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ABSTRACT.

The role of vascular endothelial growth factor (VEGF), including in retinal vascular
diseases, has been well studied, and pharmacological blockade of VEGF is the gold
standard of treatment for neovascular age-related macular degeneration, retinal vein
occlusion and diabetic macular oedema. Placental growth factor (PGF, previously
known as PIGF), a homologue of VEGF, is a multifunctional peptide associated with
angiogenesis-dependent pathologies in the eye and non-ocular conditions. Animal
studies using genetic modification and pharmacological treatment have demonstrated a
mechanistic role for PGF in pathological angiogenesis. Inhibition decreases neovas-
cularization and microvascular abnormalities across different models, including
oxygen-induced retinopathy, laser-induced choroidal neovascularization and in
diabetic mice exhibiting retinopathies. High levels of PGF have been found in the
vitreous of patients with diabetic retinopathy. Despite these strong animal data, the
exactrole of PGF in pathological angiogenesis in retinal vascular diseases remains to be
defined, and the benefits of PGF-specific inhibition in humans with retinal neovascular
diseases and macular oedema remain controversial. Comparative effectiveness research
studies in patients with diabetic retinal disease have shown that treatment that inhibits
both VEGF and PGF may provide superior outcomes in certain patients compared with
treatment that inhibits only VEGF. This review summarizes current knowledge of PGF,
including its relationship to VEGF and its role in pathological angiogenesis in retinal
diseases, and identifies some key unanswered questions about PGF that can serve as a
pathway for future basic, translational and clinical research.
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Introduction

Angiogenesis, the growth of new blood
vessels from preexisting ones (Cao
et al. 2011), is an important biological
mechanism governing various physio-
logical processes, including fetal devel-
opment (Otrock et al. 2007), corpus
luteum formation (De Falco et al.
2002), the response of cardiac and
skeletal muscles to physical exercise
(De Falco et al. 2002) and wound
healing (Witmer et al. 2003). Aberrant
angiogenesis is involved in a number of
pathological conditions, including can-
cer (Fischer et al. 2008), obesity (Fis-
cher et al. 2008), rheumatoid arthritis
(Yoo et al. 2009) and vascular disor-
ders of the choroid [i.e. age-related
macular degeneration (AMD)] and the
retina [i.e. diabetic retinopathy (DR)]
(Kowalczuk et al. 2011).

The process of angiogenesis is com-
plex and involves a multistep cascade
of molecular and cellular events
(Adams & Alitalo 2007). In brief,
sprouting of new vessels begins with
the activation by growth factors of
quiescent  endothelial cells from
venules, selection of endothelial tip
cells regulated by delta-like ligand 4,
multiple Notch receptors and vascular
endothelial growth factor (VEGF) and
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its receptors (VEGFRs). Following this
selection of cells, other ligand/receptor
interactions (VEGF/VEGFR-2; sema-
phorin/neuropilin/plexin; netrin/UNCSB,
SLIT/ROBO4) guide elongation and
outgrowth of the vascular sprout. Inte-
grins, Rho GTPase CDC42 and Racl as
well as pressure-induced inverse mem-
brane blebbing are involved in sprout
fusion and lumen formation (Gebala
et al. 2016). Vascular maturation, medi-
ated by platelet-derived growth factor,
EGFL7 and pericytes, then occurs,
accompanied by a restoration of the
dominant angioinhibitory phenotype of
the neovascular network and perfusion
(Adams & Alitalo 2007; Wietecha et al.
2013).

