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Abstract: This paper suggests a new approach for change detection (CD) in 3D point clouds.
It combines classification and CD in one step using machine learning. The point cloud data of both
epochs are merged for computing features of four types: features describing the point distribution, a
feature relating to relative terrain elevation, features specific for the multi-target capability of laser
scanning, and features combining the point clouds of both epochs to identify the change. All these
features are merged in the points and then training samples are acquired to create the model for
supervised classification, which is then applied to the whole study area. The final results reach an
overall accuracy of over 90% for both epochs of eight classes: lost tree, new tree, lost building, new
building, changed ground, unchanged building, unchanged tree, and unchanged ground.
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1. Introduction

Change detection plays an important role in keeping topographic databases up-to-date, in
monitoring, and in planning [1]. One major data source for documenting landscape change are
2D satellite images, especially in large-scale problems as urbanization, forest monitoring, earthquake
hazard and risk assessment, etc. [2–7]. For these tasks, many studies used low-to-medium resolution
images [8–12], although high resolution images were also employed for change detection at a higher
level [13–15]. However, high resolution 2D-based change detection has several limitations such as
higher spectral variability [6], perspective distortion [16,17], and lack of volumetric information [18,19].
These limitations complicate 2D-based change detection. With three dimension (3D) geometric
information, 3D change detection is not influenced by illumination, perspective distortion and
illumination variations as 2D change detection [20]. The third dimension as a supplementary
data source (height, full 3D information, or depth) and the achievable outcome (height differences,
volumetric change) expand the scope of CD applications [20] in 3D city model updating [21,22], 3D
structure and construction monitoring [23,24], 3D object tracking [25,26], tree growth monitoring and
biomass estimation [27,28], and landslide surveillance [29].

An established source of detailed and accurate 3D information is airborne LiDAR (light detection
and ranging), which provides a point cloud, and is applied in various fields [30–33]. Therefore, airborne
LiDAR is creating new possibilities for 3D change detection, especially in urban areas where complex
3D situations prevail [34].

Many approaches suggested in the literature demonstrate the high potential of LiDAR point
clouds for change detection (see Section 2). Most studies apply two steps: first, detect the change;
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and, second, classify the change; alternatively, first, classify objects for both periods; and, second,
detect changes between the classifications. Both approaches, consequently, will be influenced by
sequence error, i.e., the accuracy of classified changes depends on the change detection method and
the classification method. Furthermore, most of those studies focus only on one class (typically either
building or trees). However, a change typically does not happen in a single class only, but leads to
changes in multiple classes. We are therefore suggesting to investigate the possibilities of performing
change detection and classification of all the main classes (building, tree, and ground) simultaneously
in one step.

In this paper, we suggest a new approach in change detection (CD). It combines classification
and CD in one step. Additionally, it builds on the point cloud, which is a common data source for
high resolution geoinformation from laser scanning and image matching alike. It exploits the power
of machine learning [35]. Given two raw point clouds of different epochs, sampled training data is
required only once. The method provides a separation whether there is a change or no change at the
location of the point as well as individual class information for each point. The method is presented
for one site, and its properties are discussed.

2. Related Work

We suggest to classify change detection approaches using ALS data in urban areas into two
methods: “post-classification” CD and “pre-classification” CD. In the first category, post-classification,
the urban objects are first classified into specific classes and then changes are detected in the
classifications. In the second category, pre-classification, the differences between two datasets are
detected first and then the change types are classified later. An overview of published approaches is
shown in Table 1. The description will only focus on those articles, in which a specifically new aspect
was added to the overall approach.

Table 1. List of proposed change detection approaches.

Authors Year
Data Used

CD Approach CD Classes
ALS Image Maps

Matikainen et al. [36] 2004 X X X Post-classification Building
Matikainen et al. [37] 2010 X X X Post-classification Building

Stal et al. [38] 2013 X X Post-classification Building
Malpica et al. [39] 2013 X X Post-classification Building

Matikainen et al. [40] 2016 X X X Post-classification Building
Matikainen et al. [41] 2017 X X X Post-classification Building, roads
Vosselman et al. [42] 2004 X X Post-classification Building

Tang et al. [43] 2015 X X Post-classification Building
Awrangjeb et al. [44] 2015 X X Post-classification Building

Choi et al. [45] 2009 X Post-classification Ground, vegetation, building
Xu et al. [46] 2015b X Post-classification Building
Teo et al. [47] 2013 X Post-classification/DSM-based Building

Murakami et al. [48] 1999 X Pre-classification/DSM-based Building
Pang et al. [49] 2014 X Pre-classification/DSM-based Building

Vu et al. [50] 2004 X Pre-classification/DSM-based Building
Zhang et al. [51] 2014 X Pre-classification Ground
Xu et al. [34,46] 2015a X Pre-classification Building, tree

