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Abstract

In this work, we report the complete genome sequence of an obligate aceticlastic methanogen, Methanosaeta harundinacea
6Ac. Genome comparison indicated that the three cultured Methanosaeta spp., M. thermophila, M. concilii and M.
harundinacea 6Ac, each carry an entire suite of genes encoding the proteins involved in the methyl-group oxidation
pathway, a pathway whose function is not well documented in the obligately aceticlastic methanogens. Phylogenetic
analysis showed that the methyl-group oxidation-involving proteins, Fwd, Mtd, Mch, and Mer from Methanosaeta strains
cluster with the methylotrophic methanogens, and were not closely related to those from the hydrogenotrophic
methanogens. Quantitative PCR detected the expression of all genes for this pathway, albeit ten times lower than the genes
for aceticlastic methanogenesis in strain 6Ac. Western blots also revealed the expression of fwd and mch, genes involved in
methyl-group oxidation. Moreover, 13C-labeling experiments suggested that the Methanosaeta strains might use the
pathway as a methyl oxidation shunt during the aceticlastic metabolism. Because the mch mutants of Methanosarcina
barkeri or M. acetivorans failed to grow on acetate, we suggest that Methanosaeta may use methyl-group oxidation pathway
to generate reducing equivalents, possibly for biomass synthesis. An fpo operon, which encodes an electron transport
complex for the reduction of CoM-CoB heterodisulfide, was found in the three genomes of the Methanosaeta strains.
However, an incomplete protein complex lacking the FpoF subunit was predicted, as the gene for this protein was absent.
Thus, F420H2 was predicted not to serve as the electron donor. In addition, two gene clusters encoding the two types of
heterodisulfide reductase (Hdr), hdrABC, and hdrED, respectively, were found in the three Methanosaeta genomes.
Quantitative PCR determined that the expression of hdrED was about ten times higher than hdrABC, suggesting that hdrED
plays a major role in aceticlastic methanogenesis.
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Introduction

Methanogenic Archaea are the only organisms known to produce

abundant CH4 for energy metabolism. Therefore, they exert a

significant ecological impact on global carbon cycling. Cultured

methanogens are categorized into four metabolic types based on

methanogenic precursors, including hydrogenotrophic, methylo-

trophic, aceticlastic and methanol plus H2 methanogenesis [1].

Since an estimated two-thirds of the methane in nature is from

acetate [2], aceticlastic methanogenesis makes a major contribu-

tion to global methane production. So far, the methanogens

utilizing acetate for methanogenesis are confined to the order

Methanosarcinales. The genus Methanosarcina (Msr.) consists of the

most metabolically diverse methanogenic species, most of them

conduct three types of methanogenic metabolism [3]. In general,

Methanosarcina strains have large genomes, e.g. 5.8 Mb for Msr.

acetivorans, 4.8 Mb for Msr. barkeri and 4.1 Mb for Msr. mazei

[4,5,6], and are about two times larger than other sequenced

methanogen genomes.

In contrast, species of the other genus of aceticlastic methan-

ogens Methanosaeta are obligately aceticlastic. As specialists,

Methanosaeta strains possess a higher affinity for acetate than

Methanosarcina stains and are favored in environments with low

concentrations of acetate [7]. Hence, they are deemed the

principal players in aceticlastic methanogenesis in nature.

Thus far, only three Methanosaeta species have been cultured. M.

harundinacea is a mesophilic species isolated from an upflow anaerobic

sludge blanket reactor treating beer-manufacturing wastewater in

Beijing [8]. To gain insight into the genetic background of the

aceticlastic methanogens, the complete genome of M. harundinacea

6Ac was sequenced and compared to that of the two other species. In

addition to the other common genome characteristics among the

three species, unexpectedly the methyl-group oxidation pathway

was present in all three genomes. In methylotrophic methanogens,

this pathway provides reducing equivalents for methanogenesis [9].

It also plays a role in the anaerobic oxidation of methane [10,11]. To

understand the possible function of the pathway, in this study, the

expression of the genes in the pathway was tested in M. harundinacea
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6Ac. The gene expression and the preliminary physiological study

suggest that the methyl-group oxidation pathway can be used to

generate the extra reducing equivalents in the obligate aceticlastic

methanogens.