Among the many angiogenic factors
identified in vascular regulation, the
VEGF superfamily and the VEGFRs
play a decisive role in both physiolog-
ical and pathological angiogenesis,
and, in particular, vascular permeabil-
ity (Nagy et al. 2008). The VEGF
family of growth factors consists of
several homologues [VEGF-A, VEGF-
B, VEGF-C, VEGF-D, VEGF-E and
placental growth factor (PGF, previ-
ously known as PIGF)]. It is well
known that VEGF-A (commonly
referred to as VEGF), the first member
of the VEGF family to be identified
(Ferrara & Henzel 1989; Plouet et al.
1989; Nagy et al. 2007), contributes to
angiogenesis,  activating  quiescent
endothelial cells and promoting vascu-
lar permeability through VEGFR-I1
(also known as Fltl) binding, and
stimulating cell proliferation through
VEGFR-2 (also known as Flkl) bind-
ing (Carmeliet et al. 2001; Autiero
et al. 2003; Adams & Alitalo 2007).
Vascular endothelial growth factor-A
also plays a role in mobilizing and
recruiting endothelial progenitor cells
to sites of neovascularization and tissue
regeneration (Beaudry et al. 2007).

Placental growth factor (PGF), a
homologous factor to VEGF-A, is also
implicated in pathological angiogene-
sis, especially in retinal disorders,
although its function is less well under-
stood. Animal models have suggested
that PGF is not essential for physio-
logical angiogenesis but plays a role in
pathological angiogenic conditions
(Carmeliet et al. 2001; De Falco et al.
2002; Autiero et al. 2003; Rakic et al.
2003; Fischer et al. 2007, 2008; Otrock
et al. 2007; Kowalczuk et al. 2011;
Tarallo et al. 2011; Yao et al. 2011;

De Falco 2012; Papadopoulos et al.
2012; Zheng et al. 2012). This review
summarizes what is currently known
about PGF, its relationship to VEGF
and its role in pathological angiogene-
sis in retinal disorders; identifies gaps in
knowledge; and proposes future direc-
tions for research and potential clinical
applications.

Subjects and Methods

VEGTF in the normal retina

At least six retinal cell types [retinal
pigment epithelium, astrocytes, Miiller
cells, vascular endothelium, ganglion
cells (Penn et al. 2008) and microglial
cells (Krause et al. 2014)] have been
studied for their ability to produce and
secrete VEGF. In normal retinal vas-
culature, expression of the receptor
VEGFR-1 is predominant compared
with VEGFR-2 (Takagi et al. 1996),
and it is found widely distributed in
both vascular endothelial cells and
pericytes. By contrast, VEGFR-2 exhi-
bits a highly restricted pattern and is
primarily expressed in non-vascular
photoreceptors and ganglion cells
(Cao et al. 2010). There is currently a
lack of consensus regarding whether
and how VEGFRs are expressed in the
neuronal components of the retina.
Some studies have shown that all three
VEGFRs (-1, -2 and -3) have been
localized in neuronal elements of the
inner retina, suggesting that VEGF
exerts biological functions on non-
vascular cells, including a direct neu-
roprotective role (Witmer et al. 2003).
In other studies, long-term transgenic
expressions of a VEGF inhibitor (sol-
uble Flt-1) or chronic pharmacological
inhibition of VEGF-R activity in mice
did not lead to morphological or func-
tional deficits (Ueno et al. 2008; Miki
et al. 2010). These results are consistent
with human clinical experience, includ-
ing the recent finding that neuronal
function of the retina is improved by
the administration of VEGF inhibitors
in patients with diabetic macular
oedema (DMO) (Gonzalez et al. 2015)
and AMD (Sulzbacher et al. 2015), as
determined by microperimetry.

VEGEF as a therapeutic target

In 1956, scientists hypothesized the exis-
tence of a then-unknown vasoformative

‘Factor X’ that develops in ischaemic
retinal tissue and stimulates neovascu-
larization  (Wise 1956). Vascular
endothelial growth factor (VEGF) was
subsequently identified as ‘Factor X’
based, in part, on tumour models show-
ing the hypoxia-driven association
between VEGF and angiogenesis
(Plate et al. 1992; Shweiki et al. 1992).
Further evidence supporting the role of
VEGF in ocular neovascularization was
reported in 1994, when neovasculariza-
tion of the iris and elevated levels of
VEGF mRNA and protein were discov-
ered innon-human primate eyesin which
ischaemia had been induced by laser
photocoagulation (Miller et al. 1994).
Elevated levels of VEGF in ocular fluids
of patients with active retinal and
corneal neovascular ocular disease, but
not in patients without new vessel
growth, further implicated the growth
factor (Aielloet al. 1994; Malecazeet al.
1994). Direct causal association was
shown when VEGF protein was injected
into the eyes of non-human primates,
leading to both retinal angiogenesis and
hyperpermeability of newly formed ves-
sels (Tolentino et al. 1996).

