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Abstract: A series of 2,4,5 trisubstituted-1,2,3-triazole analogues have been screened for their
antifungal activity against five fungal strains, Candida parapsilosis, Candida albicans, Candida tropicalis,
Aspergillus niger, and Trichophyton rubrum, via a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium
bromide (MTT) microdilution assay. Compounds GKV10, GKV11, and GKV15 emerged as promising
antifungal agents against all the fungal strains used in the current study. One of the highly
active antifungal compounds, GKV10, was selected for a single-crystal X-ray diffraction analysis
to unequivocally establish its molecular structure, conformation, and to understand the presence
of different intermolecular interactions in its crystal lattice. A cooperative synergy of the C-H···O,
C-H···N, C-H···S, C-H···π, and π···π intermolecular interactions was present in the crystal structure,
which contributed towards the overall stabilization of the lattice. A molecular docking study was
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conducted for all the test compounds against Candida albicans lanosterol-14α-demethylase (pdb = 5 tzl).
The binding stability of the highly promising antifungal test compound, GKV15, from the series was
then evaluated by molecular dynamics studies.

Keywords: 2,4,5 trisubstituted 1,2,3-triazoles; antifungal activity; single-crystal X-ray diffraction;
minimum inhibitory concentration; molecular docking; dynamic studies

1. Introduction

Fungi are organisms with similar properties to plants [1]. Many fungal infections may be
superficial or systematic, such as candidiasis, aspergillosis, and dermatophytosis [2]. Some diseases
can increase the incidence of fungal infections, such as cancer, human immunodeficiency virus, and the
overuse of antibiotics [3,4]. Available antifungal drugs have many side effects and lack selectivity
towards fungi, as they harm human cells, causing a hepatotoxic effect similar to azole antifungal
agents [5]. In addition, they have poor solubility and bioavailability [6]. The development of selective
and safe antifungal agents with enhanced bioavailability properties is a significant challenge for
pharmaceutical companies. Lanosterol-14-α-demethylase is the enzyme responsible for the synthesis of
ergosterol in fungi and is a specific component in the fungal cell membrane. The inhibition of ergosterol
synthesis will cause death to the fungal cell. Hence, it is a potential selective target for antifungal
azole agents [7]. In silico studies suggest that lanosterol-14-α-demethylase has a great affinity for
azole moieties such as diazole, triazole, and tetrazole, to bind and coordinate to the heme found in
the heme–porphyrin cofactor. To date, the reported use of triazole scaffolds in antifungal drugs has
been limited. A triazole scaffold has many reported pharmacological properties, such as antiviral [8],
hypoglycemic [9], anti-tubercular [10,11], antimicrobial [12,13] and antihypertensive properties [14].
In continuation to our effort to apply methods [15–19] for the development of pharmacologically
active heterocyclic compounds [20–35], the current study aimed to investigate the in vitro antifungal
activity of synthetic 1,3,4-trisubstituted-1,2,3-triazole analogues and to computationally evaluate their
binding modes.

2. Results and Discussion

2.1. Chemistry

Synthesis of the title compounds GKV1–15 (Figure 1) was achieved by two-step chemical synthesis
(Scheme 1). Characterization was achieved by FT-IR, NMR (1H and 13C), High-resolution mass
spectrometry (HRMS), and selected compounds using the single-crystal X-ray method, as per an earlier
study [36]. The yield of the compounds was in the range of 45–82%, and the purity of the compounds
was over 99%. The title compound GKV3 was studied for single-crystal X-ray study analysis, and the
intermolecular interactions were further evaluated through the molecular electrostatic potential map
and Hirshfeld fingerprint analysis [37].

2.2. Crystallography

The molecular structure of the molecule GKV10 in the crystal shows that it is conformationally
flexible (Figure 2). The magnitudes of the torsion angles for C8-C7-C6-N3 and N1-C5-C4-O1 are
143.5◦ and 145.6◦, respectively. Interestingly, the torsion angle for O1-C4-C3-C2 is 174.4◦, indicating
planarity in the solid-state structure. This could possibly result in increased delocalization of the
electron density between the carbonyl groups and the thiophene ring. The packing of molecules in
the crystal shows the presence of C-H···N hydrogen bonds (involving acidic H3 and N3) forming
molecular chains (Figure 3). These parallel chains are translated and connected via C-H···O (involving
H1 and O1), C-H···S (involving H15 and S1), and C-H···π (involving H4 and C14) intermolecular
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interactions. Centro-symmetrically related chains formed via C-H···N hydrogen bonds (involving
acidic H3 and N3) are further stabilized via C-H···O interactions (involving H14 and O1) and π···π

stacking interactions at a distance of 3.901(2) Å (Figure 4). Two such consecutive pairs of dimers are
again centro-symmetrically related and connected via C-H···π (involving H11 and Cg1) and C-H···N
(involving H5 and N3) (Figure 4). In addition, a different C-H···N dimer (involving H13 and N1) is
present in the crystalline lattice, and a pair of such dimers are stabilized further via the already present
C-H···O (involving H14 and O1) and C-H···π interactions (involving H4 and C14) (Figure 5).
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2.3. Pharmacology

