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Abstract: Alzheimer’s disease (AD) is a mostly sporadic brain disorder characterized by cognitive
decline resulting from selective neurodegeneration in the hippocampus and cerebral cortex whereas
Huntington’s disease (HD) is a monogenic inherited disorder characterized by motor abnormalities
and psychiatric disturbances resulting from selective neurodegeneration in the striatum. Although
there have been numerous clinical trials for these diseases, they have been unsuccessful. Research
conducted over the past three decades by a large number of laboratories has demonstrated that
abnormal actions of common kinases play a key role in the pathogenesis of both AD and HD as
well as several other neurodegenerative diseases. Prominent among these kinases are glycogen
synthase kinase (GSK3), p38 mitogen-activated protein kinase (MAPK) and some of the cyclin-
dependent kinases (CDKs). After a brief summary of the molecular and cell biology of AD and HD
this review covers what is known about the role of these three groups of kinases in the brain and
in the pathogenesis of the two neurodegenerative disorders. The potential of targeting GSK3, p38
MAPK and CDKS as effective therapeutics is also discussed as is a brief discussion on the utilization
of recently developed drugs that simultaneously target two or all three of these groups of kinases.
Multi-kinase inhibitors either by themselves or in combination with strategies currently being used
such as immunotherapy or secretase inhibitors for AD and knockdown for HD could represent a
more effective therapeutic approach for these fatal neurodegenerative diseases.

Keywords: neurodegenerative diseases; cell cycle; Tau; Aβ; huntingtin; neuroinflammation; drug dis-
covery

1. Introduction

Alzheimer’s disease (AD) is a mostly sporadic brain disorder characterized by pro-
gressive cognitive decline resulting from neurodegeneration that starts in the entorhinal
cortex and progresses to the hippocampus and large portions of the cerebral cortex [1–4]. In
contrast, Huntington’s disease is a monogenic inherited disorder characterized by progres-
sive motor deficits and psychiatric disturbances resulting from neurodegeneration largely
localized to the striatum and to a lesser extent specific neuronal populations in the cerebral
cortex [5–7]. It is generally believed that neurodegeneration in AD is caused by elevated
levels of an abnormal form of the amyloid-β (Aβ) peptide, Aβ42, that forms extracellular
oligomers and aggregates, and the hyper-phosphorylation of the microtubule-associated
protein Tau, promoting its disassociation from axonal microtubules and deposition in insol-
uble neurofibrillary fibrillary tangles [1–4]. Oligomeric forms of both Aβ42 and Tau affect
synaptic function and neuronal survival. Additionally, glial cells also become dysfunc-
tional contributing to disease pathogenesis. HD is caused by the abnormal expansion of a
polyglutamine (polyQ) stretch within the N-terminal region of the huntingtin (Htt) protein
resulting in its misfolding. Although how the production of mutant polyQ-expanded
Htt (or mut-Htt) causes neurodegeneration is unresolved, the consensus view is that the
mut-Htt protein is abnormally phosphorylated, proteolytically cleaved and aggregates
of the N-terminus fragment of the cleaved protein accumulate in the nucleus disrupting
transcription. Aggregates of mut-Htt are also found in the cytoplasm where they are
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disrupt a variety of cellular processes [5–7]. Although with different etiologies (largely
sporadic versus strictly genetic) and affecting largely non-overlapping neuronal popula-
tions resulting in distinct clinical features, the two diseases (and many other age-associated
neurodegenerative diseases) share a variety of molecular and cellular commonalities. In
addition to abnormal protein aggregation, these include mitochondrial dysfunction, el-
evated oxidative stress, endoplasmic reticulum (ER) stress, deregulation of autophagy,
and abnormal post-translational modifications resulting from deregulated activity and
functioning of the enzymes that mediate these modifications that in turn impact the func-
tioning of other enzymes, macromolecules and cellular processes not just in neurons, but
glial cells also. Additionally, aberrant activation of astrocytes and microglia induce the
release of toxic cytokines that injure neurons. Among the enzymes that have been most
convincingly implicated in the pathogenesis of neurodegenerative diseases are protein
kinases, a family of about 500 proteins, most of which fall into two types-serine/threonine
kinases, which phosphorylate serines and/or threonines in their target protein, and the
tyrosine kinases. Among the hundreds of serine-threonine protein kinases, only a small
number have been seriously implicated in the pathogenesis of neurodegenerative dis-
eases and within this group, less than a dozen common kinases have been described to
play a key role in diverse neurodegenerative disease with distinct etiologies. Prominent
among these are glycogen synthase kinases (GSKs), the mitogen-activated protein kinases
(MAPKs) and the cyclin-dependent kinases (CDKs). This review focuses on these three
kinases and their contributions to the pathogenesis of AD and HD. The review starts with
a brief overview of AD and HD, focusing on the cellular and molecular abnormalities. A
summary of the properties of each of the three kinases is then described before reviewing
evidence for their involvement in each of the two neurodegenerative disease, and their
merits as targets for the development of therapeutics for the diseases. Although much of
the currently-developed therapeutic approaches for AD target Aβ or Tau [8,9] and mut-Htt
for HD [10], this review aims to impress upon the reader that the neuropathological action
of these proteins requires or is regulated by the three kinases that the review focuses on
and makes the case for targeting these kinases, possibly in combination with approaches
that are currently being clinically tested, such as genetic knockdown or immunotherapy.

2. The Diseases
2.1. Alzheimer’s Disease

AD is a predominantly sporadic disorder with several risk factors the best defined
of which are aging as well as mutations and variations of a large number of suscepti-
bility genes, among which the most studied and accepted are expression of the ApoE4
(apolipoprotein E4) isoform and mutations in TREM2 (triggering receptor expressed on
myeloid cells-2), a protein expressed within the brain by microglia [1–4]. For a compre-
hensive listing and description of the susceptibility genes for AD the reader is referred
to a review by Verheijen and Sleegers [11]. In ~4% of the total cases, however, AD is
familial, caused by mutations in genes including those encoding Aβ precursor protein
(APP), presenilin-1 (PS1) and presenilin-2 (PS2) [1,2]. APP is the protein from which Aβ

peptide is derived from by proteolysis while PS1 or PS2 are the catalytic components of
the γ-secretase complex, which along with b-secretase/BACE1, cleaves APP to produce
Aβ. Altered activities of BACE1 and γ-secretase in AD results in increased production of
Aβ. This along with reduced proteolytic degradation of Aβ extracellularly by proteases,
such as insulin-degrading enzyme (IDE) and neprilysin, results in its accumulation as neu-
rotoxic Aβ oligomers and fibrils [12,13]. Amyloid plaques, a neuropathological hallmark
of AD composed of insoluble deposits of Aβ aggregates are widely believed to represent
sites at which oligomeric Aβ species are sequestered as a protective mechanism against
their toxicity [14]. Hyperphosphorylation of Tau results in its disassociation from axonal
microtubules leading to destabilization of microtubules, thus affecting axonal structure
and transport [14,15]. Disassociated Tau forms neurotoxic fibrils and insoluble fibrillary
tangles (NFTs) in the cytoplasm of neurons representing another neuropathological hall
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mark of AD [15]. Although the three AD-causing genetic mutations are linked to Aβ syn-
thesis, NFTs are more closely correlated with cognitive impairments [15,16]. Furthermore,
although neuronal death is the defining feature of the disease, it is synaptic degeneration
and dysfunction that initiates cognitive impairment the clinical feature that best character-
izes AD [17–20]. The accumulation of extracellular Aβ plaques triggers the activation of
microglia and astrocytes that release inflammatory cytokines. Although with the purpose
of eliminating the plaques, chronic release of inflammatory cytokines, a process referred to
as neuroinflammation, promotes synapse elimination and neuronal death [21,22]. The AD
susceptibility genes, ApoE and TREM2, respectively, contribute to the clearance of Aβ and
reducing neuroinflammation, respectively, providing an explanation for why variant and
mutant isoforms deficient in these functions increases the risk for AD [23–25]. Dysfunction
of astrocytes and microglia also contribute to deregulation of glutamate homeostasis, re-
sulting in the elevation of extracellular glutamate and the triggering of excitotoxicity in
neurons through the overactivation of NMDA receptors, a subtype of ionotropic glutamate
receptors [26]. Since astrocytes contribute to Aβ catabolism, astrocyte dysfunction could
contribute to the pathogenic accumulation of Aβ [26]. Additionally, while astrocytes and
microglia ultimately cause neuroinflammation, under normal circumstances these cells
secrete cytokines that support the survival and functioning of neurons, a function which is
lost when these cell types become functionally compromised [26,27]. Although less studied
than astrocytes and microglia, emerging evidence suggests that impaired functioning of
oligodendrocytes and their progenitor cells (which remain through adulthood) may also
play a causal role in AD. For example, breakdown of myelin is enhanced in AD, occurs early
in the diseases process and has been found to correlate with the spreading of NFTs [28–31],
and both oligodendrocytes and oligodendrocyte progenitor cells (OPCs) phagocytose Aβ a
function that is impacted in AD [32]. One recent study described that oligodendrocytes
may facilitate the spread of pathogenic Tau in the brain even in the absence of neuronal
Tau [33]. Taken together, although the overwhelming focus on Aβ and Tau pathology has
led to a neuron-centric model for AD pathogenesis, findings from more recent research
is making it increasingly clear that dysfunction of glial cell types is also an important
contributor.

Another widely described pathogenic event in AD is the aberrant entry of neurons
into the cell cycle leading to mitotic failure and death [34–39]. Although the significance of
aberrant cell cycle entry to the triggering of AD is still to be fully resolved, it is considered
by many to be, along with Aβ and Tau pathology, a third major cellular abnormality un-
derlying neurodegeneration in AD (and several other neurodegenerative diseases). Several
lines of evidence support this conclusion, including the activation of cell cycle promoting
cyclin-dependent kinases (CDKs) and cyclins, misregulation of other cell cycle regulatory
proteins, including retinoblastoma protein (Rb), CDC25 phosphatases, and the increase in
aneuploidy and mitotic morphology in degenerating neurons and areas of the brains of AD
mice and patients [35,36,40–43]. It has been suggested that aneuploidic neurons can survive
in the brain for many years but selectively die during aging providing an explanation for
the late-onset neurodegeneration [34,44]. Work in mice has revealed that increase in cell
cycle markers precedes the elevation in Aβ and Tau hyperphosphorylation [45]. Consistent
with a causal role for cell cycle entry, CDK inhibitors block neuronal death in cell culture
models of AD (Rao et al., 2020; Herrup 2012).