Anti-VEGF therapy: a gold standard for
retinal disorders

Concurrent with the successful develop-
ment of VEGF-targeting agents for
cancer, a number of anti-VEGF agents
have become new standards of care for
vascular ocular disease. The first anti-
VEGF agent to be approved for the
treatment of neovascular AMD was
pegaptanib, a pegylated aptamer that
selectively binds to and neutralizes
VEGF-A165, but not VEGF-A121 (Papa-
dopoulos et al. 2012). Subsequent anti-
VEGF drugsinclude bevacizumab, rani-
bizumab and intravitreal aflibercept.
Bevacizumab is a recombinant, human-
ized monoclonal antibody that binds all
isoforms of VEGF-A and is approved to
treat cancer (Papadopoulos et al. 2012).
Ranibizumab is an affinity-matured
antigen-binding fragment derived from
bevacizumab but with a higher affinity
for VEGF-A (Papadopoulos et al.
2012). Aflibercept is a fusion protein
comprising elements of VEGFR-1 and
VEGFR-2 that acts as a decoy receptor,
binding not only to multiple isoforms of
VEGF-A but also to VEGF-B and PGF
isoforms (Papadopoulos et al. 2012;
Deissler et al. 2014). Randomized




controlled clinical trials have demon-
strated remarkable efficacy in reducing
vision loss through intravitreal injection
of ranibizumab and aflibercept for neo-
vascular AMD (Table S1) (Rosenfeld
et al. 2006; Brown et al. 2009; Schmidt-
Erfurth et al. 2014), macular oedema
following branch retinal vein occlusion
(Table S2) (Campochiaro et al. 2010,
2015; Clark et al. 2015), macular
oedema following central retinal vein
occlusion (Table S3) (Campochiaro
et al. 2011; Heier et al. 2014; Ogura
et al. 2014) and DMO (Table S4)
(Nguyen et al. 2012; Brown et al. 2013,
2015; Korobelnik et al. 2014). Further-
more, a recent DRCR.net non-inferior-
ity study demonstrated that long-term
anti-VEGF blockade may be a reason-
able alternative to panretinal laser pho-
tocoagulation, at least through 2 years,
for the treatment of proliferative DR
(Gross et al. 2015).

Ocular adverse events such as
increased intraocular pressure, endoph-
thalmitis, uveitis or intraocular inflam-
mation, retinal detachment, retinal
tear, vitreous haemorrhage and trau-
matic lens damage have been reported
in some patients treated with anti-
VEGF drugs (Schmucker et al. 2011,
2012; Falavarjani & Nguyen 2013). A
review of five randomized controlled
trials (RCTs) of ranibizumab showed
low rates of serious ocular adverse
events, but a significantly increased
relative harm compared with controls.
In addition, the authors also concluded
that the safety profile of bevacizumab
could not be adequately assessed due to
the poor quality of adverse event
monitoring and reporting in the trials
(Schmucker et al. 2012).