Results and Discussion

General genome features of Methanosaeta species
In this study, the complete genome of Methanosaeta harundinacea

6Ac, which contains a single circular chromosome and a circular

plasmid designated as pH 6AC, was obtained. The chromosome is

2,559,043 bp in length with an average G+C content of 60.6%

(Figure 1). It contains one rRNA operon (5S, 16S, and 23S), a

distinct 7S rRNA gene, and 39 tRNA genes (Table 1). There are

2,353 coding sequences (CDSs) with an average length of 937 bp

in the chromosome, representing 85% of the entire genome. Of

the protein-coding genes, 69.7% of the CDSs (1,640) were

assigned to the functional categories of Cluster of Orthologous

Groups (COG). Approximately 22.4% (528/2,353) of the chro-

mosomal gene products are hypothetical proteins, accounting for

the majority of the M. harundinacea-specific genes (226/305) when

compared with other available Methanosarcinales genomes. The

plasmid pH 6AC is 11,991 bp in length and carries 18 predicted

ORFs, with 16 of these encoding hypothetical proteins.

A genome sequence comparison analysis for the three

Methanosaeta strains, M. concilii GP6, M. thermophila PT, and M.

harundiacea 6Ac, did not reveal an obvious colinearity. However, a

remarkable difference among the three Methanosaeta species was

Figure 1. Circular representation of the M. harundinacea genome. The circles show (innermost to outermost): (1) GC skew; (2) G+C content;
(3) genes included in the genome of M. harundinacea but not in the genomes of M. concilii and M. thermophila; (4) genes involved in methane
metabolism; (5) genes found in all the three Methanosaeta genomes; (6) core genes found in the methanogen genomes sequenced; (7) RNA genes,
including tRNA (red) and rRNAs (yellow); (8) genes on the plus and minus strand, respectively. All the genes were colored by functional categories
according to COG classification.
doi:10.1371/journal.pone.0036756.g001
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observed in terms of the genome sizes, resulting in the difference in

gene content (Table 1), with M. thermophila PT having the smallest

genome, and M. concilii having more genes in category of DNA

replication, recombination and repair, which is contributed by the

multiple copies of the genes in this category. The coding regions in

the three genomes of the Methanosaeta strains (.80%) account for

the higher percentage of total genes compared to those of the

Methanosarcina strains (70–75%).

Comparison of the gene function categories among the three

species (Table 2) showed that while the two mesophilic strains

contain similar gene numbers in each functional category, the

thermophilic one has remarkably reduced gene numbers in cell

motility and secretion, defense systems, and post-translational

modification (PTM). This is probably consistent with its hot niche,

where the biodiversity is relatively lower.

A suite of genes for the methyl-group oxidation pathway
present in the Methanosaeta genomes

It has been long determined that Methanosaeta strains are

obligately aceticlastic methanogens, acetate being the exclusive

substrate for CH4 formation and energy biosynthesis. However, an

entire suite of genes for methyl-group oxidation pathway was

found in the three genomes. Two types of formylmethanofuran

dehydrogenase, tungsten formylmethanofuran dehydrogenase

Table 1. General genome features of the aceticlastic methanogens, Methanosaeta spp. and Methanosarcina spp.

General Msa. harundinacea Msa. concilii Msa. thermophila Msr. acetivorans Msr. barkeri Msr. mazei

GenBank accession no. CP003117 NC_015416 NC_008553 NC_003552 NC_007355 NC_00391

Size (bp) 2,559,043 3,008,626 1,879,471 5,751,492 4,837,408 4,096,345

G+C content (%) 60.63 51 53.5 42.7 39.2 41.5

Protein-coding genes 2,353 2,906 1,781 4,540 3,698 3,371

Coding Regions (%) 81 83 82 74 70 75

rRNA operons 1 2 2 3 3 3

tRNA genes 39 44 48 59 62 57

Plasmid 1 1 0 1 1 0

Abbreviations: Msa., Methanosaeta; Msr., Methanosarcina.
doi:10.1371/journal.pone.0036756.t001

Table 2. Gene numbers in each functional category present in the three genomes of Methanosaeta.