In post-classification CD, ALS data can either be combined with other datasets from a different
epoch, or two different epochs of airborne LiDAR data are used. The former is a common method,
investigated in many studies, incorporating the advantages of the LiDAR height data with either
images [36–38] or existing maps for updating information [42–44]. Malpica et al. [39] proposed
an approach that employed ALS data and satellite imagery for updating buildings of a geospatial
vector database. LiDAR data were used to derive the height above the terrain, which was associated
with spectral information and became the input for a support vector machine (SVM) classification.
This method proved useful for tall buildings, yet small houses and low buildings surrounded by
trees were not well-detected. Teo and Shih [47] suggested a CD method, in which the change
in building types were obtained by handling multi-temporal interpolated LiDAR data. Recently,



Sensors 2018, 18, 448 3 of 21

Matikanen et al. [40,41] demonstrated the potential of multispectral airborne laser in automated
classification and change detection. Land cover classification was derived from multispectral ALS
data using a random forest classifier. Afterwards, building changes were detected by combination of
the land cover classification results with a digital surface model (DSM) and building vectors from a
previous epoch. Road changes were detected by comparing road classes from the classification results
with the road centerline vectors. The approaches mentioned above enable detecting changes in 2.5D
(DSMs) or only in 2D (Maps), both of which may cause loss of information under trees. In contrast,
two ALS data epochs facilitate overcoming this issue. Choi et al. [45] based change detection on a DSM
subtraction between two ALS epochs to detect change areas. The points within the detected areas
were then organized into surface patches, which were subsequently classified into ground, vegetation,
and building. The type of the change was determined based on the classes and properties of each
patch. Xu et al. [46] detected the changes in buildings from commercial (acquired in the years 2008 and
2010), and residential area (2010 and 2012) by two epoch ALS data. Their “scene classification” used a
rule-based classifier combined with the point-to-plane distance between two epochs to distinguish
“changed”, “unchanged”, and “unknown”. Then, changed points were re-classified in a second step
into different classes (dormers, roofs, constructions on top roof, cars, and undefined objects) with an
accuracy in the range of 80% to 90%. They showed that the quality of the classification results will
influence the quality of the change detection.

In the literature, 3D change detection using two ALS epochs is more often investigated in the
pre-classification scenario. First change is detected and then it is classified. DSM-based methods were
employed in most studies. Murakami et al. [48] operated two multi-temporal ALS data to identify
changes in buildings by subtracting the DSMs. Likewise, Vu et al. [50] demonstrated an automatic
change detection method to detect damaged buildings after an earthquake in Japan. Pang et al. [49]
proposed an object-based analysis method to automatically detect building changes by multi-temporal
point cloud data in an 8.5 km2 area. Going beyond DSM-based methods, Zhang and Glennie [51]
presented a weighted anisotropic iterative closest point (ICP) algorithm, which determined 3D
displacements between two point clouds by iteratively minimizing the sum of the squares of the
distances. Xu et al. [34] proposed a three-step point-based method for identifying building and tree
changes from two LiDAR datasets. The point cloud data were first registered using the ICP algorithm
and filtered to extract non-ground points. Then, the non-ground points were stored and indexed in an
octree. At last, the buildings and trees that changed were detected by comparing the two LiDAR point
clouds and applying the AutoClust algorithm [52].

The aforementioned pre-classification CD studies [34,47–51] have illustrated the possibility of
automatic change detection, which can achieve over 80% of accuracy in urban area. Most methods,
however, depend on the DSM quality [38] and are concentrated on building changes. Xu et al. [34]
has overcome the limitations of previous studies by proposing a method which does not require a
DSM and expands the change types to tree cover change in urban area. However, their method has
limitations in detecting of the natural growth of trees, which was classified into newly planted trees.
Besides, ground points needed to be filtered out in their study. Of course, also ground can change
through time and relevant change information should be supplied. In addition to change types, all
the methods have the same process: firstly, to separate the “changed” and “unchanged” points, and,
afterwards, classify the change types based on the “changed” detection.

Machine learning can be performed supervised, using training data, or unsupervised, with the
aim of clustering points with similar features. As the relevant classes in the urban scene are known, we
use supervised learning. If only two classes shall be distinguished, Support Vector Machines [53] could
be well used. For point cloud classification this is described by [54–57]. For multiple class problems,
Random Forests was suggested [35]. They are efficient and require a moderate amount of training data.
Its application to point cloud classification is described, e.g., by [58,59]. Conditional Random Fields
(CRF) [60] allow adding context to classification, i.e., considering the relation between neighboring
points, and especially were shown to improve the results for classes with fewer points [61,62].
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Convolutional neural networks (CNN) were also described for point clouds [63], but they require an
extensive set of training data, which is not available in our case. Dictionary learning methods require
less training samples but need a long time for processing [64–66]. Thus, the method of random forests
for point cloud classification was selected.

The new automatic change detection method we suggest targets changes in and between the
classes buildings, trees, and ground. A “Changed” and “Unchanged” separation does not need to
be performed. Instead, all change types and unchanged types are detected simultaneously based on
machine-learning [67].