Although the precise mechanisms and extents of contribution remain unclear, it is
widely accepted that oligomeric Aβ and hyperphosphorylated Tau fibrils along with exci-
totoxicity, neuroinflammation and abortive cell cycle entry and a variety of other cellular
disturbances, including impaired cholinergic signaling [46], ER stress [47,48], disrupted au-
tophagic clearance of protein aggregates [49–53], mitochondrial dysfunction [54], oxidative
stress [55], and deregulation of iron metabolism [56] combine to cause progressive synaptic
failure and neuronal death in the AD brain.

There are no effective disease-modifying drugs for AD with existing medications,
primarily acetylcholine esterase inhibitors and the NMDA receptor antagonist, meman-
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tine, serving to modestly relieve symptoms [57]. Clinical trials conducted so far aimed at
developing disease-modifying therapies have all been unsuccessful. Recent studies have
concluded that molecular changes in the AD brain begin decades before neuropathology
and behavioral deficits are displayed by patients indicating that therapeutic intervention
must be delivered early in the disease process for effectiveness [58,59]. In this regard it is
noteworthy that much of the recent efforts at developing disease-modifying therapies for
AD have focused on Aβ and Tau and include immunotherapy, drugs to reduce Aβ produc-
tion or increase clearance, and drugs to inhibit Tau phosphorylation or polymerization, but
these have yet to show success in the clinic [57,60,61]. Given the evidence that abnormal
activation of kinases, such as GSK3, p38 MAP kinase and CDKs is an early and critical
event in the disease process [62,63] that precedes Aβ and Tau oligomerization/fibrillization
and actually contribute to it, stronger emphasis must be placed on the development of
kinase inhibitors that may be utilized along with Aβ and Tau-targeted therapies.

2.2. Huntington’s Disease (HD)

HD is an autosomal dominant, progressive and fatal neurodegenerative disease caused
by the abnormal expansion of a CAG trinucleotide repeat located in exon 1 of the Htt gene
resulting in the expansion of a polyglutamine stretch in the N-terminus region of the Htt
protein, rendering the mutant protein prone to misfolding [5–7]. Wild-type Htt is a large
protein (~350 kD) present in both the cytoplasm and nucleus where it interacts with a large
number of proteins [64]. Htt plays a critical role during embryogenesis and, consistent
with the large repertoire of interacting-proteins, is involved in numerous cellular processes
postnatally including regulation of transcription [65], nucleocytoplasmic trafficking [66], ax-
onal transport [67], DNA repair [68], autophagy [69], mitophagy [70] and cell division [71].
Although mut-Htt (like wild-type Htt) is expressed ubiquitously, HD is characterized by
selective degeneration of medium-spiny neurons (MSNs) of the striatum and, to a lesser
extent, pyramidal neurons in specific layers of the cortex [5]. Mut-Htt forms oligomers
and large aggregates in the nucleus and cytoplasm that disrupt neuronal function and
promote degeneration in vulnerable brain regions. Although not well studied, neuronal
loss and pathology has also been described in the hippocampus, thalamus and cerebellum
in HD [72]. Convincing evidence indicates that mut-Htt oligomers are the toxic species
whereas the aggregates that form inclusions may be protective [73–75]. It is generally rec-
ognized that both loss of normal function and acquisition of a toxic function by the mutant
protein are involved in HD pathogenesis although the underlying molecular mechanisms
remain largely unresolved. Dysregulation in neurotransmitter systems, including the glu-
taminergic, GABAergic and dopaminergic systems have been documented in HD mouse
models and patients [76,77]. A role for mitochondrial dysfunction and oxidative stress has
been amply documented [5,78,79]. A major cause of synaptic and neuronal loss in HD is ex-
citotoxicity resulting from glutamate dyshomeostasis [77]. Chronic activation of microglia
and astrocytes and the presence of neuroinflammation is a consistent feature of HD [80–82].
It is known that mut-Htt promotes release of inflammatory cytokines from astrocytes and
microglia [83,84]. As observed in AD and several other neurodegenerative diseases, ab-
normal immune system activation has been documented in HD patients and mice leading
to the elevation of IL-6 and other inflammatory cytokines and this has been reported to
occur even before the appearance of diseases symptoms suggesting that immune system
dysfunction contributes to brain pathology [84,85]. Interestingly, the cytokines released in
HD are fewer and more localized within the striatum and other brain regions than the more
general pattern seen in AD and other neurodegenerative diseases [85]. Whether neuroin-
flammation triggers development of neuropathology and behavioral deficits in HD has yet
to be firmly established, there is wide consensus that neuronal death during the diseases
provokes an neuroinflammatory response that exacerbates neurodegeneration [5,82].

While clearly a consequence of polyQ-expansion, other regions within the Htt pro-
tein and post-translational modifications within them are critically involved in regulating
disease pathogenesis. Most studied in this regard is the N-terminus region of the protein
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containing the polyQ expansion. The highly-conserved 17 amino acids before the polyQ
stretch, referred to as N17, which targets Htt to different subcellular compartments and
regulates its folding, protein-protein interactions and clearance, is phosphorylated at three
residues Thr3, Ser13 and Ser16 [86–88]. Phosphorylation at Ser13 and Ser16 is reduced in
polyQ-expanded Htt whereas replacement of these two residues with phosphomimetic
residues inhibits aggregation and neurotoxicity by mut-Htt both in tissue culture and in
mice [86,87]. Initial studies pointed to IKKβ as being the kinase that phosphorylates Ser13
and Ser17 [86] although a subsequent study reported that the phosphorylating kinase is
Casein Kinase-2 (CK2) [89]. Similarly, phosphorylation of Thr3 by IKK reduces aggregation
and neurotoxicity of mut-Htt in cultured cells and in Drosophila [88,90]. Additionally, dereg-
ulations in signaling pathways cause disease-associated posttranslational modifications
in other proteins within neurons, including DARP32 (dopamine and cAMP-regulated
phosphoprotein), Tau, the CREB transcription factor, the mitochondria fission regulating
protein Drp1 (dynamin-related protein 1), and several others [91]. The deregulations in
many signaling pathways occur prior to mut-Htt aggregation and some evidence indicates
that they play a key role in promoting mut-Htt aggregation and disease pathogenesis [91].

An accumulating body of evidence supports a role for Tau dysregulation in HD disease
pathogenesis. Tau phosphorylation is increased in vulnerable regions of the brains of HD
mice and patients where it accumulates in aggregates [92–96]. Additionally, and as a result
of splicing alterations, the expression levels of specific Tau isoforms are changed in HD
brain tissue causing disruption of the nuclear membrane [97,98]. Based on the documented
Tau pathology in HD several investigators have referred to HD as a tauopathy, placing it in
the same disease category as AD [99–102].

Although a monogenic disorder caused by a single mutation (trinucleotide expansion)
in a gene identified about 30 years ago and the availability of a variety of invertebrate
and rodent models, HD remains without disease-modifying therapies. Clinical trials that
have targeted intracellular alterations such as mitochondrial dysfunction, reactive oxygen
species (ROS) accumulation and oxidative damage, neurotransmitter systems, and path-
ways that modify mut-Htt modifications and aggregation has so far been ineffective. Some
studies have described neuroprotection by histone deacetylase-3 (HDAC3)-selective in-
hibitors, both in cell culture and mouse models of HD [103–107]. Based on the finding that
knockdown of Htt in adult HD mice has no obvious adverse effects, much of the current
therapeutic focus has been on approaches that lower Htt/mut-Htt expression [108,109].
These approaches include ones targeting expression at the mRNA level, including an-
tisense oligonucleotides (ASOs) and RNA interference or at the DNA level, including
CRISPR-Cas9, transcription activator-like effector nuclease (TALEN) and zing-finger pro-
teins (ZNFs) [108,109]. Based on bioinformatic analyses, allele-selective ASOs have recently
been developed that knockdown mut-Htt allele selectively. Although a promising avenue,
the issue of off-target effects of the ASOs and other Htt-knockdown approaches in hu-
mans is a concern. A recent report described the identification of a chemical that binds
expanded CAG tracts and promotes contraction of the repeats, which could have value in
the treatment of HD and other CAG-repeat expansion disorders [110,111].

3. The Enzymes
3.1. (A) GSK3

GSKs, a family of three serine-threonine protein kinases—GSK1, GSK2 and GSK3—
were identified by their ability to phosphorylate glycogen synthase, the rate limiting
enzyme of glycogen metabolism [112–114]. GSK3 is the best studied of the GSKs, which is
known to regulate a variety of cellular functions besides glucose metabolism. As in much
of the literature, for the rest of this review GSK refers to the GSK3 protein. Two paralogs,
commonly referred to as isoforms, of GSK3 are produced from separate genes: GSK-3α
and GSK3β with molecular weights of 51 kDa and 47 kDa, respectively [115]. The two
isoforms share ~95% amino acid identity and are therefore thought to phosphorylate many
of the same proteins. Although involved in common functions, GSK3α and GSK3β have
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non-overlapping functions best exemplified by the finding that knockout of GSK3β in mice
generally results in embryonic lethality whereas global knockout of GSK3α results in viable
animals although these mice develop age-related pathologies and a slightly shortened
lifespan [116–118]. Specific non-overlapping functions for the two GSK isoforms in the
brain have been described [119–122]. GSK3 is unusual among protein kinases in that it is
generally constitutively-active making its inhibition, rather than activation, the primary
mode of its regulation [123]. Alterations in GSK3 activity depends on the extent of phos-
phorylation of Ser-9 in GSK3β (or Ser-21 in GSK3α) which inhibits constitutive activity, and
the phosphorylation at Tyr216 of GSK3β (Tyr279 of GSK3α) which restores and increases
enzyme activity. Phosphorylation at other residues also contributes to increased GSK3
activity. In addition, GSK3 activity and function depend on its subcellular localization,
the subcellular localization of its substrates, the level of its substrates, and its inclusion
in multi-protein complexes that can control access to its substrates [123]. It has been re-
ported that the activity of GSK3 can be increased through cleavage by calpains [124–127]
and matrix metalloproteinase-2 [128] and inhibited by mono-ADP-ribosylation [129,130],
acetylation [131,132] and citrullination [133]. Although largely a cytosolic protein, GSK3
is present in the nucleus and mitochondria. In the nucleus, phosphorylation by GSK3
modulates the activities and functions of many transcriptional regulators, many of which
are known to promote neurodegeneration, including c-jun [134,135], HDAC3 (histone
deacetylase-3) [136], HDAC4 [137] and DNMT1 (DNA methyltransferase-1) [138]. In con-
trast to most other kinases, the substrates of GSK3 generally (but not always) need to
phosphorylated by another kinase before they are phosphorylated by GSK3 [123]. Despite
this requirement, GSK3 is believed to phosphorylate more substrates than any other protein
kinase with over 100 substrates being identified in biochemical studies and a much larger
number based on computational analyses [139,140].

