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Abstract

Objective: The large number of clinical variables associated with coronavirus disease

2019 (COVID-19) infection makes it challenging for frontline physicians to effectively

triage COVID-19 patients during the pandemic. This study aimed to develop an effi-

cient deep-learning artificial intelligence algorithm to identify top clinical variable pre-

dictors and derive a risk stratification score system to help clinicians triage COVID-19

patients.

Methods: This retrospective study consisted of 181 hospitalized patients with con-

firmed COVID-19 infection from January 29, 2020 to March 21, 2020 from a major

hospital inWuhan, China. The primary outcome was mortality. Demographics, comor-

bidities, vital signs, symptoms, and laboratory tests were collected at initial presenta-

tion, totaling 78 clinical variables. A deep-learning algorithm and a risk stratification

score system were developed to predict mortality. Data were split into 85% training

and 15% testing. Prediction performance was compared with those using COVID-19

severity score, CURB-65 score, and pneumonia severity index (PSI).

Results: Of the 181 COVID-19 patients, 39 expired and 142 survived. Five top pre-

dictors of mortality were D-dimer, O2 Index, neutrophil:lymphocyte ratio, C-reactive

protein, and lactate dehydrogenase. The top 5 predictors and the resultant risk score

yielded, respectively, an area under curve (AUC) of 0.968 (95% CI = 0.87–1.0) and

0.954 (95%CI=0.80–0.99) for the testing dataset. Ourmodels outperformedCOVID-

19 severity score (AUC = 0.756), CURB-65 score (AUC = 0.671), and PSI (AUC =

0.838). The mortality rates for our risk stratification scores (0–5) were 0%, 0%, 6.7%,

18.2%, 67.7%, and 83.3%, respectively.

Conclusions: Deep-learning prediction model and the resultant risk stratification

score may prove useful in clinical decisionmaking under time-sensitive and resource-

constrained environment.
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1 INTRODUCTION

The coronavirus disease 2019 (COVID-19) that causes severe respira-

tory illness was first reported in Wuhan, China in December 20191–3

and was declared a pandemic by the World Health Organization on

March 11, 2020.4 More than 4.2million people have been infected and

>290,000 have died of COVID-19 worldwide (May 11, 2020).5 The

actual numbers are likely much higher due to testing shortages and

under reporting. There are likely to be second waves and recurrence.6

The current COVID-19 pandemic has overwhelmed many hospitals

around the world.

There is an urgent need by frontline physicians to effectively triage

patients under time-sensitive, stressful, and potentially resource-

constrained circumstances in this COVID-19 pandemic. This is partic-

ularly challenging in light of the large array of clinical variables that

have been identified to be associated with COVID-19 infection, while

the disease course remains incompletely understood and effective

treatments are not yet available. The most commonly used reverse-

transcriptase polymerase chain reaction (RT-PCR) has poor sensitiv-

ity (high false–negative rate7) and long turnaround time (a few days to

a week8) during which the patients are assumed COVID-19-positive,

potentially holding up valuable resources. Moreover, there are hetero-

geneous symptom presentations, andmany patients are asymptomatic

but may deteriorate rapidly.1–3 Given these challenges, establishing a

simplified risk stratification score system from studying the large array

of clinical variables from large cohorts of patients could be helpful in

COVID-19 diseasemanagement. Similar risk stratification scores, such

as Sequential Organ Failure Assessment (SOFA) and Modified Early

Warning Score (MEWS), have been established for general emergency

department triage. Unfortunately, SOFA andMEWS are not very help-

ful, because they failed to accurately stratify COVID-19 patients.9-11

Machine learning methods are increasingly being used in

medicine.12–14 Machine learning uses computer algorithms to

learn relationships among different data elements to inform outcomes.

In contrast to conventional analysis methods (ie, linear or logistic

regression), the exact relationship among different data elements with

respect to outcome variables does not need to be explicitly specified.