3. Methodology

The proposed method is shown in Figure 1. First, outliers are removed from the data
(see Section 3.1). Second, the data of both epochs are merged to compute features of four types:
features describing the point distribution, a feature related to height above the terrain, features specific
for the multi-target capability of ALS, and features combining both epochs to identify the change
(Section 3.2). Training data (Section 3.3) are taken manually, and machine learning (Section 3.4) is
applied to compute a model for the classification. Finally, based on the additional attributes of each
point, change types are computed (see Figure 1). As shown in Figure 1, each point cloud is classified
and investigated for change by an individual machine learning step. All processing is performed in
OPALS [68] supported by DTMaster [69] and FugroViewer [70].
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3.1. Outlier Detection

We assume that the original data are georeferenced already in the same coordinate system and
projection. Outlier points, which would cause unpredictable errors in the results, need to be eliminated.
Statistics (min, max, mean, and standard deviation) and robust estimators (median and sigMad) of
z value of the points are computed to set thresholds for outlier detection. Additionally, isolated points
are detected and removed. An isolated point is defined as having no neighbors within a certain
search radius.

3.2. Features

The first set of features describes the point distribution [71]. These features are required for
the separability of the classes. Estimation of local planes on a point basis is useful for different
tasks (e.g., shaded relief) and surface normals are important geometric properties of a surface. Here,
the local tangent plane is estimated by computing the best fitting plane for the ten nearest points.
Its normal vector (termed NormalX, NormalY, and NormalZ in the following) and the standard
deviation (std.dev.) of the fit are used as additional descriptions of the points (termed NormalSigma).
The distribution of the points in the neighborhood, which contain more helpful information, are
derived from the structure tensor T [72]. Linearity, planarity, and omnivariance are three features
obtained from T. The linearity feature (LT) is used to characterize 3D line objects such as power lines
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or similar structures. Planarity (PT) is a feature which describes the smoothness of the surface and is
related to roughness measures. Omnivariance (OT) describes volumetric point distributions as they
occur for trees. These features are computed using three eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ 0 of the matrix T
(Equations (1)–(3)).

LT = 1− λ2

λ1
(1)

PT =
λ2 − λ3

λ1
(2)

OT = 3
√

λ1λ2λ3 (3)

Different neighborhood definitions are used for the attribute computation of the features
EchoRatio, ZRank, and ZRange, which can be derived to provide more information of the points.
The EchoRatio is a measure that describes the vertical point distribution and thus the penetrability of
the surface [31,73,74]. ZRange represents the maximum height difference between the points in the
neighborhood, while ZRank is the rank of the point corresponding to its height in the neighborhood.
Thus, the full list of features of the first group is: NormalX, NormalY, NormalZ, NormalSigma, LT, PT,
OT, EchoRatio, ZRank, and ZRange.

Secondly, the normalized height is considered as a feature. Mallet et al. [54] have shown that
classification of urban areas improves if this feature is considered. However, as we are primarily
interested in change detection, the quality of the terrain model is expected to have a lower impact, and
thus a simple method [75] is deemed sufficient to compute the DTM, if it is not already available. We use
a hierarchic block minimum method (with two iterations). In the first iteration, all the last echo points
are selected first. From these points, a raster model is derived by using the “5th lowest” height points in
each cell of size 10 m. The height difference of a point and this raster model (nH = z (point) − z (raster))
is then calculated for each point and all the points in a threshold range above or below the cell elevation
are filtered out. For the remaining points the same process (raster creation and nH computation) is
repeated using smaller cell size and a smaller nH threshold range in order to obtain the final points for
DTM interpolation.

The third set of ALS features exploits the multi-target capability of pulsed LiDAR systems, which
can return multiple echoes per emitted laser shot. These echoes are measured directly and the point
clouds from ALS not only contain the coordinates (x, y, z) but also further echo info: echo number
within the shot, and number of echoes of the shot. Both values are used as features of the point.

Finally, the fourth set of features are features between epochs. They are computed for each point
by considering the distribution of the neighboring points in the other epoch. In Figure 2, the points
of the epoch 1 point cloud E1 are investigated for change relative to the point cloud E2. In each
point of E1, we search in 3D to find the number n3D of neighboring points of E2 within a sphere of
radius R. If this number is zero, there is most likely a change at that point. This is just enough for
detecting changes at building and isolated trees, but not for a dense tree area or trees close to buildings.
For example, the right red tree in Figure 2 appears in epoch 1 but not in epoch 2. Most of the points in
the tree are detected as changed. Nevertheless, this lost tree is close to another unchanged tree, so in
the same search radius, some of the lost tree points are still unchanged points because they can find
the nearest neighbor of E2 in the unchanged tree. This will be reduced if we consider also a 2D search
around the same point to find the number n2D within a cylinder of radius R. Finally, the ratio of these
point numbers in percent is called “stability” (Equation (4)). This is identical to EchoRatio, with the
difference that the point of evaluation if from a different point set than the points counted in the 2D
and 3D neighborhood.

Stability =
n3D × 100

n2D
(4)
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where n3D is the number of points found in a fixed search distance (e.g., 1 m) measured in 3D (i.e., search
sphere); and n2D is number of points found in the same distance measured in 2D (i.e., vertical search
cylinder with infinite height).Sensors 2018, 18, x FOR PEER REVIEW  6 of 21 

 

 

Figure 2. Stability of changed and unchanged objects. 