3.1.1. GSK3 in the Brain

GSK3α and GSK3β are differently-regulated during brain development with GSK3β
being highly expressed during neurogenesis while GSK3α is poorly expressed during
that period. In the mature brain GSK3β is widely present whereas GSK3α shows a more
restricted pattern of expression with highest expression in in the cerebral cortex, striatum
hippocampus, and Purkinje cells of the cerebellum [141]. Likely because of it abundance
and widespread expression in the brain and the prenatal lethality of GSK-3α knockout mice,
research on the role of GSK3 in the brain have until recently focused almost exclusively
on GSK3β. Multiple roles have been proposed for GSK3β in the adult brain including the
negative regulation of neurogenesis in the hippocampus [142–144], regulation of synaptic
plasticity, learning and memory [145–148], and stimulation of the inflammatory function
of microglia [149–151]. While with multiple beneficial functions, elevated GSK3 activity
promotes death of neurons in culture [152–154] and in the brains of mice [155].

3.1.2. Roles of GSK3 in AD

GSK activity is upregulated in the hippocampus of AD patients and is associated
with phosphorylated Tau and NFTs [156,157]. Several studies have established that Tau
phosphorylates GSK3 at multiple disease-relevant sites in mouse models of AD and in the
patient brains, and is a central kinase in Tau hyperphosphorylation causing disassociation
of Tau from microtubules and fibrillization [15,158–161] (Figure 1A). GSK3 has also been
reported to stimulate Aβ production whereas its pharmacological inhibition or knockdown
reduces processing of APP to Aβ [161–164] (Figure 1A). Consistently, GSK3 over-activation
can increase the activity of PS1 [165–167] and the expression of BACE1 [168,169]. Elevated
Aβ activates GSK, which then through increased processing of APP also produces more
Aβ resulting in a positive-feedback loop. Aβ-mediated GSK3 activation also increases
Tau phosphorylation and induces its fibrillization linking Aβ to Tau dysfunction via
GSK3 [170,171]. Inhibition of GSK3 reduces Aβ levels, tau hyperphosphorylation, and
cognitive deficits in mice [15,158] (Figure 1A).
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Figure 1. Effects of elevated GSK3, p38 MAPK and CDK5 activity in models of AD. (A) GSK3 increases Aβ levels by
activating PS1 [165–167] and increasing the expression of BACE1 [168,169], impairs Aβ and Tau clearance by inhibiting
autophagy [172,173], promotes neuroinflammation [147,149,151,174], depresses LTP [175], and negatively regulates synaptic
plasticity and learning/memory [176,177]. Through E2F1 phosphorylation, GSK3 promotes abortive cell cycle entry [178,179]
and by phosphorylation Tau causes its disassociation from microtubules and assembly into fibrils and NFTs [15,158–161].
GSK3 also inhibits adult neurogenesis and promotes neuronal death in the hippocampus [143]. Although inhibiting
GSK3 protects in experimental models of HD, less is known about the mechanism by which elevated GSK3 activity
promotes neuronal death in HD. Several lines of evidence indicate that GSK3 activates HDAC3-mediated neurotoxicity
through its phosphorylation [106]. GSK3 also activates caspase-3, phosphorylates Tau, promotes neuroinflammation
and causes cognitive impairment in HD models [180]. (B) In astrocytes and microglia p38 MAP promotes release of
inflammatory cytokines resulting in chronic neuroinflammation and consequently to neurodegeneration [181–183]. Within
neurons p38 has been shown to have several effects that promote neurodegeneration including the activation of apoptotic
signaling pathways [182,184–186], the phosphorylation of Tau [187–189], the phosphorylation of E2F1 [190,191], inhibition
of LTP [192–194], the promotion of excitotoxicity through activation of the NMDA glutamate receptor [195–197], and the
inhibition of autophagy through the phosphorylation of the ULK1 complex [198–200], which impairs the ability of neurons
and glial cells to clear Tau and Aβ aggregates. It should be noted that the actions depicted in the figure pertain to p38α,
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p38β and p38δ MAPK, and most specifically to p38α. In contrast to the other p38 MAPKs, p38γ is believed to have
neuroprotective actions in the context of AD. Although inhibiting p38 MAPK promotes neurodegeneration in HD by acting
both in neurons and in glial cells, the mechanisms involved are unclear. Most emphasis has been placed on the mechanisms
by which p38 MAPK activity is increased in HD. (C) Not shown in the figure are the actions of cell cycle-promoting CDKs,
which are aberrantly activated in neurons in the AD brain resulting in an abortive entry into the cell cycle culminating
in cell death [34–36,201–203]. Cell cycle promoting CDKs also promote neurodegeneration by other mechanisms, such as
increasing APP processing and inhibiting autophagy [204]. Of the CDKs, CDK5 is most involved on AD. By stimulating
PS1 and BACE1 activity, CDK5 increases Aβ levels by both transcriptional mechanisms and through PS1 and BACE1
activation [205–207]. Elevated Aβ, through activation of CDK1, 2 and 4, leads to the phosphorylation of lamins and nuclear
membrane damage [208]. CDK5 is also a major Tau kinase and causes Tau dysfunction [209]. Through phosphorylation
of Vps35, CDK inhibits autophagic clearance of Aβ and Tau [204,210,211]. CDK5 produces neuroinflammation both by
promoting neuronal death and more directly by stimulating lysophosphatidylcholine release from glia [212]. CDK5 also
plays a key role in HD pathogenesis by inducing mitochondrial fission [213], generating oxidative stress and promoting
excitotoxicity [214,215], by the aberrant phosphorylation of DARPP32 [216], by increasing expression of the pro-apoptotic
protein, c-jun [217], and increasing activity of specific cell cycle-promoting CDKs through the stimulation of expression of
their cognate cyclins [218].

As described above, an important cellular mechanism that is impaired in AD is
autophagy, a process that degrades and clears misfolded and aggregated proteins as well
as other dysfunctional macromolecules and organelles. In the context of AD, impaired
autophagy is thought to be responsible in major part for the accumulation of Aβ and
Tau aggregates [50,52]. Not surprising, drugs that activate autophagy have been found
to be neuroprotective in cell culture and mouse models of AD [172,219–221]. GSK3 is a
well-established inhibitor of autophagy and some studies have shown that inhibitors of
GSK3 reduce AD pathology by stimulating autophagy [172,173].

In addition to directly promoting neuronal death in neurons, GSK3 promotes neu-
roinflammation in AD though the regulation of the expression and release of harmful
cytokines from glial cells [147,149,151,174]. Adult neurogenesis, which serve to replace
neurons, is sharply reduced in the AD hippocampus exacerbating the loss of hippocampal
function [143]. This reduction of neurogenesis in AD has been found to be GSK3-dependent.
Inhibiting GSK3 promotes neurogenesis and reduces neuronal death in the adult hippocam-
pus [142]. In sum, convincing results indicate that GSK3 activation occurs early in the
disease process and promotes all the major pathogenic changes that cause or contribute to
AD pathogenesis [62,222–224] (Figure 1A).

3.1.3. GSK3 as a Therapeutic Target in AD

Several brain-penetrant GSK3 inhibitors have been evaluated in cell culture, slice and
animal models of AD. A number of laboratories have tested lithium, a drug commonly
used in the treatment of bipolar mood depression but known to inhibit GSK3 [225,226].
Lithium administration inhibits GSK3 in mouse models of AD and promotes Aβ and Tau
neuropathology, facilitates LTP (long-term potentiation) induction and improves cognitive
performance [175,227–229]. Lithium also reduces neuronal dysfunction in an Drosophila
model of AD in which Aβ is inducibly-overexpressed in adult flies [230]. However, lithium
is a poor drug candidate for use in humans because of its narrow therapeutic window and
serious side effects, including neurotoxicity, particularly in the elderly [231–233]. Lithium is
also known to inhibit other enzymes and that its beneficial effects in AD mice is due to inhi-
bition of GSK3 has yet to be established [234,235]. Despite its limitations, lithium has been
tested in patients with mild cognitive impairment (MCI) and AD with confusing results.
While a couple of studies found slight improvement in cognitive function [236,237], others
studies reported no improvement or even an increase in dementia [238–240]. Tideglusib
(also referred to as NP12 or NP031112) is another selective GSK3 inhibitor that reduces
Tau phosphorylation, decreases Aβ deposition, inhibits plaque-associated gliosis, protects
neurons in the entorhinal cortex and hippocampus against cell death, and reduces memory
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deficits in AD mice [176]. Although tideglusib was well-tolerated in AD patients, it dis-
played no clinical benefit in an initial safety study and a Phase-II trial [241,242]. A GSK3
inhibitor developed by AstraZeneca, AZD1080, reduces Tau hyperphosphorylation in rats
and synaptic plasticity deficits in rodents but was abandoned in Phase II trials because of
severe side effects [243,244]. Given the impressive effects of GSK3 inhibitors in a variety
of in cell culture and preclinical studies, the lack of efficacy in AD patients is surprising.
It is likely that treatment in patients requires initiation of treatment earlier in the disease
process. Alternatively, it is possible that the complex mechanisms of AD pathogenesis
in humans will require the simultaneous targeting of multiple molecules, including but
not limited to GSK3. The strategy of combinatorial drug therapy is well-accepted in the
treatment of cancer [245–247].

