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Summary
Background Clinical appearance and high-frequency ultrasound (HFUS) are indispensable for diagnosing skin diseases
by providing internal and external information. However, their complex combination brings challenges for primary care
physicians and dermatologists. Thus, we developed a deep multimodal fusion network (DMFN) model combining
analysis of clinical close-up and HFUS images for binary and multiclass classification in skin diseases.

Methods Between Jan 10, 2017, and Dec 31, 2020, the DMFNmodel was trained and validated using 1269 close-ups and
11,852 HFUS images from 1351 skin lesions. The monomodal convolutional neural network (CNN) model was trained
and validated with the same close-up images for comparison. Subsequently, we did a prospective and multicenter study
in China. Both CNN models were tested prospectively on 422 cases from 4 hospitals and compared with the results
from human raters (general practitioners, general dermatologists, and dermatologists specialized in HFUS). The
performance of binary classification (benign vs. malignant) and multiclass classification (the specific diagnoses of 17
types of skin diseases) measured by the area under the receiver operating characteristic curve (AUC) were evaluated.
This study is registered with www.chictr.org.cn (ChiCTR2300074765).

Findings The performance of the DMFN model (AUC, 0.876) was superior to that of the monomodal CNN model
(AUC, 0.697) in the binary classification (P = 0.0063), which was also better than that of the general practitioner
(AUC, 0.651, P = 0.0025) and general dermatologists (AUC, 0.838; P = 0.0038). By integrating close-up and HFUS
images, the DMFN model attained an almost identical performance in comparison to dermatologists (AUC, 0.876
vs. AUC, 0.891; P = 0.0080). For the multiclass classification, the DMFN model (AUC, 0.707) exhibited superior
prediction performance compared with general dermatologists (AUC, 0.514; P = 0.0043) and dermatologists
specialized in HFUS (AUC, 0.640; P = 0.0083), respectively. Compared to dermatologists specialized in HFUS,
the DMFN model showed better or comparable performance in diagnosing 9 of the 17 skin diseases.
*Corresponding authors. Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University,
Shanghai, 200032, China.
**Corresponding author. Shanghai Skin Disease Hospital, Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Shanghai Engi-
neering Research Center of Ultrasound Diagnosis and Treatment, School of Medicine, Tongji University, Shanghai, 200072, China.
***Corresponding author. Chair of Data Science in Earth Observation, Technical University of Munich, Munich, Germany.

E-mail addresses: xu.huixiong@zs-hospital.sh.cn (H.-X. Xu), gopp1314@hotmail.com (L.-H. Guo), xiaoxiang.zhu@tum.de (X.-X. Zhu).
kThese authors contributed equally to this work.

www.thelancet.com Vol 67 January, 2024 1

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
http://www.chictr.org.cn
mailto:xu.huixiong@zs-hospital.sh.cn
mailto:gopp1314@hotmail.com
mailto:xiaoxiang.zhu@tum.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eclinm.2023.102391&domain=pdf
https://doi.org/10.1016/j.eclinm.2023.102391
https://doi.org/10.1016/j.eclinm.2023.102391
https://doi.org/10.1016/j.eclinm.2023.102391
www.thelancet.com/digital-health


Articles

2

Interpretation The DMFN model combining analysis of clinical close-up and HFUS images exhibited satisfactory
performance in the binary and multiclass classification compared with the dermatologists. It may be a valuable
tool for general dermatologists and primary care providers.
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Research in context

Evidence before this study
We searched Google Scholar, PubMed, and Web of Science
from database inception to Jun 30, 2023, using the
combination of the following terms: “ultrasound” AND “skin
disease” AND (“CNN” OR “convolutional neural network” OR
“deep learning”) AND (“clinical image” OR “close-up”). We
found several studies focused on the application of
convolutional neural networks (CNN) for skin classification
using either high-frequency ultrasound (HFUS) or clinical
images. However, few studies combined both image types to
train CNNs for skin disease classification. Though it is proved
that adding combined HFUS images can enhance the accuracy
of skin disease diagnosis, HFUS examination may be relatively
complex for most primary care physicians and dermatologists
to monitor and accurately identify cancerous skin. To address
this issue, it is necessary to develop an effective and
convenient method to integrate images from both modalities
to improve the diagnosis accuracy and popularization of HFUS
examination.

Added value of this study
In this study, we developed a deep multimodal fusion
network (DMFN) combining analysis of clinical close-up
(external information) and HFUS images (internal
information) for diagnosing skin diseases. Differing from
previous studies limited to preselected skin diseases and
binary classification, our DMFN model exhibited satisfactory
performance in the binary and multiclass classification of a
broad range of skin diseases compared with dermatologists.