Category of Function M. harundinacea M. concilii M. thermophila

Amino acid transport and metabolism 137 148 107

Carbohydrate transport and metabolism 55 58 47

Cell division and chromosome partitioning 16 19 10

Cell envelope biogenesis, outer membrane 58 85 57

Cell motility and secretion 11 14 5

Coenzyme metabolism 127 130 106

Defense mechanisms* 30 32 15

DNA replication, recombination, and repair 104 266 97

Energy production and conversion 165 164 122

General function prediction only 291 318 191

Inorganic ion transport and metabolism 136 160 94

Intracellular trafficking and secretion 16 25 14

Lipid metabolism 24 29 22

Nucleotide transport and metabolism 59 53 48

Posttranslational modification 93 100 58

Secondary metabolites biosynthesis 16 19 11

Signal transduction mechanisms 37 33 30

Transcription 85 104 65

Translation, ribosomal structure and biogenesis 157 152 145

Unknown Function 274 307 188

No homolog 439 592 244

*, Proteins in this category could enable an organism to resist exogenous compounds and genetic materials, thus prevent environment damages and maintain the
genetic stability [33,45].
doi:10.1371/journal.pone.0036756.t002
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(Fwd) and the molybdenum isoenzyme (Fmd), were found. As

shown in Figure 2, M. thermophila possesses only the tungsten

formylmethanofuran dehydrogenase genes, implying that the

tungsten formylmethanofuran dehydrogenase is essential for these

methanogens. This assumption could be supported by the

observation of Hochheimer et al. [12] that the tungsten enzymes

are constitutively expressed, while the molybdenum ones show a

molybdate-induced expression in two thermophilic methanogens

Methanothermobacter wolfeii and Methanothermobacter thermoautotrophicus.

Like the genes in hydrogenotrophic methanogens, only one gene

copy is present for each of formylmethanofuran-tetrahydrometha-

nopterin formyltransferase (Ftr), N5N10-methenyl-tetrahydro-

methanopterin cyclohydrolase (Mch), F420-dependent N5N10-meth-

ylene-tetrahydromethanopterin dehydrogenase (Mtd), and F420-

dependent N5N10-methylene- tetrahydromethanopterin reductase

(Mer).

To gain an insight into the gene organization for methyl-group

oxidation pathways in the Methanosaeta genome, we found that

genes for the formylmethanofuran dehydrogenase complex were

arranged differently in the three strains. While the three operons

for the Fwd complex in M. harundinacea 6Ac are arrayed in a

similar pattern to those of Methanosarcina spp., only two fmd/fwd

operons were present in M. concilii and M. thermophila, with

additional fwdE genes scattered on the chromosomes (Figure 2).

Based on the protein phylogenetic analysis, we found that genes

encoding Fwd, Mtd, Mch, and Mer, from the three Methanoseata

strains were closely related with those from the methylotrophic

methanogens, which branched off from those of the hydrogeno-

trophic methanogens (Figure 3A). However, other proteins that

functioned in different methanogenic pathways did not form

similar clades (Figure 3B). The different phylogenetic clustering

patterns for the proteins can be attributed to their varied roles,

such as Fwd, Mtd, Mch, and Mer in the methylotrophic

methanogens mainly act in methyl oxidation, while in the

hydrogenotrophic methanogens they are involved in CO2

reduction to methane formation.

Genes encoding the proteins involved in methyl-group
oxidation pathway expressed but at relatively low levels

To examine whether the genes for methyl-group oxidation

pathway were expressed during growth, transcription of the genes

in M. harundinacea 6Ac was detected by means of quantitative PCR.

The assay showed that the transcript abundances were at an

average level of about 14% equivalence to that of the N5-methyl-

H4SPT: CoM methyltransferase (mtr) genes (Table 3), but were

1.58 times above the average levels of the total genes based on

microarray data (unpublished data). Furthermore, Western blot

also determined the expression of the C subunit of Fwd and Mch

in the acetate-growing culture of M. harundinacea 6Ac (Figure 4).

