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Abstract

Protein O-fucosylation is an essential post-translational modification, involved in the folding of target proteins and in the
role of these target proteins during embryonic development and adult tissue homeostasis, among other things. Two
different enzymes are responsible for this modification, Protein O-fucosyltransferase 1 and 2 (POFUT1 and POFUT2,
respectively). Both proteins have been characterised biologically and enzymatically but nothing is known at the molecular
or structural level. Here we describe the first crystal structure of a catalytically functional POFUT1 in an apo-form and in
complex with GDP-fucose and GDP. The enzyme belongs to the GT-B family and is not dependent on manganese for
activity. GDP-fucose/GDP is localised in a conserved cavity connected to a large solvent exposed pocket, which we show is
the binding site of epidermal growth factor (EGF) repeats in the extracellular domain of the Notch Receptor. Through both
mutational and kinetic studies we have identified which residues are involved in binding and catalysis and have determined
that the Arg240 residue is a key catalytic residue. We also propose a novel SN1-like catalytic mechanism with formation of an
intimate ion pair, in which the glycosidic bond is cleaved before the nucleophilic attack; and theoretical calculations at a
DFT (B3LYP/6-31+G(d,p) support this mechanism. Thus, the crystal structure together with our mutagenesis studies explain
the molecular mechanism of POFUT1 and provide a new starting point for the design of functional inhibitors to this critical
enzyme in the future.
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Introduction

Protein O-fucosylation is an important post-translational modifi-

cation first reported 36 years ago which is mediated by two

glycosyltransferases, Protein O-fucosyltransferase 1 (POFUT1) and

Protein O-fucosyltransferase 2 (POFUT2) [1,2]. Both enzymes are

inverting glycosyltransferases classified in the CAZy database as

GT65 and GT68, respectively [3]. An enzymatic assay for POFUT1

was described in 1998 [4] and the gene was cloned in 2001 [5].

Genetic experiments confirmed POFUT1 is essential during

development in both flies and mice [6–8] and the phenotypes of

the null embryos demonstrated that it is implicated in the Notch

signalling pathway. The identity and characterisation of POFUT2

was published later in 2006 and confirmed the existence of these two

different glycosyltransferases involved in Protein O-fucosylation

[9,10].

This modification only occurs in eukaryotic organisms and is a

rare form of O-linked glycan on cysteine-rich proteins motifs [11–

13]. Both POFUT1 and POFUT2 act on proteins containing the

cysteine-rich motifs as the acceptor sugar and GDP-fucose as the

donor [4,10]. While POFUT1 activity is increased in the presence

of metals [4], POFUT2 does not require a metal for catalysis [10].

Unlike the majority of glycosyltransferases, which are localised in

the Golgi apparatus, both enzymes reside in the endoplasmic

reticulum. However, while POFUT1 contains the typical endo-

plasmic reticulum localisation sequence, ‘‘RDEF’’ [14], this is not

present in the POFUT2 sequence [10].

The most recognised substrates of POFUT1 are the EGF

repeats present in the extracellular domain of Notch proteins

[5,11,14,15]. Notch is a membrane-anchored signalling receptor

which plays very pleiotropic and essential roles during the

development of many tissues including regulation of cell fate,

proliferation, apoptosis, differentiation and migration [16]. The

extracellular domain of Notch harbours 36 EGF repeats in

mammals; of those, 23 contain a tetrasaccharide unit in which the

first sugar is a fucose [16–18], and 20 contain a trisaccharide unit

in which the first sugar is a glucose [19]. EGF repeats are small

(,40 amino acids) cysteine-rich motifs with six conserved cysteines

forming three disulphide bridges [20,21]. POFUT1 a-fucosylates

serines or threonines present in EGF repeats containing the

appropriate consensus sequence, C2-X(4-5)-[S/T]-C3, where C2

and C3 are the second and third conserved cysteines. Of these
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fucosylated EGF repeats, EGF11-12 are the most important