Implications of all the available evidence
Our results indicated that the CNN-based DMFN model had
promising performance in diagnosing skin diseases and
improved the diagnostic performance of dermatologists who
relied on visual inspection alone. Additionally, the DMFN
model may be a feasible and potentially attractive method to
inform primary care provider referral decisions effectively.
Introduction
Skin cancer, as the most common but complex malig-
nancy in humans,1,2 places significant burdens on
healthcare services. It is primarily diagnosed through
visual inspection, with dermoscopy commonly used.
However, dermoscopy can only provide information
about skin lesions’ visible and external features, and a
histopathological examination is usually required for
confirmation. While the histopathological examination
is considered the gold standard for diagnosing skin
malignancies, this process is invasive, painful, and
limited in sampling. To avoid unnecessary invasive
procedures, non-invasive tools such as optical coherence
tomography (OCT), reflectance confocal microscopy
(RCM), and high-frequency ultrasound (HFUS) have
been developed.3–6 However, similar to dermoscopy,
RCM and OCT may theoretically result in an inadequate
assessment of lesions due to their limited depth pene-
tration. In contrast, as one of the commonly used
devices in clinical practice, HFUS has the potential to
offer improved penetration capabilities, providing ac-
curate quantification of tumor size and clear visualiza-
tion of internal structures such as vessels and skin
appendages.7–9 Owing to its better visibility in the lon-
gitudinal direction, low cost, versatility, and real-time
scanning,5,10,11 HFUS has been increasingly used in
dermatologic field for the initial differential diagnosis,
surgical planning, and follow-up.5,10–12

Though it is proved that the addition of combined
HFUS images can improve the accuracy of skin disease
diagnosis,5,12,13 HFUS examination may be relatively
complex for most primary care physicians and derma-
tologists to monitor and accurately identify cancerous
skin. To address this issue, it is necessary to develop an
effective and convenient method to improve the diag-
nosis accuracy and popularization of HFUS examination.

Most studies have proven convolutional neural net-
works (CNN) in skin lesion classification tasks achieved
www.thelancet.com Vol 67 January, 2024
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a diagnostic accuracy at or above the level of
dermatologists.14–17 Nevertheless, most CNN solutions in
early studies were developed to diagnose skin lesions by
only external information,2,18,19 like clinical or dermo-
scopic images. However, CNNs for some new modal-
ities (especially for HFUS) focused on internal
information about skin lesions were insufficient.
Moreover, the combining solution of external and in-
ternal information has not been developed.

On the other hand, the potential diagnoses of skin
diseases are virtually extensive in clinical practice.
However, most studies have focused only on selected
specific diseases or the binary diagnostic classification
(i.e., benign vs. malignant, nevi vs. melanomas, kerati-
nocyte carcinomas vs. benign seborrheic keratosis).20–23

While these studies were helpful, their limited scope
was insufficient to deal with the challenge of diagnosing
a broad spectrum of skin diseases. Therefore, a multi-
class classification system that covers a wider range of
skin diseases may be better suited for clinical needs.

Thus, we aimed to integrate clinical appearance
(close-ups) with HFUS images by a CNN-based solution
to improve dermatological referrals. We hypothesized
that thoroughly combining external and internal infor-
mation may yield a promising effect in diagnosing a
broad spectrum of skin diseases, not only binary
classification.
Methods
Ethics
This study was approved by the institutional review board
of the ethics committees at all study centers (approval
number: SSDH-IEC-SG-029-4.1). Informed consent was
obtained for all participants. This study was registered
through www.chictr.org.cn (ChiCTR2300074765) and
reported according to the Checklist for Evaluation of
Image-Based Artificial Intelligence Reports in
Dermatology.24

Study design
This is a prospective and multicenter study. We first
compared some candidate CNNs trained by clinical
close-up and HFUS images and then selected the su-
perior network based on the binary classification result.
Simultaneously, human raters (general practitioners,
general dermatologists, and dermatologists specialized
in HFUS) were organized to diagnose the test cohorts.
Their binary and multiclass classification results were
compared with those of the selected network. Fig. 1
illustrates a comprehensive design of the study.

Image data sets
Between Jan 10, 2017, and Dec 31, 2020, a total of 1269
close-ups and 11,852 HFUS images of 1351 lesions
were collected for training and validation cohorts at the
Shanghai Skin Disease Hospital in Shanghai, China.
www.thelancet.com Vol 67 January, 2024
From Jan 1, 2021 to Oct 31, 2022, consecutive patients
with skin lesions were prospectively enrolled from
Shanghai Skin Disease Hospital, Shanghai Tenth Peo-
ple’s Hospital, Shanghai Jiading District Central Hos-
pital in Shanghai, and the Ma’anshan People’s Hospital
in Anhui, China, as the test cohorts (887 close-ups and
2199 HFUS images of 422 lesions).

The clinical close-up images were taken by physi-
cians using a camera (Nikon P510) and smartphones
(Apple iPhone Xs, 12, XIAOMI Mi 12, and HUAWEI
Mate 20). The photographic images of the training and
validation cohort were taken under standardized condi-
tions, ensuring a consistent image quality. However, the
images of the test cohort were taken in different hos-
pitals, leading to non-uniform backgrounds and lighting
conditions.

For each hospital, the HFUS examinations were
performed by experienced dermatologists who
mastered dermatologic HFUS examinations. In detail,
for each lesion, clear greyscale US images and color
Doppler flow imaging (CDFI) images were obtained for
further evaluation. The manufacturers of HFUS
equipment applied in the study are presented in
Supplementary Table S1.