Therefore, an active methyl-group oxidation pathway was present

in strain 6Ac even during aceticlastic growth.

Methyl-group oxidation pathway could act as a methyl
oxidation shunt of acetate in Methanosaeta strains

To reveal the possible function of the methyl-group oxidation

pathway in the obligate aceticlastic methanogens, 13CH4 or

NaH13CO3 was added to cultures of strain 6Ac to determine if

trace methane oxidation or production occurred. However, neither

the 13CO2 in the 13CH4 supplemented culture nor the 13CH4 in the

NaH13CO3 supplemented culture was detected after 60 days of

Figure 2. Gene organizations of formylmethanofuran dehydrogenase (fmd or fwd) in the genomes of M. harundinacea (A), M. concilii
(B), and M. theromphila (C) compared with those in the genomes of Msr. mazei (D), Msr. barkeri (E) and Msr. acetivorans (F).
doi:10.1371/journal.pone.0036756.g002
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Figure 3. Phylogeny of enzymes from the pathway of methanogenesis. A. representative enzymes from the C-1 branch. B. other
representative enzymes. a. Formylmethanofuran-tetrahydromethanopterin formyltransferase (Ftr), b. N5N10-methenyl-tetrahydromethanopterin
cyclohydrolase (Mch), c. F420-dependent N5N10-methylene-tetrahydromethanopterin dehydrogenase (Mtd), d. and F420-dependent N5N10-methylene-
tetrahydromethanopterin reductase (Mer), e. methyltetrahydrosarcinapterin: CoM methyltransferase A (MtrA), f. MtrH. Protein sequences were
aligned with ClustalX [43] and phylogenetic analysis was performed with MEGA [44] using the neighbor-joining algorithm. Bootstrap support was
obtained from neighbor-joining (first value), maximum-parsimony (second value) and maximum-likelihood (third value) methods based on 1000
replicates. The accession number of each reference sequence is shown in table S2. Framed sequences refer to those involved in the methyl
methanogenesis pathway. The bar represents 10% estimated sequence divergence.
doi:10.1371/journal.pone.0036756.g003
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incubation. These tests indicated that the methyl-group oxidation

pathway in M. hurandiacea 6Ac was not used for trace methane

oxidation or production. Cultures were then supplemented with

1-13C-labeled acetate or 2-13C-labeled acetate. Upon acetate

depletion by incubation at 37uC for 60 days, as expected in the

[1-13C] acetate-culture only labeled 13CO2 but not 13CH4 was

found. Surprisingly, in the [2-13C] acetate-culture, 13CH4 and
13CO2 were both detected. The generated 13CO2 accounted for

about 1% of the methyl carbon of acetate (Table 4). This suggested

that 1% methyl carbon of acetate was oxidized to CO2 through

methyl-group oxidation pathway in the obligate aceticlastic

Methanosaeta strains. This oxidative carbon flux shunt, like in

methylotrophic methanogenesis, was probably used by Methanosaeta

strains to generate essential reducing equivalents such as reduced

ferredoxin or reduced F420 for other biological processes, e.g. cell

biomass synthesis. This hypothesis is supported by the fact that Msr.

barkeri and Msr. acetivorans fail to grow on acetate upon inactivation of

mch, which is required for methyl group oxidation [13].

Characteristics of the genes involved in aceticlastic
methanogenesis pathways in Methanosaeta strains

Acetate in undissociated form (pKa = 4.75, 25uC) is believed to

diffuse freely across the cytoplasmic membrane of bacteria [14].

However, under neutral pH, in which Methanosaeta strains grow

optimally, acetate is present in a dissociated state, thus, a transport

protein is necessary. A putative acetate transporter, the Ady2 gene

(Mhar_0433), was present in the three Methanosaeta genomes and

has been identified as an active acetate transporter in Saccharomyces

cerevisiae based on microarray analyses of an ady2D strain [15].