biologically since this is the region to which the Notch ligands bind

[22–23]. As mentioned before, fucose is the first residue of a

tetrasaccharide found in some EGF repeats followed by an N-

Acetyl glucosamine (GlcNAc) residue catalysed by the glycosyl-

transferase Fringe proteins [24–25]. This GlcNAcylation together

with Protein O-fucosylation has been shown to be essential in

different organisms. The role of GlcNAc is to mediate or increase

the interaction of Notch with its ligands [24–25]. An additional

role of POFUT1 as a chaperone in the folding and secretion of

Notch is inferred from disruption studies in flies [8–26], unlike in

mice, where similar studies do not support this role [27].

Notch is up-regulated in a large number of diseases such as T cell

acute lymphatic leukaemia (T-ALL) [28] and adult T-cell leukaemia

[29]. Thus the development of pharmacological inhibitors against

POFUT1 may provide an alternative strategy to treat these diseases

through attenuation of Notch signalling pathway.

Less is known about POFUT2. It recognises a second type of

cysteine-rich motif, known as a thrombospondin type 1 repeat

(TSR), which contains six conserved cysteines and three disulphide

bonds [30]. Literature reports to date would suggest that there are

more than 40 proteins affected by this modification, including

thrombospondin 1 and 2, the ADAM family of metalloproteases

and properdin [31–32]. So far the main role of POFUT2 has been

suggested to be involved in secretion of different proteins [31–32].

Despite considerable interest in the role of these proteins during

Notch signalling in embryogenesis, we do not know anything

about the crystal structure of these enzymes or how they recognise

their substrates or what catalytic mechanism these enzymes

employ to modify their target proteins.

In order to address these issues, we describe the first crystal

structure of a eukaryotic POFUT1, in native form and in complex

with GDP-fucose and GDP. The structures show the typical GT-B

folding and a non-metal dependency. Surface electrostatic

potential plus docking studies with POFUT1 and human EGF12

(HsEGF12) suggest the EGF repeat binding site. Furthermore,

through site directed mutagenesis experiments we propose the

catalytic and binding residues involved in Protein O-fucosylation.

Interestingly we also suggest the role of a conserved Arg240 as a

key catalytic residue, which facilitates the glycosidic cleavage that

occurs prior to proton transfer of the acceptor substrate to the

catalytic base, b-phosphate. This work provides a molecular

framework for further studies towards POFUT1 specificity and for

the design of novel POFUT1 inhibitors.

Results and Discussion

Caenorhabditis elegans POFUT1 (CePOFUT1) is a
catalytically functional enzyme which is not dependent
on manganese for activity