The cases that fulfilled the following criteria were
included: (1) availability of at least one clinical close-up
image or one HFUS image, (2) the photographs and
HFUS examinations were performed before any treat-
ments or biopsies, (3) availability of an unequivocal
histopathologic diagnosis. The exclusion criteria were as
follows: (1) cases that were inadequate for clinical
diagnosis, (2) cases with low image quality, (3) lesions
covered by pen markings or tattoos in close-ups or
obstructed by the posterior acoustic shadow of hyper-
keratosis on HFUS. It was strictly prohibited to have any
overlap between the datasets used for training, valida-
tion, and testing purposes.

Pathological ground truth
The diagnoses of skin diseases we enrolled were clas-
sified as benign or malignant based on histological pa-
thology results.25 Benign diseases included cysts,
lipomas, nevus, benign keratosis-like lesions (BKL)
including seborrheic keratosis (SK) and lichen planus-
like keratosis, benign sebaceous neoplasms including
sebaceous hyperplasia and sebaceous adenoma, hae-
mangioma including angioma, cherry haemangioma,
pyogenic granuloma and angiokeratoma, warts, and
inflammation. Malignant diseases included skin cancers
such as basal cell carcinoma (BCC), squamous cell car-
cinoma (SCC) including invasive SCC and keratoacan-
thoma, extramammary Paget’s disease (EMPD),
dermatofibrosarcoma protuberans (DFSP), malignant
melanoma (MM), and precancerous lesions such as
actinic keratosis (AK) and Bowen’s disease (BD). Table 1
shows the frequencies of diagnoses in the training,
validation, and test cohort.
3
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Fig. 1: Overview of the study design. HFUS, high-frequency ultrasound; CDFI, color Doppler flow imaging; ROI, region of interest; DMFN, deep
multimodal fusion network; CNN, convolutional neural network (including monomodal CNN model and DMFN model); GP, general practitioner.
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In clinical practice, skin diseases exhibit a wide range
of diversity and have a notable “Long Tail Effect”. That
is, in statistics, although each subset may only contain a
Classification Diagnosis Training coho

Benign 486

Cyst 136

Lipoma 14

Nevus 64

BKL 74

Benign sebaceous neoplasm 20

Haemangioma 20

Wart 33

Inflammation 32

Othera 93

Malignant (precancerous) 151

AK 70

BD 81

Malignant (cancer) 443

BCC 216

SCC 116

MM 17

EMPD 64

DFSP 8

Otherb 22

Abbreviations: BKL, benign keratosis-like lesions; AK, actinic keratosis; BD, Bowen’s dis
melanoma; EMPD, extramammary Paget’s disease; DFSP, dermatofibrosarcoma protube
Table S2.

Table 1: Summary of diagnosis in the training, validation, and test cohorts.
small amount of data, the cumulative amount increases
significantly due to the large number of subsets. To
ensure the precision of the model was not compromised
rt n = 1080 Validation cohort n = 271 Test cohort n = 422

123 235

34 49

3 3

16 38

19 17

6 7

5 20

9 10

8 23

23 68

38 25

17 11

21 14

110 162

54 65

30 56

4 5

16 13

1 5

5 18

ease; BCC, basal cell carcinoma; SCC, squamous cell carcinoma; MM, malignant
rans. The list of diagnoses of othera and otherb is available in the Supplementary
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by the underrepresentation of specific skin diseases, we
grouped rare benign and malignant diseases with small
sample sizes (n < 8) into the groups of othera (benign)
and otherb (malignant), respectively. The list of othera

and otherb diagnoses is available in Supplementary
Table S2.

Data preprocessing
In the HFUS image enhancement preprocessing mod-
ule, firstly, we weakened the speckle noise of the HFUS
image. There are many denoising techniques applied to
improve the performance of skin disease diagnosis
methods.26 To avoid a loss of information, we used ho-
momorphic filtering due to its effectiveness on our data
types. Also, we applied histogram equalization rather
than the intensity normalization methods, such as in the
previous studies,27,28 leading to increased computational
costs. Then, we performed pyramid feature fusion based
on spatio–temporal correlation and information
complementarity on two augmented images. It is known
that deep networks need huge data, and there are a lot of
augmentation algorithms that have been applied to in-
crease the reliability and robustness of the methods.29–31

In this work, augmented images have been obtained
carefully with these methods: homomorphic filtering
algorithm, histogram equalization algorithm, and pyra-
mid feature fusion algorithm (Figure S1). Finally, we
introduced the skin segmentation module into the
classification framework to improve the final classifica-
tion accuracy. The details of parameters and methods
are provided in Supplementary Method S1.

Deep multimodal fusion network model
development
To help the classifier focus on the relevant features of
the skin layer, we utilized the DeepLabv3+ network to
segment the skin layer. Subsequently, based on prior
knowledge and the segmentation mask, we cropped the
skin areas and lesions from the initial HFUS image.
This cropped image was then used for the subsequent
classification task.