It is believed that the first reaction, i.e. acetate activation to

acetyl-CoA, is a rate-limiting reaction for aceticlastic methano-

genesis [16,17]. Acetate activation is accomplished through

different reactions in the two types of aceticlastic methanogens,

i.e. Methanosaeta strains use AMP-forming acetyl-CoA synthetase

(ACS), while Methanosarcina spp. employ the combined actions of

acetate kinase (AK) and phosphotransacetylase (PTA). Surprising-

ly, three to five acs gene homologs were identified in the genomes

of Methanosaeta spp., and most of them were organized in tandem

(Figure 5). Quantitative PCR assay showed that the three acs genes

in M. harundinacea 6Ac were expressed differentially. The

abundance of acs2 (Mhar_0751) and acs3 (Mhar_0752) transcripts

were about nine fold higher than those of acs1 (Mhar_0749)

(Table 3). This suggests that acs2 and acs3 might be the key

proteins for aceticlastic methanogenesis, while acs1 may be more

highly expressed under growth conditions not examined here. As

biochemically characterized, following the acetate activation step,

Methanosarcina and Methanosaeta employ the same enzymes in the

remaining reactions in aceticlastic methanogens. The correspond-

ing genes encoding the proteins involved in those reactions are all

present in the three Methanosaeta genomes; these include the genes

for the carbon monoxide dehydrogenase/acetyl-CoA decarbony-

lase complex (CODH/ACDS), methyltetrahydrosarcinapterin:

CoM methyltransferase (Mtr), methyl-CoM methylreductase

(Mcr), and heterodisulfide reductase (Hdr).

Differential expression of two operons encoding two
types of heterodisulfide reductase

As in the Methanosarcinales genomes, two gene classes of coenzyme

B-coenzyme M heterodisulfide reductase, hdrABC and hdrED, are

present in the genomes of Methanosaeta strains. Quantitative PCR

assay showed that the transcript abundances of hdrED are about ten

times higher than those of hdrABC in strain 6AC (Table 3), indicating

that hdrED is the primary Hdr in methanogenesis in M. harundinacea

6AC. According to that HdrA1B1C1 is used specifically in the

methylotrophic methanogenesis pathway in Methanosarcina acetivorans

[18], we hypothesize that hdrED and hdrABC obtain reducing

equivalents from CODH and the methyl-group oxidation in

Methanosaeta strains, respectively; and those obtain from methyl-

group oxidation by hdrABC can be used to compensate the

biosynthesis-consumed reducing equivalents.

An fpo operon for a truncate electron transport complex
possibly functions in the reduction of CoM-CoB
heterodisulfide

In Methanosarcina species, a heterodisulfide reductase is involved

in releasing coenzyme M and coenzyme B from the heterodisulfide

using reduced ferredoxin as electron donor as well as energy

conservation in acetate metabolism [19]. To implement this

biochemical reaction, Msr. mazei and Msr. barkeri employ the Ech

complex and F420 non-reducing hydrogenase, while Msr. acetivorans

uses the Rnf-like complex [20]. However, neither the genes for

Ech nor the Rnf-like complex were found in the three Methanosaeta

genomes; instead, a gene cluster comprised of 11 genes

(Mhar_1410-Mhar_1420) for a F420H2 dehydrogenase (Fpo)

complex was present in the three genomes.

The F420H2 dehydrogenase complex (Fpo) functions specifically

in methylotrophic methanogenesis in Methanosarcina spp. and the

obligate methylotrophic methanogens, like Methanohalophilus mahii

[21]. However, no gene for the FpoF subunit was found in the

three genomes. This cytoplasmic protein accepts reducing

Figure 4. Western blot assays for FwdC (A), Mch (B) and McrA (C). Lane 1, 5 and 9, 0.2 mg purified FwdC, Mch and McrA as the positive
control; lane 2, 6 and 10, 10 mg cell extract from the pre-exponential phase culture; lane 3, 7 and 11, 10 mg cell extract from the exponential phase
culture; lane 4, 8 and 12, 5 mg cell extract from the stationary phase culture. The molecular masses of subunit FwdC, Mch and McrA are about
27.5 kDa, 34 kDa, and 61 kDa, respectively. The migrations of molecular mass standards are shown on the left of pictures.
doi:10.1371/journal.pone.0036756.g004
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equivalents from F420H2. Welte and Deppenmeier (2011) deter-

mined that M. thermophila uses reduced ferredoxin to reduce

coenzyme M-coenzyme B heterodisulfide and proposed that M.

thermophila uses the Fd: heterodisulfide oxidoreductase encoded by

an Fpo operon as the energy-conserving system [22]. The activity

of Fd: heterodisulfide oxidoreductase was also detected in the

membrane fraction of an Msr. mazei Dech mutant [23], implying

that other protein complexes, like the Fpo complex, may complete

the activity in place of Ech.