CePOFUT1 was identified and selected by a protein blast search

from different organisms. Unlike its homologues in other species it

lacks N-glycosylation sites [33] (Figure 1). This protein showed

,41% identity with higher eukaryote enzymes (Figure 1),

suggesting it functions as a protein O-fucosyltransferase 1. Based

on a multiple alignment (Figure 1), we expressed a truncated

form of CePOFUT1 (amino acids 26–382, excluding the signal

sequence and the retention endoplasmic reticulum localisation

sequence, Figure 1) as a secreted protein in Pichia pastoris and we

purified it by a HiTrap-Blue, ion exchange and by gel filtration

chromatography (see Materials and Methods). POFUT1s

have been shown to bind GDP-fucose and EGF repeats, and

transfer this monosaccharide into small EGF repeats producing

GDP during the reaction. Moreover manganese has been shown

to increase the transfer activity of these glycosyltransferases on

EGF repeats [4,5]. In order to test the binding of CePOFUT1 to

GDP-fucose/GDP and manganese, we conducted a thermal shift-

assay [34] and isothermal titration calorimetry experiments

(Figure 2A and 2B). The protein showed a denaturation

temperature T0 of 50.0760.09uC, which was increased to 2.2

and 4.2uC by incubation of the enzyme with 1 mM GDP-fucose

and GDP, respectively (Figure 2A and Table 1), suggesting

Figure 1. Multiple sequence alignment of POFUT1s. Multiple sequence alignment of the GT65 family members CePOFUT1, HsPOFUT1, Gallus
gallus POFUT1 (GgPOFUT1), Danio renio POFUT1 (DrPOFUT1) and DmPOFUT1. Secondary structure elements from the CePOFUT1 structure are shown,
with a-helices in red and green for the N and C-terminal domains, respectively, and b-strands correspondingly in blue and cyan. Signal sequence of
CePOFUT1 is highlighted in green while endoplasmic reticulum retention sequence for all POFUT1s are indicated in a pink box. Conserved cysteines
forming disulphide bridges and N-glycosylated sites are shown in yellow and magenta, respectively. The boundaries of the N and C-terminal
CePOFUT1 constructs are indicated in red for Thr26 and Ala382.
doi:10.1371/journal.pone.0025365.g001

POFUT1 Crystal Structure
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binding to the donor sugar and GDP. Analysis by isothermal

calorimetry titrated by different concentrations of the ligands

(Figure 2B) confirmed quantitatively the thermal denaturation

data rendering a Kd (dissociation constant) of 0.2360.04 mM for

GDP-fucose (which is in the low mM range and similar to the Kms

of 4 and 6.4 mM reported for Drosophila melanogaster and mouse

POFUT1 [4,5], respectively) and 0.3560.07 mM for GDP

(Table 2). Since both GDP-fucose and GDP bind with a similar

affinity to the enzyme, inhibition by-products may occur as has

been described for other types of glycosyltransferases [35,36]. As

expected for a highly negatively charged ligand, the binding

energy is dominated, for example in the case of GDP, by a large

negative entalphic term (DH = 210.3760.22 kcal/mol) com-

pared to a non-favoured entropic term (T*DS = 21.6 kcal/mol).

Furthermore, in both GDP-fucose and GDP, the stochiometry

observed experimentally was in agreement with a single binding

site. Unlike nucleotides, experiments with 5 mM MnCl2 both with

and without GDP-fucose showed small decreases of 0.25–0.45uC
in the DTm compared to the wild type enzyme (Figure 2A),

indicating that manganese may slightly decrease the stability of

CePOFUT1.

To evaluate the enzymatic properties of CePOFUT1, we

characterised its activity as a glycosylhydrolase and glycosyltrans-

ferase. The hydrolase activity was measured by an enzymatic

coupled assay with NDPase, rendering a specific activity value of

9068 pmol/min*mg in the presence of 100 mM GDP-fucose. We

also determined the activity of CePOFUT1 in the presence of 1

and 5 mM MnCl2, showing that the enzyme is inhibited by

manganese (between 40–60% inhibition, data not shown),

contrary to what has previously been described [4]. The

transferase activity assay was carried out with the enzyme, GDP-

fucose and Mus musculus EGF12 (MmEGF12) from the mouse

Notch1 receptor protein, and determined by MALDI mass

spectrometry (Figure 2C). Strikingly an expected increase of

146 Daltons was obtained in the fucosylated peptide, in

accordance to a fucose bound to MmEGF12 (Figure 2C).

Therefore, CePOFUT1 is a Protein O-fucosyltransferase 1 which

acts independantly of manganese and which recognises the EGF12

repeat from mouse Notch1.

CePOFUT1 adopts a GT-B fold
CePOFUT1 is classified in the CAZy database [3] as GT65.

Currently there is no available data for the structure or folding

properties of this protein. To determine the structure of

CePOFUT1 we obtained three different crystal forms. Due to

the reproducibility and diffracting properties of crystals-form-II

(see Materials and Methods), we solved the structure from a

highly redundant crystal-form-II, previously soaked with MnCl2,

by sulphur SAD experiments, in combination with phase

extension from a crystal co-crystallised with GDP and soaked

with GDP-fucose/MnCl2 diffracting at high resolution (Figure 3A
and Table 3 for data collection and refinement statistics).