3.3. Training Sample 

The training samples provide information to the learning system. The supervised learning 

algorithm analyzes the training data and produces an inferred function, which can be used for 

mapping the remaining data. The training sample quality directly influences the classification results, 

as label noise, i.e., a wrong class decision on a training point, influences the learned function for the 

classification. All the changed types are taken thoroughly by manual selection. In this study, the 

change samples follow the rules shown in Table 2. It is not necessary to foresee changes in all classes 

and in this experiment the class water was not investigated for change. 

Table 2. Rules of taking sample for machine learning classification. 

Change Objects Change Types Description 

Buildings 

Unchanged high-building The same high-building is in both epochs 

Unchanged low-building The same low-building is in both epochs 

New high-building New building with height >15 m 

Lost high-building Lost building with height >15 m 

New low-building New building with height ≤15 m 

Lost low-building Lost building with height ≤15 m 

New walls Walls in new building 

Lost walls Walls in lost building 

Unchanged walls Walls in unchanged building 

Trees 

New tree New planted tree 

Lost tree Cut tree 

Unchanged trees The same tree in both periods 

Ground 

Unchanged ground The same ground or absolute height differences ≤0.5 m 

Change in height Ground has absolute height differences >0.5 m 

New ground Buildings changed to grounds 

Lost ground Ground changed to buildings 

Water Water Water points 

3.4. Change Types Classification 

As a state-of-the-art machine learning algorithm, random forest [35] is used to classify the urban 

area because of its advantages. It does not overfit, runs fast and efficiently for a large dataset such as 

LiDAR [58] and it requires a moderate amount of training data. This method is useful for automatic 

classification of urban objects. All the sample points contain the four sets of features (mentioned in 

Section 3.2). Random forest selects randomly features for subsets of the sample points to train several 

decision trees. Each randomly created decision tree is used to predict the class of a new (unseen) point 

based on its features and stores this outcome. The highest voted predicted outcome is considered the 

final classification for each point. The final classification model is then applied to the rest of the point 

cloud to generate the final change detection classification results. 
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3.3. Training Sample

The training samples provide information to the learning system. The supervised learning
algorithm analyzes the training data and produces an inferred function, which can be used for
mapping the remaining data. The training sample quality directly influences the classification results,
as label noise, i.e., a wrong class decision on a training point, influences the learned function for the
classification. All the changed types are taken thoroughly by manual selection. In this study, the
change samples follow the rules shown in Table 2. It is not necessary to foresee changes in all classes
and in this experiment the class water was not investigated for change.

Table 2. Rules of taking sample for machine learning classification.

Change Objects Change Types Description

Buildings

Unchanged high-building The same high-building is in both epochs
Unchanged low-building The same low-building is in both epochs

New high-building New building with height >15 m
Lost high-building Lost building with height >15 m
New low-building New building with height ≤15 m
Lost low-building Lost building with height ≤15 m

New walls Walls in new building
Lost walls Walls in lost building

Unchanged walls Walls in unchanged building

Trees
New tree New planted tree
Lost tree Cut tree

Unchanged trees The same tree in both periods

Ground

Unchanged ground The same ground or absolute height differences ≤0.5 m
Change in height Ground has absolute height differences >0.5 m

New ground Buildings changed to grounds
Lost ground Ground changed to buildings

Water Water Water points

3.4. Change Types Classification

As a state-of-the-art machine learning algorithm, random forest [35] is used to classify the urban
area because of its advantages. It does not overfit, runs fast and efficiently for a large dataset such as
LiDAR [58] and it requires a moderate amount of training data. This method is useful for automatic
classification of urban objects. All the sample points contain the four sets of features (mentioned in
Section 3.2). Random forest selects randomly features for subsets of the sample points to train several
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decision trees. Each randomly created decision tree is used to predict the class of a new (unseen) point
based on its features and stores this outcome. The highest voted predicted outcome is considered the
final classification for each point. The final classification model is then applied to the rest of the point
cloud to generate the final change detection classification results.

4. Study Site

The Leopoldstadt District, in Vienna, Austria, is taken as the study area. The experimental
region (Figure 3), covering an area of about 3 km × 1.5 km, is generally flat. It contains complex
objects, containing several old-fashioned and modern high-rise buildings, a suburban area with mainly
single-dwellings, an open-wide area (including a stadium), water, overpasses, an amusement park,
and a variety of other objects. Since 2005, this area has been one of the most dynamic areas with respect
to changes in land use in Vienna. Old buildings have been rebuilt into new buildings or open ground,
new buildings are constructed from bare ground and cut trees, new trees are planted suitable for the
landscape, and a new road and a stadium construction was built. All these led to changes in buildings,
vegetation, and ground in this area.