The neural network method in machine learning, for example, is made

up of a collection of connected nodes, which models the neurons in

a biological brain. Each connection, like the synapses in a brain, can

transmit signals to, and receive signals from, other nodes. Nodes

and connections are initialized with weights that are adjusted during

learning. In radiology, machine learning has been shown to be able to

accurately detect lung nodules on chest X-rays after it learns from a

separate training dataset constructed with expert radiologist labels of

nodules.15 In cardiology, machine learning has been shown to be able

to detect abnormal EKG patterns after it learns from a separate train-

ing dataset constructed with expert cardiologist labels of normal and

abnormal EKGs.16 Machine learning has also been used to estimate

risk, suchas in theFraminghamRiskScore for coronaryheart disease,17

and to guide antithrombotic therapy in atrial fibrillation18 and defib-

rillator implantation in hypertrophic cardiomyopathy.19 In addition to

approximating physician skills, machine learning algorithms can also

find novel relationships not readily apparent to humans. Many studies

The Bottom Line

Researchers investigated if AI could predict death for

COVID-19 by extracting and analyzing 56 of 78 clinical

variables on 181 hospitalized COVID-19 patients in China.

Their AI algorithm determined that top predictors of mor-

tality were D-dimer, O2 Index, neutrophil:lymphocyte ratio,

C-reactive protein, and lactate dehydrogenase. These top 5

variables had an AUC of 0.95 for predicting mortality. The AI

model outperformed COVID-19 severity score.

have shown that machine learning outperforms logistic regression

and classification tree models20 as well as humans in many tasks in

medicine.21 Machine learning is particularly useful in dealingwith large

and complex datasets. With increasing computing power and growing

relevance of big data in medicine, machine learning is expected to play

an important role in clinical practice.

The goal of this study was to develop a deep-learning artificial intel-

ligence algorithm to identify the top predictors amongst the large array

of clinical variables at admission to predict the likelihood of mortal-

ity in COVID-19 patients. Based on these deep-learning findings, we

developed a simplified risk stratification score system to predict the

likelihood of mortality. Prediction performance was compared with

those obtained using standard CURB-65 score for pneumonia infec-

tion, pneumonia severity index (PSI), and COVID-19 severity score.

2 METHODS

2.1 Study population and data collection

The study was approved by the Ethics Committee of West Branch of

Union Hospital affiliated Tongji Medical College of Huazhong Univer-

sity of Science and Technology (2020-0197). This reporting adhered to

the transparent reporting of a multivariable prediction model for indi-

vidual prognosis or diagnosis (TRIPOD)22 and STROBE guideline.23

This retrospective study consisted of 220 laboratory-confirmed

COVID-19 patients from January 29, 2020 to February 19, 2020 in

the West Branch of Union Hospital (Affiliated Tongji Medical College,

Huazhong University of Science and Technology) in Wuhan, China,

that treated moderate to severe COVID-19 patients. Demographics,

comorbidities, vital signs, symptoms, and laboratory tests at the initial

presentation were collected, totaling 78 clinical variables. The primary

outcome variable was mortality with March 31, 2020 being the final

date of follow-up.

2.2 Preprocessing

A few patients had some missing clinical variables. The clinical vari-

able (brain natriuretic peptide) that was missing from >15% of the

patients was removed from the dataset. For others where needed,
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missing data were imputed with predictive mean modeling using the

Multivariate Imputation by Chained Equations in R (statistical analy-

sis software 4.0).24 The majority of the parameters had <5% missing

data. Collinearity analysis in feature selection was used to remove cor-

related variables, resulting in 56 independent clinical variables being

used in the neural network predictivemodel.