Iterative model building and refinement yielded an initial model

which was used to solve crystal-form-I and III with good

refinement statistics (R = 0.234, Rfree = 0.252 for native crystal-

form-I and R = 0.204, Rfree = 0.244 for crystal-form-III in complex

with GDP, Table 3). Soaking experiments of crystal-form-I and II

with GDP-fucose yielded a complex to 1.96 Å (R = 0.218,

Rfree = 0.267, Table 3) and 1.91 Å (R = 0.202, Rfree = 0.237,

Table 3).

CePOFUT1 is a monomeric protein, as determined by gel

filtration chromatography and confirmed by analytical ultracen-

trifugation (data not shown). This protein is composed of two

Figure 2. Biophysical characterisation of CePOFUT1. (A). Thermal denaturation curves of the wild type enzyme as monitored by ANS
fluorescence in the absence or presence of 5 mM MnCl2, 1 mM GDP-fucose/GDP and 1 mM GDP-fucose together with 5 mM MnCl2. (B). ITC
experiments of wild type enzyme on GDP-fucose and GDP. (C). MALDI-TOF MS of MmEGF12 as a control and incubated with wild type enzyme and
GDP-fucose. The mass of MmEGF12 and fucosylated MmEGF12 are indicated by arrows.
doi:10.1371/journal.pone.0025365.g002

Table 1. T0 and DTm of mutants compared with wild type
enzyme.

T0 (6C)
DTm (6C)
1 mM GDP

DTm (6C)
5 mM GDP

DTm (6C)

1 mM GDP-
fucose

Wild Type 50.0760.09 4.21 6.17 2.19

R40A 50.9460.11 0.85 2.71 -

N43A 51.0760.17 2.04 - 1.20

F199A 48.0460.13 2.94 - -

R240A 52.7760.10 0.1 0.09 -

R240K 50.9260.05 1.04 1.27 -

D242A 48.0460.14 6.81 - -

D244A 48.5260.08 4.58 - -

W245A 49.0260.15 0.80 2.19 -

F261A 48.7760.13 4.50 - 1.84

D309N 45.8260.15 5.01 - -

F357A 49.6560.16 0.15 0.90 -

The T0s represent means6S.D. for three independent experiments.
doi:10.1371/journal.pone.0025365.t001

Table 2. GDP-fucose/GDP dissociation constants of mutants
compared with wild type enzyme.

Kd (mM)
GDP

Kd (mM)
GDP-fucose

Wild Type 0.3560.07 0.2360.04

R40A 3.1060.53 -

N43A 0.3060.09 -

F199A 0.1860.03 -

R240A nd -

R240K 61.2610.5 -

D242A 0.0960.02 -

D244A 0.1060.01 -

W245A 1.6060.40 -

F261A 0.1260.07 -

D309N - -

F357A 26.965 -

The Kds were determined from thermodynamic relationships and the estimated
errors were less than624% in the majority of the cases. n.d. = not detected;
- = not determined.
doi:10.1371/journal.pone.0025365.t002
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domains (Figure 3A) which is a conserved feature shared by all

higher eukaryotic POFUT1s (Figure 1 and 3A). The N and the

C-terminal domains (a1- a9/b1- b8 and a10- a19/b9- b13,

respectively) adopt Rossmann-like folds, which are formed by a

central b-sheet surrounded by a-helices on both sides and these

constitute the typical signature of a GT-B fold. The donor sugar,

GDP-fucose, is localised in the interface where the two domains

face each other; a typical signature of glycosyltransferases adopting

the GT-B fold (Figure 3A). The residues from the active site

interacting with GDP-fucose are mainly from the C-terminal

domain (Figure 3A) together with a few from the N-terminal

domain. Glycosyltransferases adopting GT-B folds are metal-

independent [37] and this characteristic is further supported by

the thermal denaturation curves and kinetic experiments shown

above (Figure 2 and 3). A structure search on the DALI [38]

server revealed not surprisingly structural homology with two

other fucosyltransferases, nodulation fucosyltransferase [39]