Two sets of LiDAR data are available, which were obtained in 2007 (from 7 December 2006
to 5 February 2007) and 2015 (9–24 November 2015). These data have average point densities of
12 points/m2 measured with a Riegl LMS_Q560 (Riegl, Horn, Austria) and 16 points/m2 measured
with a Riegl LMS_Q680i, respectively. As the datasets are already registered well, no extra steps for
registration were required. Ortho-photos from the time of flight were not available, and thus Google
earth images of the respective years were used to support interpretation of the main objects. This was
necessary for taking training samples for machine learning, as well as a manual classification of the
point cloud for the accuracy assessment process at the end.
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image of experiment area.

5. Results and Discussion

The highlight of our change detection method is the combination of the steps of change detection
and change classification in one single step based on the stability value combined with the other
attributes in order to classify all objects into different classes, comprising: unchanged points (ground,
building, and tree), and changed points (new building, lost buildings, new tree, lost tree, ground
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changed in height, and ground changed into other objects). The final results are then evaluated using a
point-based accuracy evaluation by comparing the automatic change detection classification results
with the manual change detection classification.

5.1. Stability Feature

Stability (Equation (4)) is a feature which is used to detect change points in this paper. A good
estimate for the selection of a suitable search radius is the double of the average point spacing found
in the study area. This guarantees a representative number of neighbors, while avoiding too large
neighborhoods, which would cause expanded transition zones at the border of two objects with
different surface structure [73]. A search radius of 1.0 m is chosen in this paper. In flat open terrain
this will result in around 38 neighboring points for 2007 and around 50 points for 2015. If no points
of E2 are found by 3D search, the value of stability is 0%. That point is then a changed point. In the
case of unchanged points, buildings and ground have low transparency, the number of 3D and 2D
neighbors of E2 should be approximately the same, so resulting in a high stability (100%). In contrast,
vegetation is transparent to LiDAR shots (to some degree) and thus the laser point density on and
within vegetation depends on the density of the branches, the twigs and the leaves. The latter even
depends on the vegetation type and the time of year. Consequently, one has to expect lower stability
values at vegetation objects.

Figure 4 presents a rasterized image of the stability value for each of both datasets. From these
images, it can be seen that the changed and unchanged regions are detected. Figure 4a,b shows the
stability value ranges from 0 to 100% for the whole study area in epoch 2007 and 2015, respectively.
To be perfectly clear in detail, a small specific area is zoomed in and indicated in height value
(Figure 4c,d). Figure 4e,f indicates the stability value of this area. Changed buildings and grounds
obtain a very low value (approx. 0%).
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Figure 4. Stability feature for change detection: (a) stability shown for 2007 as color value, reaching
from 0 (cyan) to 100% (yellow); (b) stability shown for 2015; (c) point cloud of 2007 shown as height
value in an specific area; (d) point cloud of 2015 shown as height value in an specific area; (e) stability
value range in specific area of 2007; and (f) stability value range in specific area of 2015.

5.2. Sampling Training Data and Classification

Because of the large area, the sample regions were taken from six small regions, where the changes
took place actively. The samples of the unchanged objects (i.e., unchanged grounds, unchanged
buildings, and unchanged trees) and grounds changed in height were taken simultaneously for both
datasets. “Lost tree” and “Lost buildings” samples are only taken in 2007, whereas “New trees” and
“New buildings” are only taken in 2015. The training samples were taken in DTMaster software.
Table 3 sums up the number of sample points in each class. Seventy percent of the training data is
used for learning, whereas the remaining 30% is used for evaluating of the learned random forest
classification model (but not for the overall evaluation—different reference data are used for that; see
Figure 5). Figure 5 displays the sample distribution in both datasets over the whole experiment area.
The data for overall evaluation are overlaid with a yellow cross (see Section 5.4).

Table 3. Sample points of different change types in 2007 and 2015 datasets.

Change Types Sample Points 2007 Sample Points 2015

Unchanged grounds 698,323 639,465
Unchanged low buildings 181,022 169,015
Unchanged high buildings 443,891 463,812

Unchanged walls 44,504 43,796
Lost walls 9341 -
New walls - 62,795

New high building - 479,565
Lost high building 65,653 -
New low building - 53,219
Lost low building 189,327 -

Lost tree 193,035 -
New tree - 138,402

Unchanged trees 184,781 515,326
Ground change in height 113,662 85,766

New ground - 51,919
Lost ground 373,161 -

Water 2400 40,703
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Figure 5. Sample points distribution in both datasets. The area that was used as reference for the
overall evaluation, i.e., the accuracy assessment of the classification results, is shown in yellow.

After taking the sample points, they are used for training and creating the classification model
for each dataset (one model for 2007 dataset, and one model for 2015 dataset). The models were then
applied to the whole area to obtain the final change detection classification results in both datasets
(Figure 6). The total number of processed points are 97,809,515 and 117,734,603 points in 2007 and
2015 datasets, respectively. The time for creating the models from the samples and applying the
models to the total points in two datasets took 1:41 h for 2007 and 2:49 h for 2015 on a single PC with
a Windows 7 Enterprise system (AMD FX ™-6100 Six-Core Processor, 16G RAM) (Singer Computer,
Vienna, Austria).
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Figure 6. Change detection classification results of 2007 and 2015 datasets.