2.3 Deep neural network for feature selection

A deep neural network architecture consisting of 6 fully connected

dense layerswas constructed for feature selectionwith 56 clinical vari-

ables as inputs. Rectified linear units were chosen as activation func-

tions and the output layer used a sigmoid function, because binary clas-

sification was used to classify patients into the expired and survived

groups. Five-fold cross validation was used to optimize model perfor-

mance. Model prediction performance after fitting was used to rank

the 56 features by importance from the neural network, using per-

mutation importance methodology.25 By shuffling single features, the

error of the model was analyzed to select the features with the high-

est relevance. The optimal number of features necessary for classifi-

cation was derived through comparing model accuracy of testing with

different numbers of features.26 Once the features were ranked and

the optimal number of features was determined, the neural network

architecture for classification was reduced to a simple model with 2

fully connected dense layers, rather than 6, to prevent overfitting for

prediction using top (5) clinical variables or risk stratification scores. A

sigmoid function for activation in the output layer was used.

2.4 Risk stratification score

The top5 clinical variables derived from the neural networkswere cho-

sen to compute the risk score formortality. Locallyweighted smoothing

(LOESS)27 was used to plot the probability ofmortality for each clinical

variable.Different probabilitieswereevaluatedand thresholdsderived

from 20% probability of mortality were found to achieve a balanced

sample distribution across risk scores. Each of the 5 clinical variables

had equal weight. The risk score ranged from 0–5.

2.5 Comparison with other indices

Performance of our deep neural network model and risk score model

to predict mortality was compared with those of the PSI,28,29 CURB-

65 pneumonia severity score, and COVID-19 severity score. PSI (rang-

ing from −10 to 285) is used to calculate the probability of morbidity

and mortality. PSI requires a large set of input parameters. CURB-65

(ranging from 0–5) composed of a point system based on an exhibition

of confusion, urea nitrogen level in the blood, respiratory rate, blood

pressure, and age over 65 (CURB-65).30,31 COVID-19 severity score

(ranging from 0–3 as mild, moderate, severe, critical rating) was com-

puted according to the fifth edition of the diagnosis and treatment plan

issued by the Chinese National Health Commission as: (1) mild: mini-

mal clinical symptoms, no radiological pneumonia signs; (2) moderate:

fever, respiratory tract symptoms, signs of radiological pneumonia find-

ings; (3) severe: respiratory distress (respiratory rate ≥30 bpm), SaO2

≤93%at resting state, or PaO2/FiO2≤300mmHg; and (4) critical: res-

piratory failure requiring mechanical ventilation, shock, or other organ

failure requiring ICU treatment.

2.6 Statistical analysis and performance
evaluation

Categorical variables described as frequencies and percentages were

compared using χ2 test. Continuous variables presented as medians

and interquartile ranges (IQR) were compared using Mann-Whitney

U tests. Statistical analyses were performed in SPSS v26. For perfor-

mance evaluation, data were split 85% for training and 15% for test-

ing. All prediction performance was evaluated by the area under the

curve (AUC) of the receiver operating characteristic (ROC) curve for

the test dataset. The average ROC curve and AUC were obtained with

5 runs.

3 RESULTS

3.1 Patient characteristics

This cohort consisted of 220 patients with confirmed COVID-19 diag-

nosis in the West Branch of Union Hospital from January 29, 2020 to

February 19, 2020. Thirty-nine patients were excluded due to missing

discharge or mortality information. Of the remaining 181 COVID-19

patients, 142 survived and 39 expired. The primary outcome variable

wasmortality withMarch 31, 2020 being the final date of follow-up.

The demographic, comorbidity, symptoms, vitals, and laboratory

findings of patients who expired versus those who survived are shown

in Table 1. Patients who expired were significantly older compared to

those survived (median age 65 [IQR, 68–78] vs 58 [IQR, 48–66] years

old, P < 0.001). There were more male (66.7%) patients who died than

female, and fewer male (47.9%) patients survived than female, but the

sex variable as awholewas not significantly different between group in

this cohort (P> 0.05).