The in vitro antifungal minimum inhibitory concentration (MIC) was determined by using the
two-fold dilution method (at 0.49, 0.98, 1.95, 3.9, 7.81, 15.63, 31.25, 62.5, and 125 µg/mL concentrations)
and the results are presented in Table 1. Compounds GKV10, GKV11, and GKV15 were selective
against Candida (C.) tropicalis (0.49 µg/mL). They showed similar activity against C. parapsilosis and C.
albicans, as well (0.98 µg/mL). Compound GKV15 had higher activity against Aspergillus (A.) niger and
Trichophyton (T.) rubrum (0.98 µg/mL). The promising results of these antifungal activities may require
the optimization of highly active compounds in the future.
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Table 1. The antifungal activity of 5-(substituted phenyl)-2-methyl-2H-1,2,3-triazol-4-
yl(4-substitutedphenyl/thiophenyl) methanone analogues (GKV1-15).

Compound Code
Minimum Inhibitory Concentration (µg/mL)

C. parapsilosis C. albicans C. tropicalis A. niger T. rubrum

GKV1 125 62.5 62.5 125 125
GKV2 31.25 15.63 15.63 62.5 62.5
GKV3 125 62.5 62.5 125 125
GKV4 15.63 15.63 15.63 31.25 31.25
GKV5 125 62.5 62.5 125 125
GKV6 31.5 15.63 15.63 31.25 31.25
GKV7 7.81 7.81 3.9 15.63 15.63
GKV8 7.81 7.81 3.9 15.63 15.63
GKV9 3.9 3.9 1.98 7.81 15.63
GKV10 0.98 0.98 0.49 1.95 1.95
GKV11 0.98 0.98 0.49 0.98 1.95
GKV12 15.63 15.63 15.63 31.25 31.25
GKV13 15.63 15.63 7.81 15.63 15.63
GKV14 7.81 7.81 3.9 7.81 15.63
GKV15 0.98 0.98 0.49 0.98 0.98

Fluconazole 0.49 0.49 0.98 0.49 1.95

Candida parapsilosis (ATCC RCMB 05064); Candida albicans (ATCC RCMB 05064); Candida tropicalis (ATCC RCMB
05064); Aspergillus niger (ATCC RCMB 05064); Trichophyton rubrum (ATCC RCMB 05064).
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2.4. Molecular Docking

The molecular docking study was performed to evaluate the binding orientation of the tested
compounds within the active site of lanosterol-14-α-demethylase. We computed scores for the free
energy of binding, affinity, clash score, and the root of the mean square deviation (RMSD). Compound
GKV15 showed the top-ranked ∆G value (−24.75 kcal/mol), affinity (30.01), and was the lowest in
RMSD (0.81 Å) and clash score (2.25) (Table 2). Compounds GKV11, GKV10, GKV7, GKV8, and GKV9
also showed higher ∆G values of −24.54, −24.33, −23.98, −23.88, and −23.71 kcal/mol, respectively.
The thiophene ring in the tested compounds contributed to the hydrophobicity required for the
hydrophobic binding site. The triazole ring revealed two important roles: forming strong coordination
with the heme of the heme–porphyrin complex (achieved in all of the tested compounds as shown in
Figure 6) and maintaining the downward orientation of the two hydrophobic rings of the structure,
which was also achieved successfully.

The length of the alkyl side chain on the N-atom of the triazole ring affected the binding. Presence
of methyl group in compounds like GKV1-3, GKV6-11, and 15 had an electron-donating effect
that enhanced the electron cloud around the nitrogen atom of the triazole ring and potentiated its
coordination with the heme. However, the branching as well as increase in the carbon chain length
resulted in the increase in steric hindrance, thereby effecting the coordination with the heme which
probably could be the reason for detrimental effect in the activity as evident in case of the compounds
4, 5, 12, 13 and 14 (Figure 7).

2.5. Molecular Dynamics

The top-ranked compound, GKV15, with a high docking score and the best biological result
was subjected to a molecular dynamics study against the standard antifungal agent, fluconazole,
over 20 nanoseconds (ns) to evaluate the strength of their binding. The oscillations of the tested
compound started with RMSD 1.5 Å during the first 3 ns. Then, from 3 ns to 8 ns, there were oscillations
suspended between 1.25 Å and 2.00 Å. Equilibrium was reached at 2.00 Å at exactly 8 ns, which was
then maintained (Figure 8). Interestingly, these oscillations were parallel to those of fluconazole, but the
latter showed lower RMSD values as it reached its equilibrium at 1.5 Å.