To integrate internal and external information, we
designed a deep multimodal fusion network (DMFN)
model that used skin lesions’ appearance and HFUS
information for deep feature fusion. The network input
included three modal data of color clinical close-up
images, greyscale US images, and CDFI images. Each
modality data would go through DMFN for multi-layer
feature extraction, and the features extracted by each
layer of DMFN Block would be retained, fused, and
finally classified into skin diseases. Meanwhile, we
created a monomodal CNN model that utilized a similar
training strategy to the DMFN model for comparison.
The model was designed only for close-up images and
could output binary or multiclass classification results.
The workflow of CNN model development is presented
in Figure S1.
www.thelancet.com Vol 67 January, 2024
Before building the DMFN and monomodal CNN
model, we selected the appropriate backbone to test and
compare a variety of CNNs (ResNet, DenseNet, Effi-
cientNet, RegNet, etc.). For the test cohort, the RegNet
network achieved superior performance than other
networks, involving both monomodal and multimodal
approaches (P < 0.050) (Figure S2 and Table S3). Given
this reality, the RegNet network was selected as the
backbone for building the DMFN and monomodal CNN
model in our study.

Cross-entropy loss is a widely used loss function in
classification tasks, which reflects the distance between
the model prediction results and the true label of the
data. Although hybrid loss functions have been used in
some deep networks developed for skin disease diag-
nosis,32 we used cross-entropy loss function due to its
less computational complexity and efficiency with our
datasets.

When performing a classification task, the output
value was the predicted value of the category, which was
converted into a probability value through the SoftMax
function. The output category with the highest proba-
bility or top 3 was selected, and the model with the
highest accuracy and recall on the validation dataset was
saved. The top 1 prediction was used to evaluate the
performance of the model. The detailed methods
regarding the model development are provided in
Supplementary Method S2.

Reader study
Human participants were divided into three groups:
General practitioners (n = 3), general dermatologists
(n = 4), and dermatologists specialized in HFUS (n = 3).
All the participants had at least five years of experience.
General practitioners and general dermatologists were
presented with solely the close-up images, while der-
matologists specialized in HFUS were presented with
both close-up and HFUS images. General practitioners
were supposed to indicate benign lesions or possible
skin cancer and assess whether the patient required a
referral. The other two types of dermatologists were
asked to indicate the dichotomous diagnosis (benign vs.
malignant), specific diagnoses, and management de-
cisions (treatment/excision, follow-up, ignore/no action
needed). The participants were blinded to the clinical
information of patients.

As a result, we compared the diagnostic performance
of CNN models and the participants to validate the value
of CNN models in diagnosing skin diseases.

Heat map generation
To provide a better understanding of the prediction re-
sults obtained from the DMFN model, we generated
heat maps using the gradient-weighted class activation
mapping (Grad-CAM) method. The heat maps were
produced by applying the packages pytorch-grad-cam
1.4.8 (https://github.com/jacobgil/pytorch-grad-cam).
5
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Statistical analysis
Receiver operating characteristic (ROC) curves and the
area under the ROC curves (AUC) were calculated to
evaluate the diagnostic performance of the CNN models
and human raters. The sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV),
and accuracy were also performed. Normal distribution
was evaluated using the Kolmogorov–Smirnov test.
Continuous variables with normal distribution were
presented as mean ± standard deviation (SD). The
comparison of AUCs was performed by the DeLong
test.33 McNemar’s test was used to assess the differences
in sensitivity and specificity. The t-test was used to
analyze the accuracy differences among the different
models and human raters. Results were considered
statistically significant at P < 0.050. As for management
decisions, the classification of “no referral”, “ignore/no
action needed”, and “follow-up” for dermatologists were
considered as true-negative for benign lesions, and
“referral” and “treatment/excision” as true-positive for
malignant lesions. Of note, “excision/treatment” and
“follow-up examination” of AK were considered as
true-positive due to its limited potential to progress to
invasive carcinoma. Confusion matrices were used to
indicate the diagnostic performance of specific skin
diseases by CNN models and human raters. The soft-
ware details and the reasons for selecting statistical
methods are provided in Supplementary Method S3.

Role of the funding source
The funders played no role in the study design, data
collection, data analysis, data interpretation, or writing
of the manuscript. All authors approved the final
manuscript for submission.
Results
Characteristics of patients and lesions
As shown in Table 2, a total of 1066 patients (mean age,
63.59 years ± 18.97; range, 4–93 years) with 1080 skin
lesions were included in the training cohort, and 264
patients (mean age, 63.34 years ± 21.71; range, 35–81
years) with 271 lesions in the internal validation cohort.
For the test cohort, a total of 422 skin lesions in 403
patients (mean age, 57.68 years ± 21.46; range, 3–97
years) were prospectively enrolled. The number of le-
sions in the head and neck was the highest among all
cohorts. Detailed results of the anatomic location are
also described (Table 2). After comparison, only three
diseases in the othera category were found to be out-of-
distribution in the test cohort (Table S2).