Sputum, dyspnea, and diarrhea symptoms were significantly differ-

ent between groups (P < 0.05). There were no significant differences

in comorbidities between groups (P > 0.05). For vitals, O2 saturation,

PaO2, oxygen index, and respiratory rate were significantly different

between the survived and expired groups (P < 0.05). Lab chemistry

(creatinine clearance rate, lactate dehydrogenase, direct bilirubin,

aspartate aminotransferase albumin, glucose, total bilirubin, blood

urea nitrogen, and alanine aminotransferase) were significantly dif-

ferent (P < 0.05), and hematological variables (neutrophil:lymphocyte

ratio, neutrophil, lymphocyte, WBC, and platelet counts) were sig-

nificantly different between groups as well (P < 0.05). In addition,

coagulation variables (D-dimer and prothrombin), immunological
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TABLE 1 Demographic, comorbidity, symptoms, imaging findings, vitals, and laboratory findings of themortality group comparedwith the
survival group

Died Survived

(n= 39) (n= 142) P

Age 65 (68, 78) 58 (48, 66.25) <0.001

Sex

Female 13 (33.3%) 74 (52.1%) 0.26

Male 26 (66.7%) 68 (47.9%)

Height 163 (158, 170) 168 (158, 170) 0.345

Weight 65 (60, 70) 65 (56, 70) 0.966

Symptoms

Dyspnea 35 (89.7%) 71 (50.0%) <0.001

Fatigue 39 (100%) 109 (76.8%) 0.004

Diarrhea 12 (30.8%) 23 (16.2%) 0.017

Sputum 15 (38.5%) 30 (21.1%) 0.036

Date since symptoms onset 10 (7, 15) 12 (8, 16) 0.068

Cough 33 (84.6%) 107 (75.4%) 0.347

Fever 34 (87.2%) 123 (86.6%) 0.713

Headache 7 (17.9%) 26 (18.3%) 0.892

Comorbidities

Heart failure 1 (2.56%) 0 0.045

Other respiratory disease 4 (10.3%) 4 (2.82%) 0.052

Hypertension 16 (41.0%) 41 (28.9%) 0.089

Coronary artery disease 6 (15.4%) 10 (7.04%) 0.12

Smoking history 2 (5.13%) 2 (1.41%) 0.174

Stroke 1 (2.56%) 1 (0.70%) 0.339

Malignancy 1 (2.56%) 7 (4.93%) 0.503

Liver disease 0 1 (0.70%) 0.612

Exposure history 3 (7.69%) 8 (5.63%) 0.67

Diabetes 6 (15.4%) 18 (12.7%) 0.713

Chronic kidney disease 1 (2.56%) 3 (2.11%) 0.813

Vitals

O2 concentration 0.3 (0.2, 0.4) 0.9 (0.9, 1) <0.001

Oxygen saturation (SaO2) 87 (83, 92) 97 (95, 98) <0.001

PaO2 56 (53, 65) 98 (80, 100) <0.001

O2 index 60 (56, 72) 276 (212, 345) <0.001

Respiratory rate 31 (30, 34) 22 (20, 29) <0.001

Heart rate 93 (80, 110) 87 (80, 98) 0.079

Systolic blood pressure 130 (120, 150) 125 (120, 138) 0.422

Diastolic blood pressure 79 (73, 86) 80 (76, 86) 0.33

Highest temperature 39 (38, 39) 39 (38, 39) 0.44

Chemistry

Creatinine clearance rate (CCr) 69.13 (52.0, 84.1) 97.30 (73.6, 114.5) <0.001

Lactate dehydrogenase, U/L (LDH) 549 (399, 714) 223 (183, 309) <0.001

Ailirubin, direct, umol/L 4.6 (3.3, 8.2) 3 (2.2, 4.3) <0.001

Aspartate aminotransferase, U/L (AST) 53 (34, 86) 27.5 (19.75, 38) <0.001

(Continues)
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TABLE 1 (Continued)