(NodZ) (RMSD [Root mean square deviation] on 231 equivalent

Cas = 4.1 Å) and a-1,6 fucosyltransferase or FUT8 [40] (RMSD

on 222 equivalent Cas = 3.7 Å), which also contain the typical

GT-B fold. The structure with the third highest Z score was ADP-

heptose LPS heptosyltransferase II (RMSD on 184 equivalent

Cas = 3.8 Å) (PDB ID 1PSW), which folds as a GT-B and is

functionally different to fucosyltransferases.

A comparison among the different crystal forms revealed minor

conformational changes within the two domains (RMSD of 0.25 Å

among apo crystal-form-I and soaked with GDP-fucose, and 0.66–

0.86 Å among crystal-form-I compared to crystal-form-II and III,

respectively) and some differences in order/disorder loop changes,

such as a loop in the N-terminal domain (residues 125–134). The

larger RMSD could have resulted from differences in crystal

packing and not from bound ligands due to the small RMSD

among crystals-form-I with and without the ligand.

CePOFUT1 contains four conserved disulphide bridges through

the GT65 family (Figure 1 and 3A), two in each domain. The

first one, placed in a loop connecting b1 and a1 and formed by

Cys35 and Cys37 (Figure 3A), is an unusual disulphide bridge

due to the proximity between both cysteines and represents a

signature of the all family (Figure 1). This loop contributes to

form the sugar donor-binding site together with residues from a1

and it is possible that this disulphide bridge helps to correctly

position them. The second one is formed between Cys139 from b6

and Cys135 placed in a loop preceding a7. This disulphide occurs

in the vicinity of disordered loops and it is possible that it helps to

limit flexibility. Cys249 and Cys281 form the third disulphide,

which comes from the a11 and a14, respectively. a11 and the

previous loop contribute to the sugar donor binding site with key

amino acids (Figure 1 and 3A). The fourth disulphide, formed by

Cys266 and Cys353, comes from the a12 and the loop between

b12 and a19, respectively. Amino acids in the loop preceding a12

contribute to the sugar donor-binding site (Figure 1 and 3A).

CePOFUT1 is a good representative of the GT65 family
The crystal structure and the high identity between CePOFUT1

and the sequence of POFUT1 in higher eukaryotics (identity

$41%), implies structural conservation of GT65 family members

(Figure 1 and 3B) and suggests that the sugar donor binding site

may be completely conserved (Figure 1 and 3B). Furthermore

GDP-fucose points out to a very conserved solvent exposed pocket,

in which EGF repeats are expected to bind (Fig. 3B and 4). To

confirm the binding site of EGF repeats, we analysed the

electrostatic surface potential (Figure 4A) between the HsEGF12

Figure 3. Overall crystal structure of CePOFUT1. (A). 2|Fo |-|Fc | electron density maps for the region around the first disulphide bridge, Cys35-
Cys37. 2|Fo |- |Fc |, fcalc electron density maps are shown at 1.0 s. The upper map was obtained from initial phases from SHELXC/D/E [52] while the
map below corresponded to improved phases obtained from phase extension (see Materials and Methods). (B). Overall crystal structure of
CePOFUT1 in complex with GDP-fucose. Secondary structure elements from the CePOFUT1 structure are shown, with a-helices in red and green for
the N and C-terminal domains, respectively, and b-strands correspondingly in blue and cyan. The four disulphide bridges are highlighted in yellow.
GDP-fucose is shown as sticks with black carbon atoms for illustration purposes. (C). Surface representation of the CePOFUT1, colored by sequence
conservation ((pink (100% identity), to grey (,50% identity)). GDP-fucose is shown as sticks with green carbon atoms.
doi:10.1371/journal.pone.0025365.g003
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(Å

2
)

2
7

.0
3

2
3

.0
8

2
2

.8
5

2
6

.6
1

2
7

.4
7

,
B

.
G

D
P

-f
u

co
se

(Å
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repeat from human Notch and CePOFUT1. The results showed

that sugar nucleotide donor and the acceptor binding site were

overall positive while EGF12 was negatively charged (Figure 4A),

suggesting electrostatic complementarity between both proteins.