Diagnostic performance of CNN models
When evaluated on the test cohort, for binary classifi-
cation, the AUC of the DMFN model combining anal-
ysis of HFUS and clinical close-up images was
significantly higher than monomodal CNN model
analyzing clinical close-ups alone (0.876; 95% confi-
dence interval [CI], 0.843–0.911 vs. 0.697; 95% CI,
0.648–0.750; P = 0.0063) (Fig. 2, Table 3, and Table S4).
Additionally, the DMFN model showed sensitivity and
accuracy across the monomodal CNN model in the test
cohort (Table 3). Both CNN models were better at
diagnosing benign than malignant cases (Fig. 3).
Nevertheless, the percentage of correct classifications of
the DMFN model in malignant lesions was remarkably
increased compared with the monomodal CNN model
(87% vs. 57% correct predictions) (Fig. 3).

Concerning the specific diagnoses, the performance
of the DMFN model was better than the monomodal
CNN model (AUC, 0.707; 95% CI, 0.638–0.776 vs. AUC,
0.501; 95% CI, 0.452–0.551; P = 0.0070) (Fig. 2 and
Table S4). The detailed confusion matrices of the CNN
models revealed the percentage of correct prediction
(Fig. 4). In general, the DMFN model tended to achieve
higher accuracy than the monomodal CNN model for all
diseases. The DMFNmodel could assist the monomodal
CNN model in decreasing the possibility of mis-
diagnosing benign lesions as malignant and vice versa.
For instance, 25% of the lipomas were incorrectly
identified by the monomodal CNN model as malignant
lesions (SCC) but were subsequently reclassified as
benign by the DMFN model. Similarly, the DMFN
model greatly reduced the likelihood that the mono-
modal CNN model might incorrectly diagnose some
malignant conditions (including BD, MM, and DFSP) as
benign.

Diagnostic performance of human raters for the
binary classification
The general dermatologists performed significantly
better than the general practitioners with only one close-
up image at hand in the test cohort (AUC, 0.838; 95%
CI, 0.798–0.882 vs. AUC, 0.651; 95% CI, 0.550–0.750;
P = 0.0083). With additional information on HFUS, the
diagnostic performance of dermatologists significantly
improved to an AUC of 0.891 (95% CI, 0.857–0.921;
P = 0.0032) (Fig. 2, Table 3, and Table S4). Furthermore,
dermatologists with additional information on HFUS
showed a superior sensitivity of 0.898 (95% CI,
0.857–0.937) when compared with general dermatolo-
gists (0.775; 95% CI, 0.717–0.830; P = 0.00019), while
the specificity was not significantly improved (Table 3).

For benign and malignant lesions, the percentage of
correct predictions was lowest in general practitioners.
Adding HFUS information significantly improved der-
matologists’ accuracy in diagnosing malignancies (from
78% to 90%). However, there was no significant
improvement in diagnosing benign lesions with HFUS
information (Fig. 3).

Management decisions
Expectedly, the rate of correct management decisions
was improved from general practitioners to
www.thelancet.com Vol 67 January, 2024
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Characteristics Training cohort n = 1080 Validation cohort n = 271 Test cohort n = 422

Patient demographics

No. of unique individuals 1066 264 403

Age, y (mean ± SD) 63.59 ± 18.97 63.34 ± 21.71 57.68 ± 21.46

Sex (n, %)

Male 576 (54.0%) 128 (48.5%) 205 (50.9%)

Female 490 (46.0%) 136 (51.5%) 198 (49.1%)

Lesion localization

Head and neck 538 148 218

Scalp 73 19 24

Forehead 25 11 14

Temple 67 31 31

Periocular 45 13 18

Nose 96 21 31

Cheek 130 30 51

Lip & Chin 38 5 21

Others 64 18 28

Trunk 228 49 67

Extremities 212 53 108

Genitals and anus 102 21 29

Abbreviations: SD, standard deviation.

Table 2: The basic characteristics of patients and skin lesions.

Articles
dermatologists with or without additional HFUS infor-
mation (Table 3). The same observation was made in
sensitivity and specificity. The AUC, sensitivity, and
specificity of dermatologists with HFUS information for
management decisions were 0.919 (95% CI,
0.889–0.944), 0.941 (95% CI, 0.903–0.973), and 0.915
(95% CI, 0.880–0.947), respectively. In comparison, with
only one close-up image at hand, general dermatologists
had a lower AUC (0.881; 95% CI, 0.846–0.913;
Fig. 2: ROC curves of monomodal CNN model, DMFN model, and huma
of monomodal CNN model, DMFN model, and human raters in the binary
model, and human raters in the multiclass classification task. ROC, receive
deep multimodal fusion network; HFUS, high-frequency ultrasound; AUC

www.thelancet.com Vol 67 January, 2024
P = 0.00089) and sensitivity (0.834; 95% CI,
0.788–0.890; P = 0.00018) but a higher specificity (0.953;
95% CI, 0.930–0.974; P = 0.049).