Another highly potent GSK3 inhibitor developed by AstraZeneca belonging to the
pyrazine class and with excellent drug-properties, AZD2858, was effective at reducing
Tau phosphorylation and gliosis in the hippocampus but did not proceed to clinical trials
because of failure to pass preclinical toxicology studies [243]. A recent study described
that a GSK inhibitor developed by Sanofi, SAR502250, reduced Tau hyperphosphorylation
in the cortex and spinal cord in P301L human transgenic mice [248]. Additionally, this
compound protected against neuronal loss resulting from Aβ treatment and reduced
cognitive impairment in two separate mouse models of AD, a transgenic mouse model and
the Aβ-infusion model [248]. The effect of SAR502250 on Aβ or Tau neuropathology or on
neuroinflammation was not examined in this study and therefore how it exerts its beneficial
effects have yet to be determined. A thiazole GSK3 inhibitor, AR-A014418, inhibits tau
phosphorylation and is neuroprotective in cell culture and inhibited Aβ neurotoxicity in
hippocampal slices [249]. AR-A014418 also reverses axonal transport defects and behavioral
deficits in Tau-overexpressing Drosophila [250]. However, another study conducted in
young rats reported that AR-A014418 did not inhibit Tau phosphorylation [251]. Chronic
low-dose administration of another GSK3 inhibitor, AM404, reduced Aβ production, tau
hyperphosphorylation, neuroinflammation and cognitive impairment in AD mice [244,252].
However, at higher doses this compound had detrimental effects on brain function [253].

Among other GSK3 inhibitors that have been tested to a limited extent in AD-related
models are a set of isonicotinamides, which reduce Tau activity in triple-transgenic AD
mice [254]. In another study several GSK3 inhibitors belonging to the aminopyrimidine,
indurubin, alsterpaullone, thiazole classes were tested for their ability to suppress phospho-
rylation of Tau at Ser-396 in normal rats, increased phosphorylation of which is associated
with AD [251]. It was found that CHIR98014, an aminopyrimidine, reduced Tau phospho-
rylation in the cortex and hippocampus, while two other GSK3-inhibiting compounds, an
alsterpaullone and SB216763, reduced phosphorylation only in the hippocampus suggest-
ing region-specific regulatory mechanisms for Tau phosphorylation, including differences
in the pattern of Tau phosphorylation or the involvement of another kinase or phosphatase
in one brain region and not another. Another study described that SB216763, an ATP
competitive-inhibitor of GSK3, protected against neuronal damage resulting from intracere-
broventricular infusion of Aβ in mice, but had very modest effects on gliosis and behavioral
deficits [255]. Surprisingly, in control mice SB216763 induced inflammation and behavioral
deficits possibly due to inhibition of constitutive GSK3 activity [255]. Antisense oligonu-
cleotides against GSK3β have also been tested in SAMP8 mice, which display accelerated
aging along with increased Aβ levels, Tau hyperphosphorylation, neuroinflammation and
cognitive deficits and have hence been used as a model of AD [177,256,257]. Knockdown
of GSK3β reduced oxidative stress in the brain and improved learning and memory of
SAMP8 mice [177].

3.1.4. Roles of GSK3 in HD

Although predominantly cytosolic, GSK3 accumulates and co-localizes in lipid rafts
with mut-Htt in cultured neurons and in presymptomatic HD mice, an alteration that has
been suggested to contribute to disease development [258]. While the striatum and the
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cortex are the most affected brain regions in HD, neuronal loss and dysfunction in the
hippocampus has also been described [259–262] An upregulation of GSK3β expression
(mRNA and protein) and activity has been observed in the hippocampus of both HD mice
and patients and in [180]. In HD mice the increase in GSK3β induces Tau phosphorylation
and caspase-3 activation in the dentate gyrus leading to neuronal death [180]. Other studies
have also described GSK3-mediated Tau phosphorylation and aggregation in HD, raising
the possibility of common pathogenic mechanisms in HD and AD, at least with relation to
Tau [92]. In addition to its actions in neurons, increased GSK3β expression and activity is
observed in astrocytes within the hippocampus where it promotes release of inflammatory
cytokines [180]. Although the mechanism of increased GSK3 activity has not been studied,
it is possible that it is a consequence of reduced activity of Akt in the HD brain [263]. It
is well-established that phosphorylation of GSK3 by Akt inhibits its activity in vitro and
in vivo [264,265].

3.1.5. GSK3 as a Therapeutic Target in HD

Pharmacological inhibitors of GSK3 or expression of a dominant-negative form of
GSK3β are neuroprotective in cell culture models of HD [106,258,266]. An important
target of GSK3 is HDAC3, a protein that is required for the neurotoxic effect of mut-Htt
in cultured neurons [106,107] and promotes neurodegeneration and behavioral deficits in
HD mice [103–105]. Inhibition of GSK3 using pharmacologically or through expression
of a dominant-negative construct inhibits both HDAC3 and mut-Htt toxicity in cultured
neurons [106]. In vivo protection by GSK3β was reported in a C. Elegan model of HD,
although the inhibitor used in the study was lithium, which as described above, has
other cellular targets [267]. Chronic treatment of HD mice with lithium produces variable
effects with some mice displaying marked improvement in motor function whereas other
mice do not [268]. Life span was not extended by lithium treatment in any of the mice.
Another study described substantial benefit of lithium in HD mice only when it was co-
administered with valproic acid, which itself has multiple targets, including the inhibition
of HDACs [269–271]. A similar requirement was described in another study that reported
additive protective effects of lithium and the mTOR inhibitor, rapamycin, in a Drosophila
model of HD [272]. These results suggest that multiple signaling molecules and pathways
may be involved in HD pathogenesis and full rescue would therefore require inhibiting
multiple targets.

In contrast to the conclusions of the aforementioned studies, the results of a few other
studies indicate that GSK3 plays a neuroprotective role in HD. One study described re-
duced GSK3 activity in the striatum of HD mice and patients [273]. This study showed that
moderate overexpression of GSK3β in the striatum of HD mice attenuates brain atrophy,
motor impairment and cognitive deficits [273]. One study described that elevation in
glycogen synthase activity leading to increased glycogen synthesis results in enhanced
autophagic flux which protects against mut-Htt toxicity in cell culture models [274]. Al-
though this would suggest that an increase in GSK3 activity would be neuroprotective,
whether this is the case was not examined in the study. Whether some of these differences
with regard to toxicity versus neuroprotection are due to opposing actions of the two GSK3
isoforms and/or selectivity of antibodies used with regard to the two isoforms is unclear.

3.2. (B) p38 MAPK

Along with the two other families of mitogen-activated protein kinases (MAPKs),
JNKS (c-jun N-terminal kinases) and ERKS (extracellular signal-regulated kinases), the
p38 MAPKs are enzymes that regulate cellular responses to a wide range of extracellular
signals [275,276]. p38 MAPKs were previously referred to as stress-activated protein ki-
nases (SAPKs) because they are activated by various stimuli that are stressful or noxious to
cells, including osmotic stress, oxidative stress, heat shock, genotoxic and DNA-damaging
agents, and pathogen proteins [276,277]. In many cases p38 MAPK responds to such
cellular stresses by mediating an inflammatory response [278]. Mammals express four p38
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MAPKs that are all about 38 kDa is size and encoded by distinct genes: p38α (MAPK14),
p38β (MAPK11) p38γ (MAPK12) and p38δ (MAPK13) [277,279]. Analyses of the primary
sequences of the four isoforms reveals over 60% overall sequence homology and greater
than 90% homology in the kinase domains. Most studies have focused on p38α and p38β.
p38α is expressed ubiquitously and highly, whereas p38β is expressed at lower levels and
in many tissues with highest expression in the brain. The two proteins share functions,
including the mediation of inflammatory responses and regulation of cell proliferation,
differentiation, survival and death [275,277]. However, global knockout of p38α in mice
causes embryonic lethality whereas p38β knockout mice are phenotypically normal and
fertile indicating unique functions of p38α that cannot be compensated for by the other iso-
forms [280,281]. In contrast to the widespread expression of p38α and p38β, p38γ and p38δ
are expressed in a tissue-specific manner and have more specialized functions although
what these are have not been fully identified. Knockout mice lacking either p38γ and p38δ
or double-knockout mice lacking both isoforms have on obvious abnormalities [280,281].

p38 MAPKs are activated by phosphorylation within a Thr-Gly-Tyr motif in the ac-
tivation loop by the dual-specificity MAPK kinases, MKK3 and MKK6 [277,282]. A large
number of cytoplasmic and nuclear proteins have been identified as p38 MAPK substrates,
including scaffold proteins, cytoskeletal proteins, signaling proteins, chaperones, and tran-
scriptional factors and regulators. To activate nuclear substrates, activated p38 translocates
to the nucleus by mechanisms that have not been fully resolved (p38 MAPKs lack nuclear
import or nuclear export motifs). Following substrate phosphorylation p38 MAPKs are in-
activated by dephosphorylation of the Thr-Gly-Tyr motif by dual-specificity phosphatases
(DUSPs), also known as MAPK phosphatases (MKPs) located in the cytoplasm and nucleus.
Dephosphorylation by MKPs in necessary for translocation of p38 MAPK out of the nucleus.
Inactivation of p38 MAPK is also promoted by transcriptional feedback, reduced activity
of upstream kinases and the termination of the activating stimuli [277,282,283]. In some
cases p38 MAPKs can be activated through phosphorylation of non-canonical residues
independent of MKK3 and MKK6 [284,285]. Despite the high level of structural similarity,
the four 38 isoforms are differentially sensitive to pharmacological inhibitors. For example,
while p38α and p38β are sensitive to pyridinyl imidazole inhibitors, p38γ and p38δ are
insensitive to them [286].