In the oncology setting, systemic
administration of anti-VEGF drugs
has been associated with an increased
risk of adverse events, including arterial
thromboembolic events (Avery et al.
2014). The doses of these agents used
in ophthalmology are substantially
lower; however, for many patients with
neovascular retinal diseases, frequent
injections of anti-VEGF agents over
prolonged periods of time may be
required to obtain optimal functional
and morphological outcomes. As a
result, closer examination of the sys-
temic safety of intravitreal anti-VEGF
drugs has been undertaken. A pooled
analysis of key arterial non-fatal throm-
boembolic effects in the ANCHOR and
MARINA trials of ranibizumab

indicated a possible safety signal, and
the incidence of serious non-ocular
haemorrhage was higher in the patients
treated with ranibizumab compared
with control groups in ANCHOR,
MARINA and PIER (Schmucker et al.
2011, 2012). Data regarding the sys-
temic safety risks of bevacizumab are
inconclusive (Falavarjani & Nguyen
2013). More recently, a review of the
literature concluded that there is no
study showing a significant increase in
the incidence of myocardial infarction
in patients treated with ranibizumab
(Gibson & Gibson 2014), and a meta-
analysis of 10 phase 2 and 3 studies in
wet AMD found no meaningful differ-
ences between adverse event rates for
intravitreal aflibercept and controls,
although the authors acknowledged
that continued surveillance is needed
to evaluate the potential that systemic
adverse events may be related to
anti-VEGF therapy (Kitchens et al.
2016).

Also in neovascular AMD, RCTs
have shown that monthly dosing is
required to obtain optimal visual out-
comes with ranibizumab (Rosenfeld
et al. 2006; Brown et al. 2009), a dosing
regimen that may be burdensome for
patients and healthcare providers.
Studies such as AURA have demon-
strated that, in real-life clinical practice,
ranibizumab is typically administered
less frequently, resulting in visual gains
that are lower than those seen in RCTs
(Holz et al. 2015). The treatment bur-
den associated with intravitreal afliber-
cept in neovascular AMD may be less
than that of ranibizumab, as intravit-
real aflibercept given every 8§ weeks has
been shown to produce similar visual
gains compared with monthly ranibi-
zumab (Heier et al. 2012). Further-
more, vision gains in real-world
studies of intravitreal aflibercept were
comparable to those seen in RCTs
(Talks et al. 2016).

Finally, there are some patients who
either fail to respond during the induc-
tion phase or experience a decreased
response to treatment over time. For
these patients, switching therapy from
one drug to another has proven to be an
effective treatment strategy. For exam-
ple, a recent meta-analysis showed that
patients with wet AMD switched from
ranibizumab to intravitreal aflibercept
experienced  statistically  significant
visual and anatomic improvements
(Seguin-Greenstein et al. 2016).

As a result of the visual outcomes
seen in numerous clinical trials, and in
spite of the potential negative aspects
of treatment, VEGF blockade using
intravitreal aflibercept or ranibizumab
is currently the gold standard thera-
peutic strategy for treating these con-
ditions.

Description of PGF

All members of the VEGF family are
characterized by their cysteine knot
motif, and the three-dimensional struc-
ture of PGF is strikingly similar to that
of VEGF-A, although the two proteins
only share 42% amino acid sequence
identity (Fig. 1) (De Falco et al. 2002;
Autiero et al. 2003; De Falco 2012).
Alternative splicing generates four iso-
forms that differ in size (PGF-1, -2, -3
and -4). Placental growth factor-1
(PGF-1) and PGF-2 are the major
isoforms, consisting of 131 and 152
amino acid residues, respectively. Pla-
cental growth factor (PGF) is a dimeric
protein  whose monomers are held
together by disulphide bonds. If
expressed by the same cell, PGF and
VEGF-A can form a heterodimer
(Autiero et al. 2003; Otrock et al.
2007; Tarallo et al. 2011, 2012; De
Falco 2012). Placental growth factor
(PGF) specifically binds to the receptor
VEGFR-1, but not to VEGFR-2 (Car-
meliet et al. 2001; De Falco et al. 2002;
Autiero et al. 2003; Witmer et al. 2003;
Roy et al. 2006; Fischer et al. 2007,
2008; Otrock et al. 2007; Van de Veire
et al. 2010; Huang et al. 2011; Kowal-
czuk et al. 2011; Tarallo et al. 2011,
2012; Yao et al. 2011; De Falco 2012;
Papadopoulos et al. 2012; Chen et al.
2013). Additionally, the isoforms car-
rying heparin-binding domain bind to
neuropilin (De Falco et al. 2002; Roy
et al. 2006; Fischer et al. 2007, 2008;
Otrock et al. 2007; Kowalczuk et al.
2011; Tarallo et al. 2011, 2012; De
Falco 2012). Studies have demon-
strated that neuropilin-1 is expressed
in angiogenic vessels in animal models
(Ishihama et al. 2001; Lanahan et al.
2013; Gelfand et al. 2014) as well as in
humans (Cui et al. 2003; Lim et al.
2005). Based on their research using
neonatal mouse retinas, Pan et al.
hypothesize that blocking neuropilin-1
inhibits vascular remodelling, thereby
rendering vessels more susceptible to
treatment with anti-VEGF agents
(Pan et al. 2007). The PGF/VEGF-A
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Fig. 1. Structural model of human placental growth factor (PGF)-1 and schematic representation
of the binding of homodimers of PGF, vascular endothelial growth factor (VEGF)-A, and VEGF-
B to related receptors. Adapted from De Falco S, Gigante B & Persico MG (2002): Structure and
function of placental growth factor. Trends Cardiovasc Med 12: 241-246.