Materials and Methods

DNA extraction
Methanosaeta harundinacea 6AcT ( = JCM 13211, CGMCC 1.5026,

and DSM 17206) was isolated from a UASB reactor in our lab, the

strain information and growth conditions were described previ-

ously [7]. Cells were harvested by centrifugation at 15,0006g for

15 min at 4uC from 1000 ml culture. The cell pellets were frozen

at 280uC. Then the frozen cell pellets were placed into a sterile,

pre-cooled mortar and put into liquid N2. After the liquid N2 had

evaporated, the cells were ground to a powder with a rod. Upon

being ground 5 times, the genomic DNA was extracted using the

TIANamp Bacteria DNA Kit (TIANGEN Biotech, Beijing,

China). The genomic DNA was quantified on 0.8% agarose gel

stained with ethidium bromide and spectrophotometrically assess-

ed.

Genome sequencing, assembly, and gap closure
The genome sequence of Methanosaeta harundinacea 6AcT was

determined using the Roche GS 454 system [24]. 220,740 reads

containing up to 52,294,588 bases (averaged read length as

236 bp), were obtained resulting in a 26-fold coverage of the

genome. Assembly was performed using the GS de novo Assembler

software (http://www.454.com/) producing 62 contigs ranging

from 500 bp to 160,686 bp (the N50 contig size is 92,019 bp). The

relationship of the contigs was determined by multiplex PCR [25].

Gaps were then closed by sequencing the PCR products using ABI

3730xl capillary sequencers. Phred, Phrap, and Consed software

packages (http://www.phrap.org/phredphrapconsed.html) were

used for the final assembly and editing. Low quality regions of the

genome were resequenced.

Genome analysis and annotation
Putative CDSs were identified by GeneMark [26] and Glimmer

[27]. Peptides shorter than 30 aa were eliminated. Sequences from

the intergenic regions were compared to GenBank’s non-

redundant (nr) protein database [28] to detect pseudogenes and

to identify genes missed by the Glimmer or GeneMark prediction.

Insert sequences were first detected using the IS Finder database

(http://www-is.biotoul.fr/is.html) with default parameters selected

manually. Transfer RNA genes were predicted by tRNAScan-SE

[29], while ribosomal DNAs (rDNAs) and other RNA genes were

identified by comparing the genome sequence to the rRNA

database [30] using the Infernal program [31]. Functional

annotation of CDSs was performed through searching against

the nr protein database using BLASTP [32]. The protein set was

also searched against the COG (http://www.ncbi.nlm.nih.gov/

Table 3. Transcript abundance of the genes for methyl-group
oxidation pathway in M. harundinacea 6Ac estimated by
QPCR.