Diagnostic performance of CNN models vs. human
raters
In the test cohort, for the binary classification task, we
found that the DMFN model had a significantly higher
AUC than the general practitioner (0.876; 95% CI,
n raters in the binary and multiclass classifications. (a) ROC curves
classification task. (b) ROC curves of monomodal CNN model, DMFN
r operating characteristic; CNN, convolutional neural network; DMFN,
, area under the ROC curve.
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Ratings AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI) PPV (95% CI) NPV (95% CI)

Binary classification

CNN model

Monomodal CNN model 0.697 (0.648–0.750) 0.567 (0.507–0.637) 0.953 (0.919–0.975) 0.782 (0.746–0.818) 0.906 (0.848–0.947) 0.734 (0.683–0.781)

DMFN model 0.876 (0.843–0.911) 0.872 (0.824–0.917) 0.906 (0.870–0.942) 0.891 (0.863–0.917) 0.881 (0.834–0.923) 0.899 (0.860–0.935)

Human raters

General practitioner 0.651 (0.550–0.750) 0.665 (0.564–0.764) 0.702 (0.616–0.791) 0.686 (0.591–0.775) 0.639 (0.539–0.737) 0.726 (0.601–0.816)

General dermatologist 0.838 (0.798–0.882) 0.775 (0.717–0.830) 0.940 (0.903–0.966) 0.867 (0.835–0.902) 0.912 (0.863–0.949) 0.840 (0.805–0.880)

Dermatologist specialized in HFUS 0.891 (0.857–0.921) 0.898 (0.857–0.937) 0.906 (0.868–0.945) 0.903 (0.874–0.931) 0.884 (0.836–0.929) 0.918 (0.886–0.954)

Management decision

General practitioner 0.694 (0.634–0.743) 0.664 (0.598–0.729) 0.702 (0.622–0.782) 0.686 (0.645–0.826) 0.697 (0.651–0.748) 0.755 (0.706–0.797)

General dermatologist 0.881 (0.846–0.913) 0.834 (0.788–0.890) 0.953 (0.930–0.974) 0.900 (0.872–0.927) 0.934 (0.899–0.966) 0.878 (0.838–0.918)

Dermatologist specialized in HFUS 0.919 (0.889–0.944) 0.941 (0.903–0.973) 0.915 (0.880–0.947) 0.927 (0.899–0.948) 0.898 (0.861–0.936) 0.951 (0.921–0.978)

Abbreviations: CNN, convolutional neural network; DMFN, deep multimodal fusion network; HFUS, high-frequency ultrasound; AUC, area under the receiver operating characteristic curve; PPV, positive
predictive value; NPV, negative predictive value; CI, confidence interval.

Table 3: Diagnosis performance of different human participants and CNN models in the test cohort.
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0.843–0.911 vs 0.651; 95% CI, 0.550–0.750; P = 0.0025)
and the general dermatologists (0.838; 95% CI,
0.798–0.882; P = 0.0038), but significantly lower than
the dermatologists specialized in HFUS (0.891; 95%
CI, 0.857–0.921; P = 0.0080). Similar observations were
made for differences in sensitivity and the rate of
correct classifications. Dermatologists outperformed
the monomodal CNN model even with just close-up
images of their availability (Fig. 2, Table 3, and
Table S4).

When predicting benign lesions for the binary clas-
sification, the monomodal CNN model and the DMFN
model performed at the same level as dermatologists
(95% vs. 94% with close-up images and 91% vs. 91%
with close-up and HFUS images, respectively). As for
predicting malignant diseases, the DMFN model out-
performed the dermatologists (87% vs. 78%) and gen-
eral practitioners (87% vs. 66%) using only close-up
images, but not dermatologists with additional HFUS
information (87% vs. 90%) (Fig. 3). More specifically, in
the multiclass classification, the DMFN model per-
formed better on common malignant classes (such as
BD, BCC, SCC, and DFSP) than the dermatologists
evaluating close-up images only, but the diagnostic
performance of the DMFN model in AK, BCC, and
Fig. 3: Confusion matrices of binary classification in the test cohort.
network; HFUS, high-frequency ultrasound.
EMPD was not at the level of dermatologists in the same
condition. Additionally, the DMFN model could
correctly identify some malignant diseases (such as
EMPD and MM) that dermatologists mistakenly label as
benign. Except for benign sebaceous neoplasms, BKL,
and lipoma, the DMFN model and dermatologists per-
formed better or comparably to most benign lesions
(Figs. 4 and 5).

Overall, for the classification of 17 types of skin dis-
eases in the test cohort, the DMFNmodel achieved better
performance than dermatologists specialized in HFUS
(AUC, 0.707; 95% CI, 0.638–0.776 vs. AUC, 0.640; 95%
CI, 0.608–0.675; P = 0.0083) (Fig. 2 and Table S4).
However, the DMFN model’s overall accuracy of 55%
was close to that of dermatologists specialized in HFUS
(59%, P = 0.66) (Figure S3). Specifically, the DMFN
model attained an almost identical or better performance
than dermatologists with close-up images at hand in AK,
EMPD, nevi, BCC, BD, SCC, DFSP, warts, cysts, hae-
mangioma, and inflammation. Compared to dermatolo-
gists with additional HFUS information, the DMFN
model obtained satisfactory diagnostic performance for
BD, DFSP, cysts, SCC, MM, warts, and nevi (Fig. 5).