Died Survived

(n= 39) (n= 142) P

Albumin, g/L 28.4 (25.4, 30.5) 32.4 (29.5, 36.2) <0.001

Glucose, mmol/L 7.0 (6.1, 9.1) 5.8 (5.3, 6.7) 0.002

Bilirubin, total, umol/L 15 (9, 22) 10 (8, 14) 0.003

Blood urea nitrogen, mmol/dL 7.3 (4.7, 10.8) 4.3 (3.3, 5.7) 0.004

Alanine aminotransferase, U/L (ALT) 47 (25, 60) 30 (21, 50) 0.043

Creatinine, umol/L 75.5 (69.9, 94.2) 63.650 (54.1, 75.4) 0.214

Sodium, mmol/L 136.2 (135.5, 141.4) 139.1 (137.6, 141.8) 0.267

Triglyceridesmmol/L 1.3 (1.2, 2.1) 1.41 (1.0, 2.0) 0.467

Total protein, g/L 62.9 (57.9, 69.8) 63.4 (59.8, 67.5) 0.707

Potassium, mmol/L 3.9 (3.5, 4.3) 4.0 (3.6, 4.2) 0.748

Hematology

Neutrophile:lymphocyte ratio (NE/LY) 8 (4, 13) 2 (2, 3) <0.001

Neutrophil, % 87 (85, 92) 67 (58, 76) <0.001

Lymphocyte, % 7 (5, 11) 23 (14, 30) <0.001

WBC count, G/L 9 (7, 15) 5 (4, 7) <0.001

Platelet count, G/L 155 (109, 213) 213 (178, 286) <0.001

Hemoglobin, g/L 130 (114, 140) 126 (112, 139) 0.413

Hematocrit, % 39 (34, 43) 38 (33, 41) 0.466

Coagulation

D-dimer, μg/mL 1.1 (0.6, 3.2) 0.5 (0.2, 1.0) <0.001

Prothrombin time, s 14 (14, 15) 13 (12, 14) <0.001

Activated partial thromboplastin time, s 37 (31, 43) 36 (33, 39) 0.403

Immunology

C-reactive protein, mg/L (CRP) 98 (47, 128) 11 (2, 40) <0.001

Procalcitonin, ng/mL 0.3 (0.2, 0.5) 0.06 (0.04, 0.1) 0.028

Other lab values

Creatine kinase-MB, U/L 19 (13, 36) 10 (5, 13) <0.001

Apolipoprotein-A, g/L (ApoA) 0.7 (0.6, 0.8) 0.9 (0.7, 1.0) <0.001

High density lipoprotein, mmol/L (HDL) 0.8 (0.7, 1.1) 0.9 (0.8, 1.2) 0.004

Troponin, ng/mL 44 (8, 721) 3 (2, 7) 0.042

Brain natriuretic peptide, ng/L (BNP) 94 (49, 171) 49 (27, 81) 0.044

Apolipoprotein-B, g/L (ApoB) 1.0 (0.9, 1.3) 0.9 (0.8, 1.1) 0.088

Lipoproteinmg/Dl 19 (9, 34) 13 (7, 24) 0.332

Total cholesterol, mmol/L 4.0 (3.6, 4.8) 4.2 (3.7, 4.7) 0.357

Low density lipoprotein, mmol/L (LDL) 2.3 (1.9, 3.1) 2.4 (2.0, 2.9) 0.654

Treatments

Antibiotics 39 (100%) 93 (64.8%) <0.001

Steroid 29 (74.4%) 19 (13.4%) <0.001

Antiviral drug 39 (100%) 135 (95.1%) 0.611

Intravenous immunoglobulin 6 (15.4%) 23 (16.2%) 0.842

NoO2 given (n= 37) 0 37 (100%) <0.001

Non-invasive ventilation (128) 28 (21.9%) 100 (78.1%) <0.001

Invasive ventilation (n= 15) 11 (73.3%) 4 (26.7%) <0.001

(Continues)
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TABLE 1 (Continued)

Died Survived

(n= 39) (n= 142) P

Clinical scores

CURB-65 (range= 0–5) 2 (1,3) 0.5 (0, 1) <0.001

Pneumonia severity index (PSI) 105 (88, 124) 58 (0, 81) <0.001

COVID-19 severity index (range= 0–3) 3 (3, 3) 2 (1, 2) <0.001

Respiratory failure 39 (100%) 75 (52.8%) <0.001

Length of hospitalization, day 6 (3.5, 11) 17 (10, 29) <0.001

SI conversion factors: to convert alanine aminotransferase and lactate dehydrogenase to microkatal per liter, multiply by 0.0167; C-reactive protein to mil-

ligram per liter, multiply by 10; D-dimer to nmol/L, multiply by 0.0054; leukocytes to× 109 per liter, multiply by 0.001.