Gene Gene product Relative Expression*

Mhar_0751 Acs 15.661.7

Mhar_0789 CdhA 14.661.3

Mhar_2323 CdhD 12.461.2

Mhar_0495 McrB 13169

Mhar_0498 McrA 128611

Mhar_2090 MtrE 15.662.2

Mhar_2091 MtrD 14.361.6

Mhar_2092 MtrC 15.761.8

Mhar_2093 MtrB 14.961.6

Mhar_2094 MtrA 1461.2

Mhar_2095 MtrF 13.561.1

Mhar_2096 MtrG 14.861.4

Mhar_2097 MtrH 1661.6

Mhar_0792 HdrE 760.6

Mhar_0793 HdrD 1360.7

Mhar_0604 HdrB 2.160.3

Mhar_0605 HdrC 1.760.2

Mhar_0607 HdrA 2.560.3

Mhar_0373 FwdC 3.660.6

Mhar_0374 FwdA 2.860.5

Mhar_0375 FwdB 0.860.1

Mhar_0376 FwdD 0.760.1

Mhar_1283 FwdB 2.160.3

Mhar_1284 FwdD 2.460.3

Mhar_1285 FwdC 0.860.1

Mhar_1286 FwdA 4.360.7

Mhar_1287 FwdF 3.460.5

Mhar_1288 FwdE 1.160.2

Mhar_1285 FwdC 0.860.1

Mhar_1286 FwdA 4.360.7

Mhar_1287 FwdF 3.460.5

Mhar_1288 FwdE 1.160.2

Mhar_2214 Ftr 1.460.2

Mhar_2174 Mch 1.760.3

Mhar_1470 Mtd 1.060.2

Mhar_0856 Mer 3.460.6

*, copy number of gene/copies of 16S rRNA gene6105.
doi:10.1371/journal.pone.0036756.t003

Table 4. Percentage of 13C-labeled acetate, 13C-labeled CO2

and 13C-labeled CH4 formation in the 60-day cultures in a
medium with 5% 13C-labeled acetate, NaHCO3 or CH4.

Labeled substances
added acetate CO2 CH4

[13C/(12C+13C), (%)]

Control 1.070660.0004 1.077960.0008 1.064860.0006

13CH4 1.071360.0006 1.077460.0007 4.639361.5682

13CH3COO2
2 5.032960.2512 1.107260.0203 5.126160.5427

CH3
13COO2

2 4.792760.3382 4.272360.7236 1.066160.0005

H13CO3
2 1.071560.0007 4.066460.8178 1.070660.0007

doi:10.1371/journal.pone.0036756.t004
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COG/) [33] and KEGG (Kyoto encyclopedia of genes and

genomes; http://www.genome.jp/kegg/) [34] databases for fur-

ther function assignment. The criteria used to assign function to a

CDS were (1) a minimum cutoff of 40% identity and 60%

coverage of the protein length and (2) at least two best hits among

the COG, KEGG, or nr protein database. A search for gene

families in the genome was performed by BLASTCLUST.

Subcellular localization of the proteins was predicted by the

PSORTb program (v2.0.1) [35]. The TatP 1.0 server (v2.0) [36]

and TATFIND 1.2 program [37] were used to detect the potential

substrates of the Tat secretion system.

Data availability
The sequence and annotation of the M. harundinacea chromo-

some and the plasmid were submitted to the GenBank database

under accession numbers CP003117 and CP003118, respectively.

RNA isolation and qRT-PCR
M. harundinacea 6Ac was grown in conditions described

previously [8]. The cells were harvested for RNA isolation during

the logarithmic growth phase at an OD600 nm of 0.35–0.45. Total

RNA was extracted using TRIzolH Reagent (Invitrogen) according

to the manufacturer’s instructions, modifications of the method

included grinding in liquid nitrogen before TRIzol reagent was

added. RNA was further purified by following the RNA cleanup

protocol of the RNeasy Mini Kit (Qiagen). Contaminating DNA

was digested twice with 0.1–0.2 U?ml21 DNase I (Promega),

according to the manufacturer’s instructions, including 0.4–

0.8 U?ml21 RNasin (Promega) in the reaction. RNA was purified

for a second time using the RNeasy Mini Kit prior to cDNA

synthesis. 210–350 ng RNA and 500 ng random hexamers

(Promega) were incubated for 10 min at 70uC, and subsequently

cooled on ice. Synthesis of cDNA was performed in 1 mM of each

dNTP (Promega), 16 U?ml21 M-MLV reverse transcriptase

(RNase H Minus, Point Mutation, Promega), 1.6 U?ml21 RNasin

Inhibitor (Promega) and one fold concentrated first strand buffer

(Promega) for 10 min at room temperature, followed by 50 min at

45uC. Real-time PCR oligonucleotide primers (Table S1) were

designed using the software Beacon Designer 5.0 (Premier Biosoft,

Palo Alto, USA) to obtain maximal amplification efficiency and

sensitivity. The specificity of primers was verified by evaluating the

qPCR melting curve and PCR products by DNA gel electropho-

resis. For quantification of gene expression, a DNA fragment

including the target gene was amplified by PCR and quantified

using a UV800 spectrophotometer (Beckman). These fragments

were then serially diluted 10-fold (1023–1029) to be used for the

standard curve, which was performed in triplicate.