heterodimer binds VEGFR-1 or
induces VEGFR-1/VEGFR-2 dimer-
ization (Tarallo et al. 2010).

Placental growth factor (PGF) stim-
ulates endothelial cell migration via
VEGFR-1, and it recruits cells that play
an active role in angiogenesis (e.g.
monocyte macrophages, smooth muscle
cells and pericytes) via VEGFR-1 (De
Falco 2012; Cicatiello et al. 2015). Pla-
cental growth factor (PGF) may indi-
rectly stimulate angiogenesis by binding
to VEGFR-1 and thereby freeing up
more VEGF-A toactivate VEGFR-2, or
itmay signal endothelial cells to undergo
angiogenesis through direct VEGFR-1
binding (Fig. 2) (Carmeliet et al. 2001;
Autiero et al. 2003; Feeney et al. 2003;
Witmer et al. 2003; Fischer et al. 2008;
De Falco 2012). In addition, leucocyte
infiltration is connected with angiogen-
esis. VEGFR-1 ligands are monocyte
attractants and contribute to the recruit-
ment of leucocytes. These recruited leu-
cocytes provide an indirect (VEGF-
independent) pathway of angiogenesis
through the secretion of proangiogenic
factors (Mantovani et al. 2008).

Role of PGF — animal models

A number of animal models have been
used to examine the role of PGF in
pathological angiogenesis of the retina.
Mice in which the gene expressing PGF
(Plgf) was inactivated were exposed to
80% oxygen for 5 days[oxygen-induced

— ¢4

retinopathy (OIR)]. After normal oxy-
gen levels were restored, there was
decreased neovascularization, venous

dilatation and arterial tortuosity
observed in Plgf-deficient mice com-
pared with wild-type mice (Carmeliet
et al. 2001). Another study using the
OIR model demonstrated that intravit-
real administration of PGF prior to
hyperoxic exposure protected the retinal
vessels from hyperoxia-induced vaso-
attenuation without increasing neovas-
cularization (Shih et al. 2003). Some-
what surprisingly, PGF apparently does
not lead to increased retinal angiogene-
sis in response to hypoxia (Penn et al.
2008). In a rat model where rat PGF had
been overexpressed using non-viral gene
transfer, vessel tortuosity and dilation,
vascular abnormalization and leaky
microaneurysms were observed without
true preretinal neovascularization, sug-
gesting that PGF could play a role in the
early vascular telangiectasia and aneur-
ysms observed in retinal occlusive dis-
eases associated with macular oedma
(Kowalczuk et al. 2011).

