first visit, β is the control 
group linear slope, γ is the mean difference among the preHD and control groups at the first visit (dif-
ference of  intercepts), δ is the slope difference among the groups (rate of  change difference), Xi is the 
matrix of  covariates (age, sex, site, education) with associated regression coefficient vector θ; ai and bi are 
random effects (random intercepts and slopes), and eij is random error. Maximum likelihood methods are 
used for estimation under the assumption that the random effects have a joint-normal distribution with 
zero-means and nonsingular covariance matrix, and the random error is normally distributed with zero-
mean and constant nonzero variance. The objects of  inference in Equation 1 were γ and δ , with the for-
mer being the initial cross-sectional mean difference among the groups adjusting for the covariates and 
the latter being the group difference in the rate of  change (slope difference) adjusting for the covariates. 
The null hypothesis of  interest were H0: γ = 0 (no initial mean group difference) and H0: δ = 0 (no group 
difference in rate of  change), which were tested with the z-values of  z = γ ̂/SE(γ ̂) and z = δ ̂ / SE (δ ̂). FDR 
was applied for testing multiple connections in each connection subgroup (56).

A similar model as equation 1 was used to explore the association between connection strength and 
cognition in preHD, where the continuous baseline cognitive variable (ci) replaced the dummy group vari-
able in the LMER model (i.e., γci + δcitij). A global cognitive composite score (16) was chosen as the 
cognitive variable of  interest, as this encompasses many of  the cognitive tests that have been shown to be 
sensitive in HD (17) and, thus, provides an overall indicator of  cognitive function at the start of  the study.
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Connection subtypes
Connections were classed as cortico-striatal, defined as the sum of connection weights between the striatum 
(caudate and putamen) and cortical modules; interhemispheric, defined as connections between left and right 
cortical modules; intrahemispheric, defined as connections between cortical modules in the left and right 
hemispheres separately; and intramodular, defined as the sum of connection weights with cortical modules.

Shortest weighted path length and connection subtype in healthy controls
Connection length, defined as shortest weighted path length, was computed for every pair of  brain regions 
in the averaged healthy control brain network using the BCT (54). An illustration of  the shortest weighted 
path length from an example network is shown in Figure 3A. First, the weighted connectivity matrix was 
converted to a connection-lengths matrix where higher weights are interpreted as shorter lengths. This 
connection-lengths matrix is defined as the inverse of  the weighted connectivity matrix. Dijkstra’s algo-
rithm (57) was then used to calculate the shortest weighted path between each pair of  brain regions. The 
relationship between connection length and connection type was then investigated using a one-way ANO-
VA. Post-hoc analysis was then performed using the Tukey-Kramer test (58) in order to investigate if  the 
connection length for each connection subtype was significantly different from the connection length of  
other connection subtypes.

Shortest weight path length in healthy controls and rate of connection atrophy in preHD
Spearman correlations were performed in order to assess the relationship between shortest weighted path 
length of  a connection in healthy controls and connection atrophy in preHD both cross-sectionally and 
longitudinally. For each participant, age and sex where regressed out from connection strength measures 
and subsequent analysis was performed using the resulting residuals. In order to establish whether our 
findings were influenced by study site, a split-site analysis was carried out. Sites were split based on type of  
MRI scanner; cross-sectional analysis Leiden-Vancouver (Philips) 29 preHD and 36 controls, London-Paris 
(Siemens) 43 preHD and 49 controls, longitudinal analysis Leiden-Vancouver (Philips) 18 preHD and 25 
controls, London-Paris (Siemens) 38 preHD and 40 controls.

Cross-sectional analysis
For the cross-sectional analysis, a Z-score was calculated as follows:

Zc(i) = Ck(i) – μ (Ch[i]) / σ (Ch[i])
In this equation, i is the connection, k is preHD, h is healthy controls, C is connection strength, μ is mean, 
and σ is standard deviation. This was then transformed in order to produce positive atrophy measures 
between 0 and 1, using the following equation: 

ZC–T (i) = 1 / e–Z
C

(i) + e+Z
C

(i)

This approach has been used previously to model Alzheimer’s disease atrophy based on properties of  the 
healthy connectome (59). This resulted in a transformed Z-score for each connection for each preHD par-
ticipant. An average was then calculated across the preHD group, resulting in a single transformed Z-score 
for each connection, and these were correlated with shortest weighted path length for each connection, 
calculated from an average control group.

Longitudinal analysis
For each preHD participant and for each connection, a least squares line was fitted over the connection 
weights across time points and the rate of  connection atrophy defined as the gradient of  the least squares 
line. A Z-score was then calculated using the following equation:

ZR (i) = Rk (i) – μ (Rh[i]) / σ (Rh [i])
In this equation, R is the rate of  change of  connection strength. This was then transformed in order to pro-
duce positive rate of  atrophy measures between 0 and 1, using the following equation:

ZR–T (i) = 1 / e–Z
R

(i) + e+Z
R

(i)

This resulted in a transformed Z-score of  rate of  connection atrophy for each connection for each preHD 
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participant. An average was then calculated across the preHD group, resulting in a single transformed 
Z-score for each connection, and these were correlated with shortest weighted path length for each connec-
tion, calculated from an average control group.
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