Furthermore, docking studies with ClusPro [41] were carried out

to confirm binding site and orientation of the EGF repeats (see

Materials and Methods, and Figure 4B). EGF repeats

contain two antiparallel b-strands and the glycosylated Ser/Thr

residues preceding the third cysteine are localised at the beginning

of the first b-strand. We analysed the 30 top structures returned by

ClusPro (the HsEGF12 was located in the pocket mentioned above

in all of the output structures), and we selected two complexes

(Figure 4B) based on the Thr466 orientation with respect to the

sugar nucleotide GDP-fucose. Surprisingly, in only one of these

two complexes, Thr466 OG1 is 5 Å from the fucose anomeric

carbon, suggesting not only the right localisation but also the right

orientation of HsEGF12. Furthermore, Thr466 is facing the sugar

from the a-face, which is compatible with the inverting character

of POFUT1.

Therefore CePOFUT1 provides a useful tool with which to

understand the catalytic mechanism of GT65 family members and

to provide a platform to develop future inhibitors against human

POFUT1 in order to treat diseases in which Notch signalling

activity is up-regulated [28,29], due to its high structural identity

with the human enzyme.

GDP-fucose is bound in a conserved cavity formed
mainly by amino acids from the C-terminal domain

The four crystal structures described in the current manuscript

represent three different steps during catalysis (Figure 5 and
Figure S1). The first two structures were obtained by crystals-

form-I. One of them represents the apo-form bound to a sulfate

molecule in the active site, while the second structure is bound to

GDP-fucose resembling the substrate binding mode. The third one

is a crystal-form-II, in complex with GDP-fucose (also resembling

the substrate binding mode), which contains amino acids in the

active site with different conformational changes in relation to the

above structure. The fourth one is a crystal-form-III in complex

with GDP, resembling a product complex. In the structures

complexed with ligands, GDP-fucose and GDP occupied identical

positions (Figure 5). The nucleotide was localised between a1,

a18, a19, b10, b12 and loops among b1- a1, a15- b10, b11- a18

and b12- a19 (Figure 5). While guanosine and fucose adopt

favourable conformations, the pyrophosphate group of GDP-

fucose/GDP shows torsion angles (a, b, c are 61u, 48u, and 22u,
respectively) distorted from ideal angles, which are 180o