3.2.1. p38 MAPK in the Brain

Most studies on the function of p38 MAPK in the brain have focused on p38α and
p38β, which are expressed in neurons as well as astrocytes, microglia and oligodendro-
cytes [283,287]. Within the brain both isoforms are highly expressed in the cortex and
hippocampus. Subcellular localization analysis of hippocampal neurons revealed that
p38α is localized in all cellular compartments, including the nucleus, soma, neurites and
synapses whereas p38β is predominantly nuclear. Most studies have not distinguished
between p38α and p38β in determining their relative contributions to a biological action.
During development, p38 MAPK regulates neuronal differentiation, neuronal migration,
development of the neuronal skeleton and synapse formation [283,288]. In mature neurons
p38 MAPKs regulates ion channel function, axonal transport and axonal regeneration [283].
p38 MAPKs has been shown to regulate learning and memory [289,290]. Several lines of
evidence suggest that p38 MAPK, and specifically p38α, regulates synaptic plasticity by
promoting synaptic depression and memory [291]. Activation of p38 MAPK contributes to
LTP inhibition [292–294] and LTD (long-term depression) induction [295,296] in the hip-
pocampus. Interestingly, conditional deletion of p38α in neurons or astrocytes of the mouse
hippocampus revealed that deleting neuronal p38α has no effect on LTD whereas deletion
in astrocytes abolishes it suggesting that the stimulation of LTD in neurons was driven by
its action in astrocytes and establishing a role for p38α in astrocyte-neuron communication.
Several studies have described that p38 MAPKs promotes neuronal death induced by a
variety of noxious stimuli, including inflammatory cytokines and neurotoxins [297,298],
oxidative stress [299,300], hypoxic insult [301], and excitotoxicity [302]. For example, fol-
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lowing neuronal damage or injury to the brain or spinal cord, p38 MAPK (and primarily
p38α) promotes chronic inflammation through release of cytokines, including IL-1b and
TNFa, from astrocytes and microglia, which while designed to be helpful has an inhibitory
effect on recovery from injury [181,287,303]. IL-1b and TNFa released by microglia through
the action of p38 MAPK also inhibit LTP and therefore synaptic plasticity [304]. Through
p38 MAPK, activated astrocytes and glia produce reactive oxygen species that exacer-
bate the injury to neurons thereby promoting neurodegeneration [181,287]. In addition to
causing neuronal dysfunction and death through activation astrocytes and microglia, p38
MAPK can induce death of neurons cell autonomously by activating apoptotic signaling
pathways [184,305].

3.2.2. p38 MAPK in AD

p38 MAPK activity is elevated in the hippocampus and cortex in both AD mice and
patients relatively early in the disease process [306–309]. The increase is accompanied by
elevated activity of MMK6 on of the two major activators of p38 MAPK [310]. p38 MAPK
activation has been observed in both neurons and glial cells. In microglia and astrocytes p38
stimulates chronic release of inflammatory cytokines, which has been shown to be triggered,
at least in part, by APP and Aβ that bind to cell surface receptors [181–183,198,311,312]
(Figure 1B). Although initially helping in the clearance of Aβ, as described above, chronic
release of inflammatory cytokines causes neuronal dysfunction and degeneration. A key
target of p38 MAPK in its pro-neuroinflammatory role is MK2 (MAPK-activated protein
kinase 2). Not surprisingly, MK2 activity is elevated in the brains of AD mice and its genetic
deletion in cultured microglia prevents the release of inflammatory cytokines following Aβ

treatment. [313]. Within neurons p38 MAPK phosphorylates Tau [187,188], activates pro-
apoptotic signaling pathways [182,184–186] and promotes excitotoxicity [195–197] (Figure
1B). Although all four p38 proteins phosphorylate Tau, pharmacological experiments
in mice have identified p38α as the isoform most responsible for Tau phosphorylation
at pathogenic residues [189]. Inhibitors selective for p38α suppress neuroinflammation
and protect against synaptic dysfunction, cognitive deficits and behavioral deficits in AD
mice [189,314]. In these studies the effect of the inhibitors on p38β was not directly assessed,
however, and given the structural and functional similarities between the two isoforms,
contribution of p38β is possible and perhaps even likely. Some studies have shown that
p38 MAPK, and primarily the p38α isoform, inhibits autophagy by phosphorylating and
inhibiting the ULK1 complex, a protein complex that initiates the autophagic signaling
pathway [199,200,315]. Thus, besides promoting other pathological mechanisms within
neurons, p38 MAPK contributes to AD neuropathology by inhibiting autophagy.

Interestingly, and in contrast to p38α (and p38β), p38g has a protective effect in AD
mice [316]. This protective effect involves phosphorylation of Tau by p38γ at Ser205 which
results in disruption of postsynaptic excitotoxic protein signaling complexes activated
by Aβ [316,317]. Neuronal deletion of p38γ in AD mice results in exacerbation of neural
circuitry degeneration and cognitive defects as well as premature lethality, demonstrating a
protective role for p38γ in AD [316]. Other studies have described that p38γ phosphorylates
Tau at Thr50, which enhances the ability of Tau to promote microtubule assembly [187].
In contrast, p38δ phosphorylates Tau at sites that reduce the ability of Tau to promote
microtubule assembly [318,319]. Taken together, these results indicate that p38α (and likely
p38β and p38δ) promotes AD pathogenesis whereas p38γ exerts a protective role.

3.2.3. p38 MAPK as a Therapeutic Target in AD

Chemical inhibitors selective for p38α have been tested in Aβ and Tau mouse models
of AD and found to be effective at reducing inflammatory cytokine production, Tau pathol-
ogy, synaptic dysfunction and cognitive impairment [320]. Among these are MW01-2-069A-
SRM [314,320], MW181 [189] and MW150 [192,321], and VX-745 [322]. Administration
of NJK14047, a p38 MAPK inhibitory compound with demonstrated anti-inflammatory
effects, was found to reduce microglial-induced neuroinflammation as well as Aβ deposi-
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tion, neurodegeneration and memory impairment in the 5XFAD mouse model of AD [323].
As described above, besides promoting neurodegeneration by stimulating chronic inflam-
mation, p38 MAP directly causes neuronal death by activating pro-apoptotic pathways
and increasing levels of reactive oxygen species [182,184,186]. A study conducted in rats
showed that the p38 MAPK inhibitor, PD169316, blocked pro-apoptotic signaling and
reduced neuronal loss induced by intracerebroventricular injection of Aβ [324]. p38 MAPK
inhibitors have been shown to attenuate Aβ-induced LTD impairment in hippocampal
and entorhinal cortex slices [192–194]. Protection against cognitive impairment in AD was
described with another p38 MAPK inhibitor possessing anti-inflammatory effect [325]. An-
other study described reduction of neuroinflammation and cognitive impairment through
administration of a peptidic MK2 inhibitor, MMI-0100 [326]. As described above, MK2 is a
downstream target of p38 MAPK.

Other p38 MAPK inhibitors have been reported to have beneficial effects in cell culture
and rodent models of AD but the selectivity of these inhibitors for p38 MAPK has not
been well-documented [327–331]. Some studies have used p38 MAPK inhibitors that are
selective, but their ability to suppress neuropathology or improve behavioral performance
in vivo was not been adequately evaluated [332].

3.2.4. p38 in HD

p38 MAPK activity is increased in the stratum of HD patients and in mouse models
and this increase has been found to be associated with neuronal death [195,333–335].
One study attributed the increase in p38 MAPK activity to reduced activity of MKP-
1, a phosphatase that inactivates p38 MAPK by dephosphorylation of the Thr-Gly-Tyr
motif [336]. Pharmacological stimulation of MKP-1 reduces p38 MAPK activity and protects
against the neurotoxic effect of mut-Htt expression in cultured cells and in mice with
striatally-injected mut-Htt [336]. Neurodegeneration caused by mut-Htt is, at least in part,
due to NMDA receptor-mediated excitotoxicity. Excitotoxic death in HD has been found to
involve enhanced interaction between the NMDA receptor and the postsynaptic protein
PSD95, which through abnormal activation of calpains results in the cleavage of STEP61
a phosphatase enriched in the striatum [337]. Whereas full-length STEP61 negatively
regulates p38 MAPK in striatal neurons, calpain-cleaved STEP61 cannot dephosphorylate
p38 MAPK and therefore unable to suppress excitotoxicity [337]. Calcineurin, is yet another
phosphatase, that enhances mut-Htt neurotoxicity both in cell culture and in the striatum
of HD mice by dephosphorylating at Ser421 of mut-Htt [338]. Pharmacological inhibition
of calcineurin with FK506 results in elevated Ser421 phosphorylation, which protects
against mut-Htt neurotoxicity [263,338,339]. SGK (serum-and glucocorticoid induced
kinase) is a kinase that phosphorylates mut-Htt at Ser421. Somewhat counterintuitively,
increased p38 MAPK activity in HD leads to induction of SGK activity in the striatum and
cortex [334]. It is likely that the induction of SGK following p38 activation reflects a stress
response in neurons degenerating due to p38 MAPK activation. p38 MAPK suppresses
chymotrypsin-like protease activity leading to the accumulation and aggregation of mut-
Htt [340]. Pharmacological inhibition of p38 MAPK leads to an increase in chymotrypsin-
like protease activity and consequently enhanced clearance of mut-Htt.

3.2.5. p38 MAPK as a Therapeutic Target in HD

Studies using HD mice have found that the increased activation of p38 MAPK corre-
lates with striatal degeneration indicating a causal role for p38 MAPK in HD-associated
neurodegeneration [333,337]. The p38 MAPK inhibitor, SB-239063, protects striatal neurons
cultured from HD mice from degeneration [195]. Similar neuroprotective effects of another
p38 MAPK inhibitor, SB203580, was described both in HD mice and striatal cells overex-
pressing mut-Htt [341]. The mechanism by which p38 MAPK inhibition protects in mouse
HD models is not fully clear but likely involves blockade of apoptotic signaling within
neurons as well as inhibition of glia-mediated neuroinflammation. Other mechanisms
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by which p38 MAPK inhibitors could protect is through inhibition of calcineurin and
activation of chymotrypsin-like protease activity, as described above.