As can be seen in Figure 6, the results of the proposed method are satisfactory, thus indicating
that the method is effective for the complex urban area. All the unchanged and changed objects were
detected simultaneously. A visual comparison of both results in Figure 6 shows that the changes in
2007 and 2015 correspond nicely to one another; i.e., where there is a change in 2007 (with respect
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to 2015) change in 2015 (with respect to 2007) also appears. The same holds true for the unchanged
objects. Figure 7 shows in detail the change type classification results. The first and the second column
show the objects in the data 2007 and 2015. Points are colored by elevation blue to red. The third
column shows the change detection and classification results of the change types.
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building in row 4 and 5, where the point clouds are shown separately for each year.
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5.3. Impact of Using the Raw Point Cloud

The data used are several years apart. Such a time difference is suitable for new constructions.
Vegetation objects may change considerably in the long period because of their natural growth.
Additionally, each dataset itself contained certain problems, apart from outliers removed beforehand.
Because of the duration of the measurement campaign, in the active change areas also changes within
the overlap of 2007 LiDAR strips were found. It contained different objects (e.g., difference in ground) at
the same position. Figure 8 shows a ground height difference of 4.7 m at the same location. This violates
the underlying assumption of a stable object within one epoch and leads to a wrong classification in the
ground of the 2007 dataset. In the 2015 dataset, because of a building wall material acting as a mirror,
trees and grounds are wrongly recorded inside the buildings (Figure 9). Those wrong measurements
could also not be discovered as noise in the outlier removal step. These problems were identified when
collecting the reference data by the manual operator. Although all wrong points are removed as high
point in the accuracy assessment step (see below), they have an impact on the final results because
they influence the real points in the step of calculating attributes which are used for the classification.
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Figure 8. Open ground in the point cloud of 2007. Two contradicting layers of ground are shown due
to construction activity within the duration of the 2007 campaign. (a) The Google earth image shows
the location of the construction area; (b) orthophoto showing the selected area; (c) ground view of
the point cloud indicates the position of the profile shown in sub-figure (d); and (e) a 3D view of the
multilayer point cloud with the difference in height reaching 4.7 m.
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Figure 9. Erroneously measured points inside a mirroring building with a glass façade in the 2015
dataset. (a) The Google earth image located the position of the building; (b) orthophoto showing the
selected area; (c) the ground view of the point cloud; (d) the profile view displays the erroneously
measured point inside the building; and (e) 3D view of the point cloud.
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5.4. Accuracy Evaluation

To evaluate the effectiveness of the proposed methods for detecting changes in urban areas,
a comparative analysis between change detection results and the reference data was conducted.
Because no photos were acquired which were collected simultaneously with the ALS data, the reference
data were obtained by visual interpretation in 3D and manual classification. Reference point collection
was conducted based on the rules:

• Unchanged buildings: The same geometric building in two epochs or buildings which have
changes in roof but lower than 1 m (i.e., paying tribute to the chosen search radius).

• Lost buildings: Buildings are available in the older data but not in the later data.
• New buildings: Buildings are available in the later data but not in the older data.
• Unchanged ground: The height of the ground did not change more than 0.5 m.
• Changed ground: The ground has changed in height, changed to other types of land use

(i.e., new buildings), or new ground.
• Unchanged trees: Trees at the same position.
• Lost trees: Trees that were cut.
• New trees: Newly planted trees.
• High points: Cars, fences (wooden, concrete, metal, and small bushes), wires, ships on the

water, etc.

This manual classification approach is a tough task and time-consuming. However, this approach
is more advantageous than using orthophotos in the case of comparing the change in height of ground,
which is difficult when using 2D orthophotos. The selected region for doing manual classification,
which is shown in Figure 5, was cut out from the datasets. The criteria to choose this area were:
(1) select an area where all types of changes occur; (2) avoid the training samples as much as possible
to ensure the objectivity of the accuracy assessment; and (3) investigate the entire study region, also
for objectivity. The total reference area is about 33.7 ha out of the whole area 376.7 ha (approximately
9%). The time spent for manual classification of this area was about 150 working hours.

To focus on the above-mentioned changed objects only, the “high points” are manually classified
but not investigated for change. They contain primarily objects, which are dynamic within a day,
and objects for which the sampling is rather poor (thin objects). Those high points also removed
from the accuracy evaluation. In addition, the class water is not represented in the confusion matrix.
High points and water together add up to 3% of the ground truth data. The evaluated points are
grouped into classes according to object change: unchanged ground (UG), changed ground (CG),
unchanged building (UB), lost building (LB), new building (NB), unchanged tree (UT), lost tree (LT),
and new tree (NT). The confusion matrix documenting the accuracy are shown in Table 4. Both datasets
achieved a high overall accuracy of about 91% and 92% in 2007 and 2015, respectively.

From Table 4 it can be seen, that five out of six classes show over 80% correctness in the 2007
dataset. Only the class UT reached 70.7% of correctness because of misclassification as unchanged
building (1.1%) and lost tree (0.5%).