Table 2. Molecular docking results of the (5-(substituted phenyl)-2-methyl-2H-1,2,3-triazol-4-yl)
(4-substitutedphenyl/thiophenyl) methanone analogues of GVK1–15.

Compound
Computational Parameters

∆G(kcal/mol) Affinity Clash Score RMSD (Å)

GKV1 −22.64 25.88 3.50 1.11
GKV2 −22.41 25.72 3.01 1.25
GKV3 −22.94 26.32 2.95 1.03
GKV4 −22.33 26.10 3.00 1.30
GKV5 −22.04 26.34 2.84 1.25
GKV6 −22.83 24.97 2.65 1.25
GKV7 −23.98 29.45 2.33 1.01
GKV8 −23.88 29.33 2.38 0.97
GKV9 −23.71 28.95 2.35 0.94

GKV10 −24.33 29.80 2.40 0.87
GKV11 −24.54 29.87 2.51 0.85
GKV12 −21.95 25.12 3.25 1.50
GKV13 −21.67 26.74 3.13 1.61
GKV14 −22.89 25.74 2.81 1.44
GKV15 −24.75 30.01 2.25 0.81

RMSD: root of the mean square deviation.
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3. Materials and Methods

3.1. General

The synthesis of the test compounds was achieved by two-step chemical synthesis and is
depicted in Scheme 1, as per the previous report [36]. The molecular structures are represented in
Figure 1. A single-crystal X-ray diffraction study was performed using a Bruker Kappa APEX II DUO
diffractometer equipped with a charge-coupled device (CCD) detector, and monochromated Mo Kα
radiation (λ = 0.71073 Å). Data collection was carried out at 173(2) K using an Oxford Cryostream
cooling system featuring the Bruker Apex II software. The in vitro antifungal test was performed at
the Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt.

3.2. Single-Crystal X-Ray Data Collection and Refinement Details

Single-crystal data were collected on a Bruker APEX II diffractometer equipped with a
CCD detector, using monochromated Mo Kα radiation (λ = 0.71073 Å). Unit cell measurement,
data collection, integration, scaling, and absorption corrections for the crystal were carried out
using the Bruker Apex II software [38]. Data reductions were performed with the Bruker SAINT
suite [39]. The crystal structures were solved by direct methods using SIR 92 [40] and refined by
the full-matrix least-squares method using SHELXL 2014 [41], which is included in the program suite
WinGX (version 2014.1) [42]. Absorption corrections were applied using SADABS [43]. All non-hydrogen
atoms were refined anisotropically, and all hydrogen atoms were positioned geometrically and refined
using a riding model with Uiso(H) = 1.2Ueq. The Oak Ridge Thermal Ellipsoid Plot (ORTEP) and
crystal packing diagrams were generated using the Mercury 3.5.1 (CCDC) program [44]. Geometrical
calculations were performed using PARST [45] and PLATON [46]. The single-crystal data collection and
refinement details are tabulated in Table 3. Intermolecular interactions involved in the title compound
(5-(4-ethylphenyl)-2-methyl-2H-1,2,3-triazol-4-yl)(thiophen-2-yl)methanone (GKV10) are summarised
in Table 4. Crystal information file (CIF) of compound GKV10 was deposited in The Cambridge
Crystallographic Data Centre (CCDC) [47] with CCDC number 1443666 and available as electronic
Supplementary Material.

3.3. Antifungal Screening

The calculation of the minimum inhibitory concentrations (MICs) for the tested compounds was
done against Candida parapsilosis (ATCC RCMB 05064); Candida albicans (ATCC RCMB 05064); Candida
tropicalis (ATCC RCMB 05064); Aspergillus niger (ATCC RCMB 05064); Trichophyton rubrum (ATCC
RCMB 05064). Microdilution assay was used to evaluate the tested compounds (GKV1-15) for their
antifungal activity [48]. Different concentrations were tested from each compound; 0.49, 0.98, 1.95,
3.9, 7.81, 15.63, 31.25, 62.5, and 125 µg/mL over 48 h. The experiments were done in The Regional
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Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt. Fluconazole was used as a
reference drug.

Table 3. Single-crystal data collection and refinement.