3.3. (C) Cyclin-Dependent Kinases

The eucaryotic cell cycle is comprised of four phases – G1, S, G2 (phases during which
the cell grows and duplicates its DNA) and M phase when mitosis occurs. Quiescent cells
that lack sufficient nutrients to traverse the cell cycle reside in the G0 phase, a phase in
which neurons and other postmitotic cells also reside. Two check-points, G1/S and G2/M,
ensure that the cell is ready for DNA replication and that DNA replication is accurately
completed, respectively. Progression through the various phases of the cell cycle is driven
in large part by cyclin-dependent kinases (CDKs), a family of serine-threonine kinases.
Activation of CDKs require heteromerization with specific cyclins, such that each CDK has
one (or sometimes two) cognate cyclin protein interacting with and activating it [342–345].
Cyclin binding, which involves a motif called the cyclin box, changes the conformation of
the CDKs to expose the substrate-binding region of the kinase [345,346]. The levels of most
cyclins oscillate within the cell such that they are synthesized as the cell cycle enters the
phase in which the cyclin is needed and rapidly degraded on exiting it which inactivates its
CDK. Whereas many of the approximately 21 CDKs expressed in mammals play various
roles including the regulation of transcription, cell cycle progression is under the charge of
a core group of CDKs, including CDK1, 2, 3, 4 and 6.

The transition from G0 to G1 requires the activity of CDK3/cyclin C whereas CDK4-
cyclin D and CDK6-cyclin D promote passage through G1. A key substrate of both CDK4
and CDK6 is the retinoblastoma protein (Rb) which sequesters the transcription factor E2F1
by interacting with it. Hyperphosphorylation of Rb by CDK4 and CDK6 during the G1
phase causes its disassociation from E2F, allowing E2F1 to bind to the promoters and induce
expression of cell cycle promoting genes, including the cyclin A and E genes. The CDK2-
cyclin E/A complexes promotes transition through S-phase followed by CDK1/Cyclin A-
and CDK1/Cyclin B-mediated passage through G2, M-phase and cytokinesis. The activity
of the CDK-cyclin complexes are inhibited by CDK-inhibitory proteins (CKIs) which act
at different phases to slow down or prevent cell cycle progression. A multitude of other
protein, including transcription factors and various inhibitory and activating kinases and
phosphatases, modulate the activity of CDK-cyclins on cell cycle progression [343,344].

Neurons are kept in G0 through the constant inhibition of cell cycle-promoting CDKs
along with activation of CDK inhibitors. However, aberrant activation of CDKs, often
resulting from the loss of inhibitory mechanisms, allows neurons to enter the cell cycle lead-
ing to their death by apoptosis [34,347–349]. Increasing E2F1 levels by ectopic expression
(which is normally caused by CDK4 and CDK6) induces apoptosis in neurons whereas sup-
pression of E2F1 expression is neuroprotective in cultured neurons exposed to a variety of
death-inducing stimuli and in animal models of neurodegeneration [350–355]. Interestingly,
E2F1 is phosphorylated both in culture and in vivo by GSK3 and p38 MAPK [178,190,191].
Indeed, phosphorylation by GSK3 is necessary for E2F1-induced neuronal death [179]. In
addition to E2F1, pharmacological inhibition of GSK3 also inhibits of expression of cyclin D,
cyclin E, Rb phosphorylation and the activity of E2F1 [356]. These results indicate cross-talk
between the cell cycle machinery and signaling by GSK3 and p38 MAPK.

An unconventional and somewhat unique member of the CDK family is CDK5, a
widely-expressed protein that is not activated by cyclins and does not directly participate in
cell cycle progression. CDK5 is activated through interaction with either of two activating
proteins, p35 and p39, that are expressed only in the nervous system and predominantly
in postmitotic neurons [357]. Because of the restricted expression pattern of its activating
proteins, the kinase activity of CDK5 is restricted to the CNS where it is involved in
a variety of critical functions, particularly during brain development but also during
adulthood [357].
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3.4. Role of CDKs in the Brain

Development of the mammalian brain requires rapid proliferation of neuroepithelial
cells and their derivatives, neural progenitor cells (NPCs), which results in increased brain
mass [358–360]. After a period of proliferation, increasing numbers of NPCs exit the cell
cycle and start differentiating into neurons and other brain cell types [358–360]. Careful
regulation of CDKs and other cell cycle components is critical for proper development and
functioning of the brain. Deregulation of CDKs, their cyclin partners, or their regulators
affects not only the generation of the proper number of NPCs but also the timing and extent
of their differentiation to generate the proper number of postmitotic neurons and glial cells.
Indeed, disruption of the balance between NPC production and cell cycle exit impacts
neuronal differentiation and migration, and underlies a variety of neurodevelopmental dis-
orders [361–363]. While primarily involved in promoting NPC proliferation, the presence of
CDKs 1, 2 and 4 and their cognate cyclins are detectable in dendrites and axons where they
inhibit neuronal maturation [364–366]. Abnormal increases in the activity of these CDKs
result in aberrant phosphorylation of proteins in axons and dendrites, including Tau [367].
In contrast to the cell cycle-promoting CDKs, CDK5 promotes differentiation, maturation
and migration of postmitotic neurons on the developing brain [360]. In the adult brain
CDK5 plays a key role in synaptic plasticity, learning and memory [368,369]. CDK5 also
prevents neurons from entering the cell cycle through interaction with E2F1. However, and
as described below, overactivation of CDK5 can negatively brain function and can promote
neurodegeneration [370–372]. One study has described that normally CDK5 activity is
prevented from becoming overactive by cyclin E through direct binding [373]. Genetic
ablation of cyclin E, which is expressed at high levels in terminally differentiated neurons,
results in abnormal activation of CDK5 reduced number and volume of dendritic spines
and impaired synaptic plasticity and memory [373].

3.4.1. CDKs in AD

A compelling body of evident implicate aberrant CDK activation and cell cycle entry
as being causally involved in AD pathogenesis. Death of cultured cortical and hippocam-
pal neurons resulting from Aβ treatment is preceded by induction of various cyclins
and activation of CDKs and can be prevented by treatment with broad spectrum CDK
inhibitors [374–377]. Increased activity of specific CDKs and/or cyclins or deregulation
of other cell cycle-modulating proteins has also been described in vulnerable regions of
the brain in both AD mice and patients [34–36,201–203]. In cycling cells expressing Tau,
cell cycle progression coincides with Tau hyperphosphorylation and altered microtubule
stability [378,379]. Similarly, in the AD brain activation of the cell cycle is believed to
contribute to Tau hyperphosphorylation and aggregation as well as microtubule desta-
bilization [201,380]. However, one study described that Aβ-induced stimulation of cell
cycle markers requires Tau as the increase is not seen in Tau-deficient neurons [381]. Taken
together, these findings suggest the possibility of a feed-forward loop in which deregulated
cell cycle components cause Tau phosphorylation, which in turn stimulates the cell cycle.
Intracerebral infusion of Aβ in mice results in increased expression of mitotic proteins prior
to memory deficits, both of which are prevented by co-administration of the CDK inhibitor,
flavopiridol, suggesting CDKs involvement in AD-related memory impairment [45]. Al-
though activation of cell cycle components by Aβ has been well-documented, some studies
have concluded that cell cycle deregulation occurs early in the disease process, prior to
the onset of neuropathology [201,382]. Indeed, cell cycle-promoting CDKs phosphorylate
APP while their inhibition reduces Aβ production resulting in decreased synapse loss
and memory impairment in AD mice [383]. Microglia activated by Aβ can induce cell
cycle deregulation and death of co-cultured neurons demonstrating that glial signals con-
tribute to the neurotoxic effects of Aβ by activating CDKs [384]. CDK inhibitors inhibit
neuropathological abnormalities and reduce behavioral deficits in AD mice in several
studies [40,45,202]. One analysis of the literature reported that 13 of 37 AD-risk genes are
likely to be functionally involved in cell cycle or mitosis regulation [36]. In sum and with
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regards to where in the cell cycle neurons die, there is consensus from cell culture and
mouse models (as well as some data from postmortem samples from AD patients) that in
the AD brain neurons leave G0 to enter the cell cycle but are unable to traverse through S-
phase and complete mitosis resulting in their death by apoptosis [34–36,201,385,386]. Some
evidence indicates that neurons are arrested at cell cycle checkpoints, most commonly at
G2/M, prior to dying by apoptosis, [387,388]. While most evidence points to defects prior
to the M-phase in AD models, upregulation of mitotic CDK activators and downregulation
of mitotic CDK inhibitors has been observed as well [389,390].