Ventilation information: no O2 given (n = 37), nasal cannula (n = 82), O2 mask (n = 36), high flow nasal cannula (n = 5), and noninvasive positive-pressure

ventilation (n= 6), and invasive ventilation (n= 15). One patient hadmissing data. Values aremedians (interquartile ranges).

variables (C-reactive protein and procalcitonin), and other lab data

(creatine kinase-MB, ApoA, HDL, troponin, and brain natriuretic

peptide) were significantly different between groups (P< 0.05).

Antibiotic and steroid treatments were statistically different

between groups (P < 0.05). Thirty-seven patients had no O2 supple-

ment, 82 patients had O2 via nasal cannula (n = 82), 36 patients had

oxygen via O2 mask, 5 patients had oxygen via high flow nasal can-

nula, 5 patients had noninvasive positive-pressure ventilation, and 15

patients had invasive ventilation. One patient hadmissing data. Modes

of ventilation as a whole were statistically different between groups (P

< 0.05).

TheCURB-65, PSI, COVID-19 severity scores, and length of hospital

stay were significantly different between groups (P< 0.05).

3.2 Top predictors of mortality

We first used collinearity analysis to remove highly correlated or

irrelevant clinical variables, reducing the number of variables from

78 to 56 independent clinical variables. A deep neural network

was used to rank the 56 independent clinical variables (Figure 1).

The top 5 independent clinical variables associated with mortality

were: D-dimer, oxygen index, neutrophil to lymphocyte ratio (NE:LY),

C-reactive protein (CRP), and lactate dehydrogenase (LDH). We

excluded diarrhea from the top 5 variables for subsequent calculation

because it is a subjective symptom. The AUC for predicting mortality

using the top 5 clinical variables was 0.968 (95%CI= 0.87–1.0) for the

testing dataset. Note that treatment variables, the CURB-65, PSI, and

COVID-19 severity scores were not part of the inputs in the neural

networkmodel.

3.3 Risk stratification scores for mortality

Based on these top 5 variables, we also constructed a risk score strati-

fication system to predict mortality (0 to 5, lowest to highest risk). The

optimal thresholds that yielded a balanced sample distribution across

F IGURE 1 Neural network ranking of 56 independent clinical
variables for predictingmortality

risk scores were: >6.7 mg/L for D-dimer, <94 for O2 index, >10 for

NE:LY, >93 mg/L for CRP, and >450 U/L for LDH. To use the risk strat-

ification score in practice, each of these variables that reached the

respective thresholds would add 1 point to the total score. Figure 2

shows the results of risk score model for the testing dataset. The per-

centage of expired patients increased with increasing mortality risk

score, and the percentage of patients who survived decreased with
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F IGURE 2 Risk scores predictingmortality (0 to 5, lowest to highest risk). Risk scores were constructed based on 5 top clinical variables

F IGURE 3 Receiver operating characteristic (ROC) curves and
area under the curve (AUC) for top 5 clinical variables, risk score,
pneumonia severity index (PSI), CURB-65 score, and COVID-19
severity score for the test dataset

increasing risk score. Performance using the risk score yielded an AUC

of 0.954 (95% CI = 0.80–0.99) for predicting mortality for the testing

dataset. The mortality rates for the risk stratification scores of 0, 1, 2,

3, 4, and 5were 0%, 0%, 6.7%, 18.2%, 67.7%, and 83.3%, respectively.

The ROC curves and AUC of the deep neural network of the

top 5 clinical variables and the resultant risk score were compared

with those of the COVID-19 severity score, CURB-65 score, and PSI

(Figure 3). The prediction based on the 5 top clinical variables

(AUC = 0.968) and the risk score (AUC = 0.954) outperformed in pre-

dictingmortality compared toCOVID-19 severity score (AUC=0.756),

CURB-65 (AUC= 0.671), and PSI (AUC= 0.838).