Data Compound GKV10

CCDC 1443666
Formula C16 H15 N3 O S

Formula weight 297.37
Temperature/K 110 (2)
Wavelength (Å) 0.71073

Solvent system, Temperature Toluene, 25 ◦C
Crystal system Triclinic

Space group P-1
a (Å) 7.6676 (4)
b (Å) 9.8450 (5)
c (Å) 10.8781 (6)
α (◦) 94.319 (3)
β (◦) 109.220 (3)
γ (◦) 107.332 (3)

V (Å3) 726.36 (7)
Z′, Z 1, 2

Density (g cm−3) 1.360
µ (mm−1) 0.225

F (000) 312
θ (min, max) 2.21, 30.02

hmin, max, kmin, max, lmin, max −10 10, −13 12, −14 14
No. of ref. 10812

No. of unique ref./obs. Ref. 3573/3098
No. parameters 172

Rall, Robs 0.0503, 0.0442
wR2all, wR2obs 0.1301, 0.1249

∆ρmin, max (eÅ−3) −0.249, 0.446
Goodness of Fit (G. O. F.) 1.066

Table 4. Intermolecular interactions in GKV10: Cg1 refers to the center of gravity of the ring formed
by C1-C2-C3-S1-C13.

Motifs D–H···A Symmetry
Geometry

D···A/Å H···A/Å <D–H···A/◦

I C1-H1···O1 x + 1, +y, +z 3.235 (2) 2.18 164
II C11-H5···N3 x + 1, +y, +z 3.750 (3) 2.71 161
III C13 -H3···N3 x + 1, +y + 1, +z 3.430 (2) 2.35 175
IV C16 -H14···O1 −x, −y, −z + 1 3.546 (2) 2.51 159
V C16 -H13···N1 −x + 1, −y, −z + 1 3.824 (3) 2.76 167
VI C2-H4···C14(π) x + 1, y, z 3.875 (2) 2.99 154
VII Cg1···Cg1 −x + 1, −y+1, −z + 1 3.901 (2) − −

VIII C9-H11···Cg1 −x + 1, −y + 1,−z + 2 3.911 (2) 3.07 149
IX C16-H15···S1 x, y − 1, z 3.790 (1) 3.08 131

3.4. Molecular Docking

The Molecular Operating Environment (MOE) program was used for performing the docking
studies. The chain A was selected as the main chain, which was complexed with heme–porphyrin and
a reported azole inhibitor. The amino acids within a radius of 6.5 Å were selected in the binding site.
The triangle method was the main placement method. London dG was used as a rescoring method.
The Merck molecular force field 94x (MMFF94x) was selected as a force field [49].
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3.5. Molecular Dynamics

The docking of GKV15 revealed a stable pose that was kept in the active site. The protein
geometries, electron density and temperature-related factors were tested. All hydrogens were added,
and energy minimization was calculated. Any foreign solvent molecules in the system were deleted;
salt atoms were then added to the system to surround the biomolecular protein–ligand complex in a
spherical shape. Sodium chloride was added in a 0.1 mol/L concentration. The cell dimensions were of
81.9 × 81.9 × 81.9 Å. The total number of molecules within the system was 18,295, 1.01 g/cm3. Assisted
Model Building with Energy Refinement 10:Extended Hückel Theory (Amber 10:EHT) was selected as
a force field. The heat was adjusted in order to increase the temperature of the system from 0–300 K,
which was followed by equilibration and production for 300 ps; cooling was then initiated until 0 K
was reached. The simulation was conducted over a 20 ns period of time (20,000 ps).

4. Conclusions

A series of 2,4,5-trisubstituted-1,2,3-triazole derivatives (GKV1-15) bearing a substituted phenyl
moiety at the fourth position of the 1,2,3-triazole nucleus was synthesized, and the derivatives were
evaluated for their antifungal activity. The single-crystal X-ray diffraction studies of compound GKV10
established that C-H···O, C-H···N, C-H···S, C-H···π, and π···π intermolecular interactions primarily
stabilized the supramolecular packing arrangement of the molecules in the solid-state. The antifungal
results indicate that all the test compounds exhibited promising antifungal effects against the tested
ATCC strains. The title compound GKV15 was highly promising, as it exhibited the best antifungal
activity against C. parapsilosis, C. albicans, C. tropicalis, A. niger, and T. rubrum at an MIC of 0.98,
0.98, 0.49, 0.98, and 0.98 µg/mL, respectively. This result was combined with the molecular docking
results of free energy, affinity, clash score, and RMSD at −24.75, 30.01, 2.25, and 0.81, respectively.
The activity of the test compound GKV15 was similar in magnitude to the standard drug. Thus, the test
compound GKV15, reported herein, is a promising starting point for the development of an antifungal
drug candidate.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6382/9/6/350/s1;
Supplementary data (Single crystal X-ray CIF file) for compound 5-(4-ethylphenyl)-2-methyl-2H-1,2,3-triazol-
4-yl(thiophen-2-yl)methanone (GKV10) related to this article can be found as an attachment.
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