Although aberrant cell cycle entry is the most described effect of activated cell cycle-
related CDKs in neurons, other mechanisms by which these CDKs promote neuropathology
have been described. For example, activation of CDK1 increases APP processing to Aβ and
impairs autophagy in AD through inhibition of Beclin-1 [204]. CDK1 can phosphorylate
Aβ at Ser26 increasing its neurotoxicity and reducing its ability to form insoluble fib-
rils [391,392]. CDK1 and CDK2 also contribute to Tau hyperphosphorylation [201,393–396].
In cell culture experiments, toxicity by Aβ was shown to involve induction of CDK2 activity
and its phosphorylation of Tau [397] (Figure 1C)

The CDK believed to be most involved in AD pathogenesis is CDK5. Proteolysis of
p35 (and p39) by an increase in calpain activity produces a fragment, p25 (and p29), that
forms a highly stable complex with CDK5 causing its hyperactivation [398]. Because p25
is cytosolic, CDK5 activity is also shifted from the membrane, where p35 is localized, to
the cytosol. The mislocalization of CDK5 to the cytoplasm lies results in the phosphoryla-
tion of proteins that are not natural substrates of the kinase. As described below, one of
these CDK-phosphorylated cytosolic protein is Tau. Indeed, in addition to GSK3, CDK5 is
considered to be another major Tau kinase (Figure 1C). Hyperactive CDK5/p25 phospho-
rylates Tau at sites that are phosphorylated in the brains of AD patients and promotes its
dysfunction [209]. Transgenic mice in which p25 is expressed in the forebrain inducible dis-
play neurodegeneration, neuroinflammation and cognitive deficits [399–401]. Hyperactive
CDK5 also increases production of Aβ by both transcriptional mechanisms [205] and by
stimulating the activity of BACE1 [206] and PS1 [207] (Figure 1C). An early consequence
of the CDK5-mediated increase in Aβ is an impairment of synaptic homeostasis [205].
Increased Aβ can also activate CDK5 and increase Tau hyperphosphorylation suggesting a
positive feedback loop [204,402]. Enhanced CDK5 activity in glial cells promotes neuroin-
flammation by increasing production of lysophosphatidylcholine, which induces release
of inflammatory cytokines [212]. Other studies have found that CDK5 stimulated by Aβ

exposure activates CDKs1, 2 and 4 by phosphorylating them along with inactivation of
phosphatases that negatively regulate these CDKs [377]. Once activated the CDKs phospho-
rylate lamins (which normally occurs during mitosis in dividing cells) resulting in damage
of the nuclear envelope by phosphorylating [208]. It is widely recognized that in AD (and
other neurodegenerative diseases) the nuclear membrane is deformed and nucleocytoplas-
mic transport is dysfunctional [403,404]. It deserves mention that the results of studies
by some have disputed the aforementioned p25-mediated CDK5 hyperactivation model
initially proposed by Patrick, Cruz and Tsai et al. [369,405]. These laboratories propose
that p25 is produced normally, has an important role in memory and learning, and that its
expression is actually reduced in the AD brain contributing to cognitive deficits [369,405].
Regardless of whether activation results from p25 production or through other mecha-
nisms, it is widely accepted that CDK5 activity is elevated in the AD brain and is a key
contributor of disease pathogenesis [406–408]. Interestingly, recent studies have described
that like GSK3 and p38 MAPK, CDK5 also inhibits autophagy although acting through a
different mechanism involving phosphorylation of the Vps34 protein which interferes with
its interaction with Beclin-1, an interaction required for the initiation of autophagy. Besides
affecting clearance of pathogenic Aβ and Tau, one study has shown that CDK-mediated
inhibition of autophagy deregulates APP processing [204,210,211].



Int. J. Mol. Sci. 2021, 22, 5911 17 of 39

3.4.2. CDKs as a Therapeutic Target in AD

Many studies have described protection by CDK inhibitors against Aβ-induced toxi-
city in cultured neurons [34–36,201,385,386]. CDK inhibitors have also been successfully
tested in AD mice. In one mouse study administration of the non-selective CDK inhibitor
flavopiridol in mice prevented the increased expression of cell cycle proteins and reduced
memory impairment resulting from intrecerebroventricular injection of oligomeric Aβ [45].
Similar findings were described in another study in which administration of another non-
selective CDK inhibitor, roscovitine, reversed disease-associated transcriptomic changes,
reduced Aβ and Tau pathology, and improved behavioral performance in an AD mouse
model [202]. Most emphasis on CDKs as a therapeutic target has been on CDK5. Intracere-
broventricular infusions of the CDK5 inhibitory peptide (CIP), a 125 aa peptide generated
from p35 by C- and N-terminal cleavage inhibits CDK5/p25 activity and reduces Tau hy-
perphosphorylation, the number of NFTs and neurodegeneration in the p25-overpressing
transgenic mouse model of AD [409]. Other studies in which CIP was delivered through
an adeno-associated viral vector was similarly protective in p25-transgenic mice reducing
neuroinflammation, neuropathology and neurodegeneration [410–412]. Administration of
another 20 aa peptide derived from p35 cleavage, TFP5, and also inhibits CDK5/p25 activ-
ity, reduces neuropathology and restores synaptic function and cognitive function in both
the 5XFAD and p25-overexpressing mice. Although derived from p35 TFP5 does not inhibit
endogenous CDK5/p35 activity or the activity of other cell cycle-promoting CDKs [413,414].
Interestingly, and in contrast to CIP, TFP5 was shown to be brain permeable increasing its
potential as a therapeutic agent. Pharmacological inhibition of CDK5 prevents the reduction
of hippocampal neurogenesis in adult AD mice although the inhibitor used in the study,
roscovitine, also inhibits cell cycle-promoting CDKs [415,416]. Another study reported
that the anti-diabetes drug pioglitazone, a thiazolidinedione compound, inhibits CDK5
activity by decreasing p35 protein level [417]. Pioglitazone restored LTP in Aβ-treated
hippocampal slices and reduced memory deficits in AD mouse models [417]. However,
pioglitazone has many effects including regulating insulin signaling and PPARg [418].
Despite these limitations, inhibition of CDK5 activity represents a promising starting point
in the development of treatments for AD.

3.4.3. CDKs in HD

Multiple lines of evidence supports a role for deregulated expression of cell cycle
components and inappropriate entry of neurons in the cell cycle in the pathogenesis
of HD. Expression of mut-Htt is sufficient to cause cell cycle defects in tissue culture
models leading to cell death [419–422]. HD mice and cultured neurons expressing mut-Htt
displayed induction of cyclin B activity [422]. In HD mice, reactivation of cell cycle markers
was found in early and middle stages of the disease process. Increased expression of E2F1,
cyclin D1and cyclin E, all necessary for progression through the G1 phase, has been found
in the striatum of HD striatum and HD mice [419,420]. Another study described increased
phosphorylation of Rb and reduced expression of the CDK-inhibitory protein, p27, in HD
mice and in a cell culture model of HD [423]. Treatment with CDK inhibitors was protective
in the cell culture HD model. Using a mouse model and careful examination of the striatum
one study reported that cell cycle entry was preceded by perinuclear accumulation of
mut-Htt and damage of the nuclear membrane [422]. The induction of cell cycle entry and
neuronal death by perinuclear accumulation of mut-Htt was confirmed in cultured cortical
neurons [422]. Deregulation of the ER stress response pathway resulting from reduced
ATF6α/Rheb (Ras-homologue enriched in brain) signaling is another mechanism that has
been proposed to induce cell cycle reactivation and death of neurons [420]. A network
analysis of human post-mortem microarrays identified CDK1 as one of 19 genes that were
particularly significant to HD pathogenesis [424]. Although most of the cell culture and
mouse experiments describe induction of cell cycle proteins operating at G1 and S phases,
this finding suggests that deregulation of M-phase CDKs are also important. In sum,
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although the evidence for cell cycle reactivation in HD is strong, the roles of individual
CDKs and cyclins in causing neuronal death is unresolved.

Compelling evidence links deregulated CDK5 activity to HD pathogenesis. CDK5
activity is elevated in HD mice and patients [425] and in mice, contributes to behav-
ioral abnormalities characterizing the disease and neurodegeneration. In HD patients,
cognitive disturbances and learning and memory deficits manifest well before motor dys-
function [426–428]. In HD mice, the genetic knockdown of CDK5 expression attenuates
these progressive cognitive and memory impairments [429]. This recovery was attributed
to readjusting levels of specific glutamate receptor subunits and restoring hippocampal
spine density [429]. Depressive behavior has been suggested to correlate with cognitive
disturbances in HD and reflects severity of impaired cognitive performance [430]. Deregu-
lation of CDK5 activity contributes to depressive-like behavior in HD mice acting through
aberrant phosphorylation of DARPP-32 (dopamine- and cAMP-regulated phosphoprotein
32), a protein expressed selectively in the striatum [216]. This suggests that CDK5 mis-
regulation could affect multiple HD-associated symptoms. Both genetic knockdown and
pharmacological inhibition of CDK5 with roscovitine ameliorates depressive-like behavior
in HD mice [216]. A defining feature of HD is involuntary motor movements, which results
from degeneration of GABAergic neurons in the striatum. Different laboratories have
concluded that elevated CDK5 activity contributes to striatal neurodegeneration. One
study described increased production of p25 and elevated CDK5 phosphorylation induces
oxidative stress and NMDA receptor activity in striatal neurons increasing their vulner-
ability to death [214,215]. Oxidative stress and NMDA receptor activation are known
to cause excitotoxicity which is considered to be the major mode of neuronal death in
HD [65,431]. One study found that CDK5/p25 promotes excitotoxicity by phosphorylation
and destabilization of Fbxw7 (F-box/WD repeat-containing protein 7), which results in
increased expression of the pro-apoptotic protein, c-jun [217]. Another study described that
in response to NMDA receptor stimulation CDK5/p25 phosphorylated and destabilized
Cdh1 causing the stabilization and accumulation of cyclin B1 and leading to apoptotic
death [218]. Genetic reduction of p25 or p35 in HD mice attenuated CDK5 hyperactivity
and protects against NMDA receptor-mediated excitotoxicity [432]. Striatal neurons are
sensitive to dopaminergic toxicity [77,433]. CDK5 has been found to increased dopamine
neurotoxicity in HD models an action involving increased mitochondrial fission [213].
Pharmacological inhibition of CDK5 reduces mitochondrial fission and protects against
dopamine toxicity [213].

It is noteworthy that although the overwhelming consensus is that CDK5 activity
is elevated in HD and contributes to disease pathogenesis, two separate studies have
described that CDK5 phosphorylates mut-Htt and that this modification protects it from
cleavage to the toxic N-terminus fragment [434]. In one of these studies it was found
that CDK5 activity was reduced by expression of mut-Htt through direct binding which
prevented the interaction of p35 with CDK5. The reduction of CDK5 activity enhanced
cleavage of mut-Htt and therefore increased neurotoxicity in neuronal cell lines [434].
Protective phosphorylation of mut-Htt by CDK5 was confirmed in another study in primary
striatal neurons from HD mice and subjected to DNA-damage using camptothecin [435].
This study also described that even wild-type Htt (which is also phosphorylated by CDK5)
is rendered neurotoxic in response to DNA-damage if CDK5-mediated phosphorylation
is inhibited [435]. These authors described a substantial reduction of both CDK5 and p35
levels in the striatum of patients with late-stage HD. The expression of p25 was not studied
in the two studies and the issue of whether mut-Htt disrupts CDK binding to p25 is unclear.
Therefore, while the overall consensus supports a role for a causal role for elevated CDK5
in HD, more research is necessary to establish this unequivocally.