4 DISCUSSION

We developed a deep neural network architecture to identify the top

5 predictive variables from 78 clinical variables to predict mortality

in COVID-19 patients early in their hospital course. The predictive

model using the top 5 clinical variables as inputs yielded an AUC of

0.968 and the resultant risk stratification score yielded an AUC of

0.954 for predicting mortality for the testing dataset. This predictive

model compared favorably with standard clinical predictivemodels for

pneumonia (CURB-65 and PSI) and a COVID-19 severity score. Our

deep neural network predictive model is flexible and can readily take

onadditional data to augment performance, and canbeeasily retrained

with regional data. This predictive model and risk stratification score

system have the potential to help direct patient flow and appropriate

resources associated with COVID-19 patient care.

The top predictors of mortality determined by deep neural network

in this patient cohort were D-dimer, O2 index, Ne:Ly, CRP, diarrhea,

and LDH. Elevated D-dimer, a small protein fragment present in the

blood after a blood clot is degraded by fibrinolysis, suggests coagu-

lation system dysfunction and inflammation, which may increase the

likelihood of deep venous thrombosis. Reduced O2 index suggests a

reduced ability of the lung to oxygenate blood, suggestive of disrupted

lung function. Elevated Ne:Ly ratio could make it difficult for the body

to eradicate infection, reflecting immunological disturbance due to

COVID-19 infection. Elevated CRP, a blood marker of inflammation,

suggests inflammation and tissue damage in the body. Elevated LDH

also indicates tissue damage in the body. These 5 top predictors reflect

tissue inflammation, tissue damage, and compromised immunological

defense. All of these parameters have been previously identified to be

associated with COVID-19 infection,32 but the majority of published

studies at the time of this writing did not rank these clinical features, or

use quantitative prediction model and risk stratification scores to pre-

dict mortality.

Interestingly, unlike previous literature that generally cited age as

an important predictor of mortality in COVID-19,1–3,32 our model did
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not find age to rank among the top predictors of mortality in our

cohort, although age was significantly different between groups. None

of the comorbidities and symptoms (except diarrhea) were among

the top predictors in our cohort although some comorbidities and

symptoms were significantly different between groups. These dis-

crepancies might be because previous studies did not rank clinical

features although other explanations (ie, different patient cohorts

and hospital practice or environment) are possible. Although front-

line physicians can readily identify patients to be at higher risk of

mortality based on old age and physical distress, this and similar

predictive models and advanced risk stratification tools based on

large array of clinical variables from large patient cohorts may be

helpful to objectively and robustly identify patients who ostensibly

should do well but are at high risk of developing a severe disease

course, complications, or poor prognosis in general. The value of

such advanced risk stratification is, therefore, to identify patients for

escalated care.

It is challenging for frontline physicians to effectively use such a

large array of clinical variables in clinical decisionmaking, especially

when the disease course is not well understood and clinical decisions

need to be made in time-sensitive, stressful, and potentially resource-

constrained environments. It is also challenging to determine the exact

relationship amongst different clinical variables with respect to out-

come by conventional methods. Therefore, we developed a practical

risk stratification score system. To use the risk stratification score in

practice, each of these variables that reached the respective thresh-

olds would accumulate 1 point. There were 5 possible points. Themor-

tality rates for our risk stratification scores (0–5) were 0%, 0%, 6.7%,

18.2%, 67.7%, and 83.3%, respectively. We envision such risk score to

be used for risk stratification for triaging of patients with respect to

ICU admission or mechanical ventilator use. These findings are signifi-

cant and could have useful clinical applications.