The role of PGF has been studied in
an animal model of laser-induced
choroidal neovascularization (CNV).
Induction of CNV using argon lasers

VEGFR-1 sVEGFR-1 VEGFR-2 VEGFR-1 SVEGFR-1 VEGFR-2
PGF
@ VEGF-A
VEGFR-1 VEGFR-2

PGF stimulates its own
angiogenic signalling pathways

PGF activates a crosstalk
between VEGFR-1 and VEGFR-2

Fig. 2. Molecular mechanisms of placental growth factor (PGF). VEGF = vascular endothelial
growth factor; VEGFR = VEGF receptor. Adapted from Fischer C, Mazzone M, Jonckx B &
Carmeliet P (2008): FLT1 and its ligands VEGFB and PGF: drug targets for anti-angiogenic
therapy? Nat Rev Cancer 8: 942-956.




resulted in an almost complete absence
of neovascularization in mice that were
genetically modified (Rakic et al. 2003)
or pharmacologically treated (Van de
Veire et al. 2010) to be PGF deficient,
compared with their wild-type counter-
parts. While these models are currently
used in the preclinical development of
antiangiogenic compounds, they reca-
pitulate more a wound repair angio-
genesis with a strong inflammatory
component, rather than a model of
neovascular AMD.

The effects of pharmacological inhi-
bition of PGF on retinal vascular
development have also been studied.
Neonatal mice injected with an anti-
mouse VEGF-A polyclonal antibody
showed a significant reduction in the
hyaloid and vascular structure,
whereas mice injected with a PGF-
neutralizing antibody showed marked
persistence of the hyaloid without sig-
nificant effect on the developing retinal
vessels (Feeney et al. 2003).

Placental growth factor (PGF) acti-
vates VEGFR-1, meriting a review of
VEGFR-1 activation in pathological
retinal angiogenesis. A statistically sig-
nificant reduction of laser-induced
CNV formation occurred in wild-type
mice injected with anti-VEGFR-1 anti-
body compared with control animals
(Rakic et al. 2003). The expression of
VEGFR-1 without tyrosine kinase
activity (Flt1-TK~'~) reduced CNV in
mice (Van de Veire et al. 2010), indi-
cating the importance of VEGFR
signalling. A monoclonal antibody
directed against VEGFR-1 suppressed
VEGF-driven neovascularization in
mice cornea and in subcutaneous
Matrigel implants, and also blocked
neovascularization in the ischaemic
retina. Immunostaining demonstrated
reduction in vessel density and in size
of tumours implanted in mice treated
with anti-VEGFR-1, compared with
controls (Luttun et al. 2002). The
VEGFR-1 antagonist iVR1 inhibited
tumour growth and neovascularization
in syngenic and xenograft models of
colorectal cancer, as well as neovascu-
larization in laser-induced CNV (Cica-
tiello et al. 2015). The blockade of
VEGFR-1 and VEGFR-2 by neutral-
izing antibodies for mouse VEGFR-1
and VEGFR-2 resulted in suppression
of the development of CNV in both the
OIR and laser CNV models. Vascular
endothelial growth factor receptor-1
(VEGFR-1) blockade also inhibits the

expression of genes known to be
involved in angiogenesis, such as
CXCR-4, Ang2, Tie2 and EpoR
(Huang et al. 2011).

Perhaps the most elegant and com-
pelling demonstration of PGF function
in diabetic retinal pathology employed
a novel animal model in which a
PGF~/~ mouse was crossed with the
Akita diabetic mouse. Akita mice were
crossed with PGF ™/~ mice in a C57BL/
6J background for two generations to
give birth to the progeny with the
genotype of Akita.PGF~/~. Additional
mating of Akita.PGF~/~ and PGF/~
was performed to fix the PGF mutation
to homozygosity while maintaining the
Akita mutation in the heterozygous
state. The genotyping was performed
as described in the literature. The
progeny (Akita.PGF /") were diabetic
but lacked PGF. Molecular and histo-
logical changes in the retina were
compared between Akita.PGF~/~ mice
and wild-type mice, Akita diabetic mice
and PGF '~ mice. Placental growth
factor deficiency in the Akita.PGF /'~
mouse reduced diabetes-associated reti-
nal cell death and decreased retinal
capillary degeneration and pericyte
death. Moreover, while diabetes caused
a significant vascular leakage in Akita
mice compared with non-diabetic con-
trol mice, the deletion of PGF in
Akita PGF~/~ mice markedly reduced
diabetes-related ~ vascular  leakage
(Huang et al. 2015). These findings
suggest that PGF may be significant
mediator in diabetes of hallmarks of
DR, such as retinal hyperpermeability,
retinal capillary degeneration and per-
icyte loss.