The representative heat maps of CNN’s analysis of
some skin diseases are presented in Fig. 6.
CNN, convolutional neural network; DMFN, deep multimodal fusion
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Fig. 4: Confusion matrices of multiclass classification in the test cohort. CNN, convolutional neural network; DMFN, deep multimodal fusion
network; HFUS, high-frequency ultrasound; Seb-Ben, benign sebaceous neoplasms; BKL, benign keratosis-like lesions; BD, Bowen’s disease; AK,
actinic keratosis; MM, malignant melanoma; SCC, squamous cell carcinoma; BCC, basal cell carcinoma; DFSP, dermatofibrosarcoma protuberans;
EMPD, extramammary Paget’s disease. The list of diagnoses of othera and otherb is available in the Supplementary Table S2.
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Discussion
In the present study, for the first time, we developed a
DMFN model based on both clinical close-up and HFUS
images for evaluating a broad spectrum of skin lesions
and compared its performance with human raters. Our
results demonstrated that combining HFUS and close-up
imaging modalities performed better than either modal-
ity alone. While close-ups depicted the surface aspects of
the lesion, HFUS could supplement the internal charac-
teristics of the lesion under the surface, revealing infor-
mation about the tumor in both longitudinal and
transverse planes. Therefore, for both dermatologists and
CNN solutions, we suggested combining HFUS images
with clinical examination for optimal results.
www.thelancet.com Vol 67 January, 2024
Since the 2017 landmark article that Esteva et al.20

firstly introduced CNN to dermatology and showed
expert-level performance, most subsequent studies
focused on the classification of limited categories of
some preselected skin diseases. For instance, Tschandl
et al. reported the application of the CNN model in
classifying pigmented and non-pigmented skin lesions,
respectively.18,34 A few studies investigated the perfor-
mance of the dermoscopy-based CNN model in the
diagnosis of melanomas.21,22,35–40 In addition, several
studies indicated that the CNN model could perform to
a standard comparable to dermatologists in diagnosing
inflammatory skin diseases and specific areas of skin,
such as acral melanoma and onychomycosis,
9
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Fig. 5: Radar charts comparing the performance of dermatologists and the DMFN model for each skin disease. (a) A radar chart comparing
the performance of general dermatologists and the DMFN model for each skin disease. (b) A radar chart comparing the performance of
dermatologists specialized in HFUS and the DMFN model for each skin disease. In panel a, the green area indicated that the diagnostic accuracy
of the human rater (dermatologist) was higher than that of the DMFN model, including MM, BKL, benign sebaceous neoplasms, and lipoma. On
the contrary, in panel b, the orange area indicated that the diagnostic accuracy of the human rater (dermatologist + HFUS) was higher than that
of the DMFN model, including BCC, EMPD, lipoma, haemangioma, AK, BKL, inflammation, and benign sebaceous neoplasms. The blue area in
both panels indicated that the DMFN model’s diagnostic accuracy was higher or comparable to that of two human raters for rest diseases. CNN,
convolutional neural network; DMFN, deep multimodal fusion network; HFUS, high-frequency ultrasound; BKL, benign keratosis-like lesions; BD,
Bowen’s disease; AK, actinic keratosis; MM, malignant melanoma; SCC, squamous cell carcinoma; BCC, basal cell carcinoma; DFSP, dermato-
fibrosarcoma protuberans; EMPD, extramammary Paget’s disease. The list of diagnoses of othera and otherb is available in the Supplementary
Table S2.
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respectively.23,41–43 However, using a limited set of dis-
eases for training and testing may result in over-
estimating the performance of the CNN model for those
specific diseases and lead to a lack of ability to generalize
to other diseases. In the field of dermatology, healthcare
professionals frequently come across patients present-
ing with skin conditions that can manifest in various
possible diagnoses. As such, utilizing CNNs based on
limited categories of preselected skin diseases could not
be a feasible approach for clinical practice. Differing
from previous studies, to be close to the real clinical
situation, our multicenter study did not exclude any
specific lesions. Based on this concept, the primary task
of our study was a multi-classification problem, not just
a simple benign-malignant dichotomy.

For the multiclass classification task, overall, the
DMFN model, which analyzed both HFUS and clinical
images, could classify lesions almost as accurately as
expert raters. Specifically, the DMFN model could ach-
ieve comparable or better performance than dermatol-
ogists analyzing clinical and HFUS images in cysts, BD,
DFSP, warts, nevus, SCC, and MM. However, it did not
reach the accuracy of human raters in benign sebaceous
neoplasms, BKL, and non-pigmented lesions with no
obvious appearance changes such as lipoma. One
possible reason for this was that these diseases were
seldom biopsied, resulting in their infrequent occur-
rence in the training set. Additionally, important to
mention to melanoma, that both the DMFN model and
dermatologists tended to have lower diagnostic accuracy
after reference to HFUS images. This is likely because
some melanoma subtypes, such as lentigo maligna and
acral lentiginous melanoma, were too thin to be effec-
tively diagnosed by HFUS. Nevertheless, the DMFN
model still had some advantages in the multi-
classification diagnosis of melanoma. The DMFN model
could reduce the probability of misdiagnosing mela-
noma as benign in comparison with dermatologists
specialized in HFUS.