There are some specific problems, most relating to special objects in the dataset. Unchanged building
points are misclassified as unchanged tree in the case of complex building roofs, especially at the edge
of the buildings, and the stadium frame dome where the distribution of points is the same as the tree
point distribution.

In the confusion matrix of the 2015 dataset (Table 4), the most striking class is NT (new trees), for
which correctness and completeness reach only 58% and 56.5%, respectively. Here, about 39% (1.1/2.8)
of the points that in reality are NT were wrongly classified as UT (unchanged trees). The reason for
this low completeness can be explained by two reasons. Firstly, some old trees were cut and at the
very same position new trees were planted (see Figure 10). Consequently, in the change detection
result, these tree points are classified as unchanged trees. Some new small trees grow near big cut trees
(Figure 10) and are also mis-detected.
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Table 4. Confusion matrix of the classification result for the 2007 and 2015 datasets. The rows
correspond to the reference classification, the columns to the automatic classification. EOO, Error
of Omission; Comp, Completeness; EOC, Error of Commission; Corr, Correctness; UG, unchanged
ground; CG, changed ground; UB, unchanged building; LB, lost building; NB, new building; UT,
unchanged tree; LT, lost tree; NT, new tree.

2007 UG CG UB LB UT LT Ref Sum EOO Comp

Ref_UG 53.8 1.8 0.1 0 0.1 0 55.8 3.6 96.4
Ref_CG 3.6 10.1 0 0.1 0 0 13.8 26.7 73.3
Ref_UB 0.1 0 16.7 0.4 1.1 0.1 18.2 8.7 91.3
Ref_LB 0 0 0.2 2.9 0 0.1 3.1 8.6 91.4
Ref_UT 0 0 0.4 0 4.1 0.4 4.9 16.1 83.9
Ref_LT 0 0 0.1 0.1 0.5 3.4 4.1 18.2 81.8

Sum 57.5 12 17.4 3.5 5.8 3.9 100 0 100
EOC 6.4 15.6 4.2 17.6 29.3 13.2 0 0 100
Corr 93.6 84.4 95.8 82.4 70.7 86.8 100 100 0

Overall Accuracy: 90.93

Total number of points: 8,542,450

2015 UG CG UB NB UT NT Ref_sum EOO Comp

Ref_UG 48.3 0.5 0.1 0 0 0 48.9 1.3 98.7
Ref_CG 0.9 10 0.1 0.1 0 0 11.0 9.1 90.9
Ref_UB 0 0 16.5 0.2 0.9 0 17.7 6.9 93.1
Ref_NB 0 0.2 0.1 4.6 0.1 0 5.0 8.4 91.6
Ref_UT 0 0 0.3 0.2 11.1 1.1 12.8 12.9 87.1
Ref_NT 0 0 0.1 0.1 1.1 1.6 2.8 43.5 56.5

Sum 49.2 10.8 17.1 5.3 13.2 2.7 98.2 0 100
EOC 1.8 6.9 3.6 12.4 15.9 42 0 0 100
Corr 98.2 93.1 96.4 87.6 84.1 58.0 100 100 0

Overall Accuracy: 92.05

Total number of points: 8,636,900
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Figure 10. New trees planted at the same location as old lost trees: (a) point clouds of 2007 and 2015; 

and (b) change detection and classification results. 

Because of roughly eight years apart, trees grow up significantly for the small trees and the 

grown trees have changed their shape (e.g., branch cut and new branch). Consequently, those 

growing points are classified into new trees, but in reality, they are parts of the same tree. This leads 

to a low completeness in new tree points of the 2015 ALS data (Figure 11).  

Figure 10. New trees planted at the same location as old lost trees: (a) point clouds of 2007 and 2015;
and (b) change detection and classification results.

Because of roughly eight years apart, trees grow up significantly for the small trees and the
grown trees have changed their shape (e.g., branch cut and new branch). Consequently, those growing
points are classified into new trees, but in reality, they are parts of the same tree. This leads to a low
completeness in new tree points of the 2015 ALS data (Figure 11).
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Figure 11. New planted trees at the same location with lost tree: (a) point cloud in 2007 and 2015; and
(b) change detection and classification results).

A visual analysis of the entire change detection result suggests that the following classes can be
determined with high reliability: unchanged ground, changed ground, new building, lost building,
unchanged building, lost tree. However, this analysis also revealed that the change detection for
growing trees constitutes a big challenge, as some unchanged tree points were classified as new
buildings. This originates in a very dense canopy cover during the 2015 data acquisition resulting
in a planar distribution of points and therefore features which are more similar to building points.
This can be seen in the forested areas of 2015 on the southwestern border of the dataset (see Figure 6).
By selecting points of the respective classes, we estimated that about 1.5% of unchanged tree points are
wrongly classified as new buildings.