3.4.4. CDKs Are a Therapeutic Target for HD

Chemical inhibitors of CDK1 and CDK2 protect against neurodegeneration in the
3-NP (3-nitropropionic acid)-induced mouse model of HD [436]. Genetic knockdown of
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CDK5 protects against corticostriatal learning deficits, hippocampal-dependent memory
impairment and depressive behavior in HD mice [216,429]. As indicated above, CDK
inhibition provides protection against dopaminergic toxicity and aberrant mitochondrial
fission in a cell culture model of HD [213], both that are believed to play key roles in
disease pathogenesis [65,437,438]. Results of some studies suggest that whereas CDK5/p25
promotes HD neuropathology, CDK5/p35 may have protective effects. Consistent with
this, knockdown or inhibition of CDK5/p35 has been found to have either no effect or a
negative effect in HD cells and mice [434,439,440]. Although yet to be rigorously tested
and confirmed, this raises the possibility that CDK5-based HD therapeutics will have to
selectively target CDK5/p25.

3.5. Would Inhibiting Any One Target Work for AD and HD? The Case for Multi-Target Therapies

Intense effort has been made over the past two decades to develop an effective disease-
modifying therapy for AD. Much of this effort has targeted Aβ and Tau. These include
active and passive immunotherapy against Aβ and Tau, inhibitors of their oligomerization
and fibrillization, inhibitors of Aβ production and enhancers of its clearance, and inhibitors
of Tau-phosphorylating kinases and microtubule stabilizers [57]. However, it is now well-
accepted that the pathogenic mechanisms underlying AD are complex and involve critical
contributions from multiple neuronal and glial cell types and molecular targets within
and outside them in addition to Aβ and Tau. Even within vulnerable regions of the AD
brain there can be diverse signaling mechanisms that contribute to disease pathogenesis.
For example, results from single cell transcriptomic analysis indicate that AD pathology-
related gene expression changes can be both cell-specific as well as common across cell
types in the brain [441]. The cell-specific changes were found to be diverse. Moreover, the
transcriptional profiles were different between sexes in several cell types [441]. A more
recent single-nucleus transcriptomic study conducted both tissue from 5XFAD mice and
AD patients with TREM2 mutations found that transcriptional signatures in human AD in
microglia, astrocytes and oligodendrocytes were strikingly different from those observed in
mice [442]. Surprisingly, there was limited concordance between the two aforementioned
transcriptomics studies [441,442]. To add to the complexity, recent neuropathological
studies indicate multiple subtypes of AD with distinct clinical presentation, age at onset,
disease duration, and rate of cognitive decline [443]. A study that utilized PET scanning to
study spatiotemporal spreading of Tau in living patients described four distinct spreading
and deposition patterns of Tau that presented with distinct cognitive profiles and disease
progression patterns [444]. Along with the recognition that the disease process in AD
begins many years before Aβ and Tau pathology is detectable suggests that therapies
should simultaneously target multiple disease-relevant molecules that act upstream of Aβ

and Tau abnormalities.
As described in this review, kinases including GSK3, p38 MAPK and CDKs affect

disease initiation and progression in multiple ways acting both upstream and during
neuropathology and cognitive impairment. For example, in the case of p38 MAPK, con-
tributions to AD are cell autonomous (stimulating cell death mechanisms within neu-
rons) and non-cell autonomous (through release of cytokines from astrocytes and mi-
croglia). A recent study described Tau pathology in oligodendrocytes in AD mice where
it co-localized with active p38 MAPK, which regulated Tau seeding [445]. An attrac-
tive therapeutic approach would be to identify drugs that target multiple molecules or
chemically modify existing single-target drugs to regulate additional targets. Some such
drugs, initially believed to be selective again a target, have subsequently been found to
inhibit other targets relevant to disease pathology. Examples of such drugs described
in this review include lithium, valproic acid, flavopiridol, roscovitine and rapamycin.
Kenpaullone, a compound developed and often used as a CDK inhibitor, also inhibits
GSK3 and has been utilized in some studies as a GSK3 inhibitor [446,447]. Kenpaullone
reduces phosphorylation of APP and lowers its processing to Aβ [447]. Recent efforts in
the development of novel treatments for human diseases has led to the synthesis of multi-
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kinase inhibitors [448]. Rational designing has generated other compounds that inhibit
CDK1/GSK3 [449,450], CDK1/CDK5/GSK3 [451–453], CDK1/CDK2/CDK5/GSK3 [454]
and p38 MAPK/GSK3 [455]. Recently dual CDK5/GSK3 inhibitors possessing a tetrahy-
dropyridine isoindolone skeleton have been identified [456,457]. Using a different approach
another CDK5/GSK3 inhibiting compound, LDC8, was identified and shown to protect
against neuroinflammation-induced neuronal death in vitro [458]. In comparison, genetic
knockdown of CDK5 displayed only partial protection indicating that simultaneous in-
hibition of both GSK3 and CDK5 is necessary for complete protection. A few of these
multi-kinase inhibitors have been tested in model systems as candidates for AD therapeu-
tics. LDC8 was also found to protect against neuroinflammation and synaptic degeneration
in a zebrafish model of AD [458]. Screening of benzofuropyridine compounds for their
ability to inhibit phosphorylation and oligomerization of Tau has led to the identification
of a compound that inhibits GSK3β, CDK1 and CDK5 [396]. The triple-kinase inhibitor
was more effective at inhibiting Tau phosphorylation and oligomerization in cultured
cells than other compounds identified in the screen that inhibited only one or two of the
kinases [396]. Another study reported that dihydroxy-1-aza-9-oxafluorene compounds
that inhibit CDK1/GSK-3β/CDK5/p25 robustly inhibit Tau phosphorylation at nanomolar
concentrations [452]. Interestingly, a compound, HSB13, which inhibits all the AD-causing
kinases covered in this review - GSK3, CDKs1,2 and 5 and p38 MAPK - has been shown
to protect against neurodegeneration in a Drosophila model of AD [459]. The potential of
multi-kinase inhibitors that target kinases discussed in this review is further elevated by
the finding of cross-talk between their signaling actions in the disease process. For example,
elevated CDK5 has been proposed to cause neuronal damage and cognitive impairment in
mice by stimulating GSK3 signaling [460]. Another study described that GSK3 binds and is
activated by p25 [461]. Surprisingly, while binding p25 more effectively than CDK5, GSK3
does not bind to p35. Finally, the action of pharmacological inhibitors, including kinase
inhibitors, are easier to titrate than knockdown approaches or immunotherapy. Since most
of the molecules that are currently being targeted, including Aβ and Tau and enzymes
regulating their production, have important physiological functions, partial inhibition of
the targets, which would normalize the pathological increase in activity without completely
neutralizing it, could be better than potent inhibition in reducing unwanted actions of
treatment. For example, GSK inhibition required for neurological benefit is much lower
(20–25% inhibition) than what is required for stabilization of β-catenin, a major cellular
target of GSK3 [462,463]. In this regard it is interesting that while inhibiting GSK3, p38
MAPK and CDKS, HSB13, does so partially suggesting that drugs like it might be good
candidates for clinical and pre-clinical testing [459].

Although a monogenic disease, HD pathogenesis is also a highly complex process
involving many molecules and signaling pathways. Again, targeting multiple disease-
relevant molecules simultaneously could represent a more effective approach than the
dominant current strategy of reducing mut-Htt levels through antisense technology. Sup-
port for this comes from studies in HD mice in which inhibitors of two or more signaling
molecules was found to be more effective than inhibition of a single target. For example, in
a study using two types of HD mice, benefit on motor and cognitive impairment was ob-
served only when lithium (which inhibits GSK3) and valproic acid (which inhibits HDACs)
were co-administered. A study conducted in an HD fly model described that co-treatment
with rapamycin (an mTOR inhibitor) and lithium displayed significantly more protection
that with either inhibitor alone. The multi-kinase inhibitor, HSB13, displays strong efficacy
against neurodegeneration and behavioral deficits in the 3-NP model of HD [459].

4. Future Directions

With the recent advances in in silico drug design (or computer-aided drug design)
for neurodegenerative diseases it would be possible to more rapidly design drugs that
effectively inhibit two or all three of the key kinases covered in this review [464–466].
Development in high-throughput screening platforms that utilize cultured cells or inver-
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tebrate models to test large numbers of candidate drugs for multi-kinase inhibition as
well as neuroprotection, cytotoxicity and Aβ/Tau/mut-Htt aggregation is also facilitat-
ing the development of novel pharmacotherapeutic. Strategies [467–469]. Advances in
the development of novel preclinical platforms, such as patient-derived iPSC (induced
pluripotent stem cells) and 3D organoids, are bridging the translational gap between animal
models and human clinical trials [470,471]. An issue that cannot be ignored with regard
to therapeutics for neurodegenerative diseases, such as AD and HD, is the delivery of
drugs to vulnerable brain parts given the presence of the blood-brain barrier and the large
number of efflux transporters in the CNS. Considerable effort has been placed in recent
years on the development of nanoparticles as drug delivery vehicles [472–474]. A num-
ber of nanoparticles, including metal nanoparticles, solid lipid nanoparticles, polymeric
nanoparticles, liposomes and extracellular vesicles (EVs) have been used in experimental
models of AD and neurodegenerative disease [472–474]. Of these polymeric nanoparticles
(including hydrogels), liposomes and EVs appear to be particularly attractive because they
are more biocompatible and biodegradable. In the case of the three kinases described in this
review, nanoparticles can be loaded and encapsulated with chemical inhibitors that reduce
enzyme activity, but also biologicals to knockdown their expression including microRNAS
(mRNAs) and antisense oligonucleotides [475]. An attractive approach for use in brain
pathologies is nasal delivery of lipid nanoparticles and drugs, which has been used in
patients for many disorders and ailments, but is now being actively developed for AD and
other neurodegenerative diseases [476,477].
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