Since skin ultrasound is not popularized among
dermatologists, our study suggested that the DMFN
model could be a suitable tool to improve the diagnostic
performance of dermatologists who have not mastered
HFUS. Moreover, the DMFN models for multi-
classification diagnosis presented a close or higher ac-
curacy than dermatologists for most diseases (especially
higher than dermatologists who only diagnose based on
appearance). On the other hand, the multi-classification
diagnostic results could also help dermatologists in the
dichotomous diagnosis of benign and malignant.

With regard to binary classification tasks, the CNN
models had comparable or better performance than
www.thelancet.com Vol 67 January, 2024
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Fig. 6: The representative heat maps of the DMFN model’s analysis using greyscale HFUS images in various skin diseases. The varying
color distributions reflected the most predictive regions that the DMFN model concentrates on distinct lesions. The areas highlighted in red on
the heat map represented the informative features that played a crucial role during the prediction process. DMFN, deep multimodal fusion
network; HFUS, high-frequency ultrasound; BCC, basal cell carcinoma; SCC, squamous cell carcinoma.
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dermatologists. In detail, the DMFN model out-
performed general practitioners for benign lesions and
surpassed general dermatologists for malignant cases
with only close-up images at hand. These findings indi-
cated the potential of CNN models for further assisting
the decision-making processes of dermatologists.

Given that the advantages of CNN-based classifiers
do not rely on providing management decisions,44 we
only analyzed the management decisions for human
participants. In clinical practice, dermatologists usually
make management decisions rather than definitive
classifications, whether it is simple dichotomous clas-
sifications (benign or malignant) or making specific
diagnoses. Our data suggested that the diagnostic per-
formance of the dermatologists’ management decisions
was improved over their definitive classifications in the
same situation. The differences in sensitivity could
www.thelancet.com Vol 67 January, 2024
translate into a closer clinical setting resulting in fewer
missed malignant lesions for dermatologists. Yet, a
prospective clinical study is still needed to evaluate
whether dermatologists benefit from incorporating
CNN classification into the decision-making process in a
clinical real-life situation.

It is important for primary care providers to assess
the necessity of referring a patient accurately and
quickly to a dermatologist. In this regard, our present
results revealed that both the monomodal CNN model
and the DMFN model outperformed general practi-
tioners in diagnostic performance. Given this reality,
our CNN-based system may support primary care pro-
viders by providing valuable information regarding
referral decisions and improved triaging.

There are also some limitations in our study. First,
we did not provide CNNs with data other than HFUS
11
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and clinical close-up information for training, such as
anatomical site, age, gender, skin tone, and lesion size
or color variation. It is possible that the performance of
our CNN-based system could be improved by adding
above mentioned data. Second, only pathologically
confirmed cases were enrolled. It may bring bias from
the overrepresentation of malignant cases. Nevertheless,
we believe that the advantages of an accurate diagnosis
verified by pathology outweigh the disadvantages of
verification bias. Third, in our study, we did not involve
multiple levels of dermatologists, which may result in a
generalized diagnosis. Thus, future studies could
involve more individuals with diverse backgrounds to
compare their diagnosis performance with our CNN.
Fourth, it was better to evaluate our DMFN model on
public skin datasets. Unfortunately, we did not find any
database containing both clinical and HFUS images.
Consequently, we had to evaluate the model’s perfor-
mance using our own dataset, which was limited to
individuals of Chinese race and skin tone. This bias
could affect CNN’s generalization ability. Fifth, our
exploratory study investigated multiple classification
models (binary and multiclass DMFN) without multi-
plicity adjustment. Future studies should consider the
multiplicity adjustment when applying multiple models
simultaneously. Additionally, we used a 1:1 weight ratio
for the two modalities (clinical close-ups and HFUS) in
building our model because their actual weight was not
known, given their varying values across different skin
conditions. However, we believe the proportion of
weights between the two modalities may float for
different skin diseases. Further exploration is needed to
determine the optimal weight ratio for each skin dis-
ease. Finally, we believe that using “human plus AI” is
the most feasible form in clinical practice. Therefore,
the impact of CNNs in assisting dermatologists in daily
clinical practice could be evaluated in future in-depth
studies. As a future work, the performance of the pro-
posed method can be compared with the performance of
a capsule neural network-based method since capsule
networks have the ability to preserve spatial relation-
ships of learned features, and therefore have been used
recently for image classification tasks.45–47

In conclusion, we conducted a prospective study
comparing dermatologists with CNN models that
analyzed clinical close-up and HFUS images across a
range of skin lesions. Our findings showed that the
DMFN model, combining analysis of clinical close-ups
(external information) and HFUS (internal information)
images, performed better with clinical close-ups and
HFUS images than with clinical close-ups alone. Addi-
tionally, the DMFN model can provide accurate binary
classification and satisfactory multiclassification di-
agnoses for some diseases. Thus, our DMFN model may
be a feasible and potentially attractive method to effec-
tively inform primary care provider referral decisions.
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