Transcript quantification was performed using an ABI 7000 SDSH
(Applied BiosystemsTM) with SYBR Green supermix (TAKARA,

Dalian, China) using the following thermocycling program: 40 cycles

of 95uC for 10 s and 60uC for 30 s. The copy number in each cDNA

sample was calculated according to the calibration curve generated

by the PCR products including the target gene.

Western blot for the proteins participating in methyl-
group oxidation pathway

For antibody production, FwdC, Mch, and McrD were

heterologously produced in E. coli DH5a. The fwdC (Mhar_0373),

mch (Mhar_2174), and mcrD (Mhar_0496) genes were cloned into

pET-28a. PCR amplification was performed using Pfu DNA

polymerase (Promega, Madison, USA). The fwdC, mch, and mcrD

PCR fragments were generated with the primers 59-

GGGTGGTCCATATGAGGGAGATCA -39 and 59-

TGTCAAAGCTTCAGGCCTCCAGGGA-39; 59-AAACA-

TATGCTAGACTACGCCGAT-39 and 59- ATAAAGCT-

TAACCTTCACGGTTGG-39; 59-AATACATATGGTCAC-

TAAATCA- GACACG-39 and 59-

GAATTCATGTGTCACCGCCTG- 39, respectively. The result-

ing construct was checked by sequencing (Biosune, Beijing,

China). Then protein production was induced and purified as

described previously [38]. Polyclonal antibodies against FwdC,

McrD, and Mch were prepared at the Laboratory Animal Center,

Institute of Genetics and Developmental Biology, Chinese

Academy of Sciences, by injecting rats with the three purified

recombinant proteins.

M. harundinacea 6Ac cells at different growth phases were

harvested by centrifugation at 12,0006g and washed three times

with PBS buffer. Cell suspensions were lysed by sonication and

centrifuged at 21,0006g to obtain the cell fractions. Supernatant

fractions were used as all protein of cell extract. The fractions were

subjected to SDS-PAGE on a 12% gel and then transferred to

nitrocellulose membranes (Amersham, Little Chalfont, UK).

Western blot and immunodetection were performed as described

previously [39]. The non-specific binding of antibodies was

blocked by incubation with Tris-buffered saline and Tween-20

(TBST) with 5% skim milk. Membranes were then probed with a

1,000-fold dilution of the following polyclonal antibodies: rat anti-

FwdC, rat anti-Mch, and rat anti-McrD. Bound antibodies were

visualized using goat anti-rat IgG (Cwbio, China) conjugated to

horseradish peroxidase (HRP), followed by enhanced chemilumi-

nescence (Amersham) according to manufacturer’s instructions

Incorporation of 13C-labeled acetate, methane, and
bicarbonate

M. harundinacea was cultured in basal medium omitting

NaHCO3 containing 50 mM acetate by following the procedure

previously described [8]. The 13C labeled acetate or 13C labeled

bicarbonate was added to the culture at a final concentration of

5% (w/w) of non-labeled substrate. Cells were cultured in 100-ml

serum vials containing 50 ml of medium (pH 7.0 at 25uC) under

an atmosphere of N2 and incubated at 37uC. Methane and acetate

were determined by gas chromatograph GC-14B (Shimadzu) and

Figure 5. Organization of acs genes in M. concilii (A), M. thermophila (B), and M. harundinacea (C). Closest homologs between species are
indicated by the identical patterns.
doi:10.1371/journal.pone.0036756.g005
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CO2 was determined by gas chromatograph GC-14C (Shimadzu)

[8,40]. The stable isotope composition was determined by Trace

GC/IsoLink/Delta V Advantage GC/IRMS (Thermo Fisher

Scientific, Bremen, Germany) [41,42].
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