Together, these findings suggest that
PGF as well as VEGF, and their shared
receptors VEGFR-1 and NP-1, are
potential targets for retinal and chor-
oidal vascular diseases in which both
factors are expressed. While these ani-
mal studies may show somewhat coun-
terintuitive results with respect to PGF-
related neovascularization and protec-
tion, it is likely that these findings
highlight a yet-to-be-identified, intri-
cate interplay with PFG and VEGF/
VEGFR-1 in balancing protection and
restoration of vessels, without aberrant
neovascularization, in a hypoxic retina.
Emerging data from human studies
support the findings from animal mod-
els. High levels of PGF have been
measured in the vitreous humour
(Khaliq et al. 1996, 1998; Mitamura

et al. 2002; Rakic et al. 2003; Miya-
moto et al. 2008; Kowalczuk et al.
2011; Chen et al. 2013) and in retinal
tissue (Spirin et al. 1999; Rakic et al.
2003; Kowalczuk et al. 2011; Chen
et al. 2013) of eyes with DR.

Clinical Applications of
PGF Targeting

Despite emerging research, the exact
contribution of PGF in pathological
ocular neovascularization in humans
has not been fully elucidated, and its
role as a potential primary therapeutic
target is not well understood. The
question remains regarding whether
PGF targeting is responsible for the
improved vision outcomes following
inhibition of both VEGF-A/-B and
PGF wusing intravitreal aflibercept,
compared with ranibizumab, which
targets VEGF-A alone. The recent
Protocol T study compared the effi-
cacy and safety of intravitreal afliber-
cept (2.0 mg) with ranibizumab
(0.3 mg) or off-label bevacizumab
(1.25 mg) in eyes with DMO. From
baseline to 1 year, the mean visual
acuity improved by 13.3 letters with
intravitreal aflibercept, by 9.7 letters
with bevacizumab and by 11.2 letters
with  ranibizumab (p <0.001 for
intravitreal aflibercept versus beva-
cizumab and p = 0.03 for intravitreal
aflibercept versus ranibizumab); how-
ever, the difference was driven by the
eyes with worse visual acuity at base-
line (p <0.001 for interaction).
Among eyes with initial visual acuity
of <69 letters (approximately 20/50 or
worse), the mean improvement at
1 year was 18.9 letters with intravit-
real aflibercept, 11.8 with bevacizumab
and 14.2 with ranibizumab (p < 0.001
for intravitreal aflibercept versus beva-
cizumab, p = 0.003 for intravitreal
aflibercept versus ranibizumab and
p = 0.21 for ranibizumab versus beva-
cizumab). There were no significant
differences among the study groups in
the rates of serious adverse events
(p = 0.40), hospitalization (p = 0.51),
death (p = 0.72) or major cardiovas-
cular events (p = 0.56) (Wells et al.
2015). Although there remain many
unanswered questions about the role
of PGF in DMO, the results of this
study may suggest a possible advan-
tage to dual blockade, as intravitreal
aflibercept-treated eyes with a baseline
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vision of 20/50 or worse achieved
significantly greater visual improve-
ment compared with eyes treated with
ranibizumab or bevacizumab. This is
the first clinical evidence that targeting
an angiogenic factor beyond VEGF
(i.e. PGF) may translate into addi-
tional clinical benefit. Alternatively,
the apparently superior efficacy of
intravitreal aflibercept in this subpop-
ulation could also be due to its sub-
stantially higher affinity for VEGF-A
(Papadopoulos et al. 2012). Further,
prospective analyses are required to
determine whether PGF plays a role in
the superior efficacy of intravitreal
aflibercept in this subpopulation.