5.5. Discussion

Thus far, most studies focused on change detection of buildings only and they achieved very
high accuracy. A very recent research which is closest to our study is the one by Xu et al. [34].
Their overall accuracy for change detection of buildings and trees reached 94.8% and 83.8%. However,
their method to access the accuracy is different from ours. Their reference data was obtained by visual
interpretation of the aerial images and airborne LiDAR data from two dates counting changed objects
(not points). Then, their experimental results and the reference data were put together. The correctness
and completeness of the buildings are determined visually based on the count and the area respectively.
Our method does not only evaluate more objects compared to their method, but also our comparison
is based on the classification of corresponding points, not on object count and area. Thus, the accuracy
values cannot be compared directly.

The classification results in Figure 6 and the evaluation outcomes in Table 4 demonstrate the good
performance of the proposed method in urban areas. This method exploits the ability of extending
machine learning classification to perform classification and change detection in one step. In addition
to combining change detection steps, the proposed method also is flexible in feature selection as well
as in the data used. Firstly, in feature selection, for 3D point clouds numerous features can be used
for a machine learning classifier. Weinmann et al. [71] mentioned numerous 2D and 3D features.
In our study, we just used some of these features. However, depending on the classification task, the
selection of features may be extended or compacted (e.g., using color in point clouds from image
matching). In addition, the change detection feature used in this study is “Stability” to detect the
changes between two epochs. However, other features, such as difference in roughness value of the
local point to the nearest point of the other epoch, surface distance between one point in one epoch to
the surface of the nearest points in the other epoch (compare tangent plane ICP correspondence [76])
etc., can be used as alternative sources of change information. To investigate this, new features were
investigated: (1) distance to nearest point in the other epoch, (2) difference in roughness of current
point and the nearest point in the other epoch. With these features new models were learned and the
classification performed for the entire dataset. Using only the distance feature, the overall quality
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91% decreases slightly to 89%, using only the difference in roughness it drops to 73%. Using all three
features as markers of change, the overall accuracy increases in the order of 0.1% to 91% and 92% for
2007 and 2015, respectively. Secondly, the proposed method has potential for combining different data
sources for change detection. With the flexibility in feature selection, our method allows doing change
detection and classification for different data depending on the features given to identify the classes.
Image matching point clouds recently became one of the important sources used in urban classification,
also exploiting the provided color information. This data can be applied in further studies for change
detection in urban area where the changes in buildings, trees, and grounds occur frequently.

Although the proposed method obtained a satisfying change detection classification result in
one step compared to other studies, there remain some limitations. Firstly, the results of classification
strongly depend on the training samples. Especially for a complex urban area, it is required to consider
various types of objects. Thus, to select the samples of each class required careful observation and
selection. Secondly, in the case of changes where old and new points are too close to each other,
the method did not work well. For example, cut trees and a new building are shown in Figure 12.
Post classification methods (e.g., label smoothing [77]) may support improvement of the results. Thirdly,
as mentioned above, growing tree points are mis-detected as new trees. It is difficult to separate this
class (growing tree points) from the new tree class. A solution may require object detection, i.e., single
tree detection in this case. Parameters of individual trees could then be compared.
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Figure 12. Example of misclassification in the case of object with adjacent old and new data: (a) data in
2007 and 2015; and (b) misclassification results in 2007. In the intersection of the objects, points are
misclassified as unchanged trees.

Finally, we compared our method to a traditional two-step classification approach, i.e., detect the
change and then classify the changes. Two DSM models of 2007 and 2015 are derived with a cell size of
1 m. The DSM difference of 1 m is chosen to separate changed and persistent objects. The first three sets
of features (i.e., point distribution, height above the terrain, ALS features) are rasterized with the same
cell size of 1 m. Those rasterized images are masked into a changed and an unchanged region based
on the DSM masks. The training samples are rasterized and divided into changed and unchanged
samples for each epoch 2007 and 2015. Based on those samples, the classification is performed. Finally,
combining the masks and the classification result, the change detection classification is performed for
2007 and for 2015. This traditional raster-based approach is easy to process and less time is required for
processing compared to our point-based method. However, the final results depend on the first change
detection step. DSM-based change detection is useful for buildings, but not for trees. Tree growth can
be higher than 3 m, given the eight years apart. Therefore, if the DSM difference is 1 m, unchanged
trees are classified into new trees. Increasing the DSM difference, the change in ground and small
buildings are lost. For this reason, the overall accuracy of this method is only 78% for both the 2007
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and the 2015 datasets. Furthermore, the raster-based method does not feature the 3D content anymore,
which is available in the point-based method.

6. Conclusions

This paper has presented a fusion of automatic classification and change detection using a
supervised point-based machine learning approach to infer changes in the objects building and tree, as
well as changes of the ground. The main contribution of the proposed method can be summarized
as: (1) the proposed method establishes a complete set of processes to detect and classify changes in
buildings, trees and ground; and (2) not only are changes detected, but they are also simultaneously
classified, which had not been done before, especially for the major classes ground, building, and tree
in one step. The combination of the “Stability” feature with other attributes plays an important role
for the automatic change detection and classification of different types of urban objects. The overall
accuracy of the final classification of each change type of the 2007 dataset and 2015 dataset reached
90.93% and 92.04%, respectively. Therefore, the proposed method can be used as an alternative method
for detecting changes in urban areas in high resolution point clouds.
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