Another novel finding is that prediction based on the 5 top clinical

variables and the risk stratification score outperformed COVID-19

severity score, CURB-65, and PSI in predicting mortality in a head-

to-head comparison. This finding is significant. A few studies have

attempted to develop a predictive or risk score model to predict mor-

tality and disease severity associated with COVID-19 infection. Gen-

eral risk scores used in the emergency department, such as SOFA and

MEWS, when applied to COVID-19 infection unfortunately lack ade-

quate sensitivity and specificity to predict mortality associated with

COVID-19 infection.9,10 Lu et al created a 3-tiered risk score based on

only 2 variables, age and CRP thresholds, to determine mortality.33 Ji

et al used logistic regression and identified comorbidities, age, lympho-

cyte and LDH to be predictors of mortality but did not develop a risk

score.34 Xie et al reported age, lymphocyte count, LDH, and SpO2 to be

independent predictors of mortality but did not develop a risk score.35

Jiang et al used supervised learning (not deep learning) and found

mildly elevated alanine aminotransferase, myalgia, and hemoglobin

at presentation to be predictive of severe acute respiratory distress

syndrome of COVID-19 with 70%–80% accuracy.36 This study had

small and non-uniform clinical variables from different hospitals. Ji et

al predicted stable versus progressive COVID-19 patients (n = 208)

based on whether their conditions worsened during hospitalization.37

They reported comorbidity, older age, lower lymphocyte, and higher

lactate dehydrogenase at presentation to be independent high-risk

factors for COVID-19 progression. A nomogram of these 4 factors

yielded a concordance index of 0.86. Hu et al studied 105 patients to

predictmortality using only demographic and vitalswithout laboratory

tests.38 They found an optimal cut-off of Rapid Emergency Medicine

Score (≥6) had a sensitivity of 89.5%and a specificity of 69.8%.None of

these models used internal validation using independent datasets and

none of these studies compared with other models. Although some of

the predictors of mortality were shared among these and our studies,

there were also differences. These differences could be due to differ-

ent outcomemeasures being investigated (mortality, acute respiratory

distress syndrome, and disease severity), patient cohorts, different

disease severity at admission, hospital environment, and analysis

methods used, among other factors. Therefore, a predictive model

needs tobe flexible to incorporatenewand local data andnewoutcome

variables.

Our predictive model differed from previous COVID-19 predic-

tive models in several ways. Our approach used a deep-learning algo-

rithm method that offers unique advantages over logistic regression

or multivariate models. In typical regression models, clinical vari-

ables need to be dichotomized based on optimal cut-off values using

various methods typically to maximize the summation of sensitivity

and specificity,39 which could introduce errors. The neural network

model, on the other hand, can model large number of clinical variables

without the need to specify the exact relationship amongst different

data elements. In addition, our model was validated internally using

independent datasets. Our predictive model can be easily retrained

with additional data, new local data, as well as additional clinical

variables.

Finally, it is important to note that our machine learning predictive

model and resultant risk stratification score system were established

based on a single institutional data. This work is a first step toward

clinical translation. Our predictive model and risk stratification score

system need to be externally validated using multi-institutional

data and/or prospective studies before clinical application can be

realized. Should our tool be externally validated in due course, we

envision such predictive model and risk stratification score sys-

tem can be used by frontline physicians to more effectively triage

COVID-19 patients.

4.1 Limitations

Our study had several limitations. This is a retrospective study based

on a single institution as mentioned above. This study includes clinical

variables only at presentation. Incorporating longitudinal clinical data

should provide additional insights. Finally, it is important to note that

the COVID-19 pandemic circumstance is unusual and evolving. Flow

of patients (ie, ICU) and mortality may depend on individual hospitals’

patient load, practice, and available resources, which also differ among

countries.
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5 CONCLUSION

We implemented a deep-learning neural network algorithm to identify

top clinical variables and constructed a risk stratification score to pre-

dict mortality in COVID-19 patients. Our predictive model compares

favorably with standard CURB-65, PSI, and COVID-19 severity score.

This approach has the potential to provide frontline physicians with

a simple and objective tool to stratify patients based on risks so that

they can triage COVID-19 patients more effectively in time-sensitive,

stressful, and potentially resource-constrained environments.
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