Currently, there are no antiangio-
genic agents with a primary target of
PGF for use in retinal disease; how-
ever, in a phase 1 study of TB-403 (RO
5323441), a novel antiangiogenic agent
directed against PGF in patients with
advanced solid tumours, no dose-limit-
ing toxicities were observed, and a
maximum tolerated dose was not
reached (Lassen et al. 2012). The safety
and tolerability of intravitreal afliber-
cept, which inhibits PGF in addition to
VEGEF-A, for the treatment of retinal
diseases has been well documented. A
recent meta-analysis concluded that the
rates of ocular and systemic adverse
events were similar in eyes treated with
intravitreal aflibercept compared with
controls, and were similar across dis-
ease states studied (Kitchens et al.
2016). Further research is needed to
confirm the safety of PGF inhibition,
either alone or in conjunction with
VEGF inhibition, particularly during
long-term exposure.

Recent studies have shown that
switching from one anti-VEGF agent
to another, and in particular, switching
from ranibizumab and/or bevacizumab
to intravitreal aflibercept, which binds
not only to VEGF-A but also to
VEGF-B and PGF, can be effective in
the treatment of refractory patients
(Bakall et al. 2013; Ho et al. 2013;
Kumar et al. 2013; Yonekawa et al.
2013; Chang et al. 2014; Wykoff et al.
2014). Further research is needed to
define the mechanisms of the differen-
tial response to treatment. Examination
of data and specimens from patients
who have had different responses to
anti-VEGF therapy may help to deter-
mine whether there is a correlation
between the response and the properties
of the pharmacological agent.

Future Directions of
PGPF Inhibition in Retinal
Vascular Disorders

Despite the existence of animal models,
important questions remain regarding
the clinical role of PGF inhibition in
humans. For example, it is not known
whether PGF inhibition has an effect
on outer retinal barrier permeability
(subretinal fluid, outer retinal oedema).
The effects of PGF inhibition on
abnormal retinal vessels are also
unknown. It is also unclear whether
PGF inhibition could block the activa-
tion of microglia/macrophages and
subretinal inflammation and subse-
quent chronic subretinal remodelling.

There is a need for assessment of the
possible role of PGF and its stimula-
tion/inhibition in the management of
retinal vascular disorders. Future
research could assess the role of
VEGF/PGF heterodimers in physio-
logical versus pathological activity
(permeability and neovascularization),
as well as their relationship in the
context of pure VEGF-A blockade
versus VEGF-A + PGF  blockade.
Anti-PGF treatment may work well in
patients who are refractory to or who
have incomplete response to anti-
VEGF therapy; however, additional
research is needed to further elucidate
the multiple mechanisms by which
PGF appears to modulate VEGF-
driven angiogenesis.

Conclusion

The role of VEGF-A in both physiolog-
ical and pathological angiogenesis has
been well studied in laboratory and
clinical settings. Treatment with VEGF
inhibition is the standard of care in
retinal vascular diseases such as AMD,
DMO and retinal vein occlusion. Ani-
mal models show that PGF mediates
both permeability and neovascu-
larization, as well as inflammation.
Additional translational research,
including investigation of PGF-asso-
ciated biomarkers and evaluation of
inflammatory cytokines, is needed to
further elucidate the role of PGF in
pathological retinal angiogenesis in
humans. Understanding these mecha-
nisms may shed light on how PGF
inhibition may offer advantages over
sole VEGF blockade to improve vision
in patients with retinal vascular

disorders, especially for those individu-
als who are refractory or incompletely
responsive to anti-VEGF monotherapy.
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