(Figure 5). Unusual torsion angles are also found in Helicobacter

pylori a-1,3-fucosyltransferase (HpFucT) in complex with GDP-

fucose [42] (a, b, c are 260u, 138u and 278u, respectively),

suggesting that fucosyltransferases twist pyrophosphate in order to

fit GDP-fucose into their active sites. Due to these changes, two

intra hydrogen bonds are formed in GDP-fucose/GDP, one

between the ribose O3 and the a-phosphate opposite oxygen, and

the second one between fucose O2 and the a-phosphate opposite

oxygen (Figure 5). The guanine ring is sandwiched between

Phe357 and Asp309 by stacking hydrophobic interactions (in the

case of Asp309, a and b carbons of this residue contribute to the

hydrophobic interaction) (Figure 5). The rest of the interactions

with guanine occur through hydrogen bonds with backbones of

Ser308 and Asp234, and side chains of His238 and Asp334

(Figure 5). The ribose ring makes hydrogen bonds with the Arg40

side chain and the Phe41 backbone (Figure 5). The a-phosphate

interacts through hydrogen bonds with the Gly42 and Asn43

backbones while b-phosphate makes hydrogen bonds with the

Ser355, Thr356 and Arg240 side chains and also shows an

additional salt bridge with the latter amino acid (Figure 5). In the

apo structure, a sulphate group occupies the b-phosphate position

found in the complex with GDP-fucose and maintains conserved

interactions with Arg240 and Thr356. The fucose is recognised by

a stacking hydrophobic interaction with Phe261, and hydrogen

bonds through its oxygen ring with Arg240, and O3, O4 with the

Asn43 side chain (Asn43 makes different hydrogen bonds with

fucose depending on its conformations in the crystal structures,

Figure 5). Moreover, there is an additional interaction between

fucose O4 and a water molecule in the b-face (only water

molecules around the fucose binding site will be discussed, just for

clarification purposes), which also interacts with Arg40. Finally, a

second water molecule from the apo structure is present in the

fucose a-face, making hydrogen bonds with sulphate and Asn43.

This water molecule may represent the catalytic incoming water or

Ser/Thr of the EGF repeat (to be discussed later, Figure 5 and

Figure 4. Localisation of EGF repeat binding site in CePOFUT1.
(A). Electrostatic surface representation of CePOFUT1 and HsEGF12 (PDB
code 2VJ3). CePOFUT1 has an overall positive charge in the sugar and
acceptor binding site while HsEGF12 is negatively charged around
Thr466 [56]. GDP-fucose is shown as sticks with green carbon atoms
while Thr466 is indicated by an arrow. (B). Docking of HsEFG12 into
CePOFUT1. CePOFUT1 is represented as a surface model colored by
sequence conservation, while HsEGF12 is shown either as ribbon
representation on the left (b-strands are in blue and the three
disulphide bridges are highlighted in yellow) or as a surface model
(in orange) on the right. GDP-fucose and Thr466 are shown as sticks
with green carbon atoms.
doi:10.1371/journal.pone.0025365.g004
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6). Several conformations are seen for Arg40, Asn43, Arg240,

Asp242, Asp244 and Phe261 in the above mentioned structures

suggesting flexibility in the catalytic region.

Site-directed mutagenesis studies suggest Arg240 as a
key residue involved in binding and catalysis

On the basis of these crystal structures, we evaluated the

importance of several amino acids in the binding and catalytic

properties of this enzyme by site-directed mutagenesis. We

mutated residues involved in binding to guanosine (Phe357,

Arg40, Asp309), pyrophosphate (Arg240), fucose (Asn43, Arg240

and Phe261) and also around the ligand, but not directly

implicated in binding such as Phe199, Trp245, Asp242 and

Asp244. Phe199 was close to Asn43 and Phe261, while Trp245

was hydrophobically stacked to Arg240. Inverting glycosyltrans-

ferases requires an aspartic, glutamic acid or histidine as a catalytic

base to deprotonate an incoming acceptor substrate in order to

attack the anomeric carbon bound to the nucleotide [43].

Figure 5. Active site of CePOFUT1 apo-form and in complexes with GDP-fucose/GDP. Stereo view of the active site of CePOFUT1 apo-form,
in complex with GDP-fucose and GDP. The amino acids placed in the active site are shown as sticks with grey carbons. GDP-fucose and GDP are
represented as stick models with green carbon atoms. Protein-ligand and water-ligand hydrogen bonds are shown as dotted black lines. Only water
molecules localised in the fucose binding site are shown for clarity purposes. Water molecules are shown as cyan spheres. b and a faces of fucose are
indicated to understand the stereochemistry of the catalytic reaction. Unbiased (i.e. before inclusion of any ligand model) |Fo |- |Fc |, fcalc electron
density maps are shown at 2.2 and 2.5 s.
doi:10.1371/journal.pone.0025365.g005

Figure 6. Site-directed mutagenesis, superposition study and proposed catalytic mechanism. (A). Glycosylhydrolase activity assay of
mutants compared with that of the wild type enyme. The activity of mutants is shown as relative to the wild type enzyme (being 100%). The data
represent means6S.D. for six to nine independent experiments. (B). Superposition of a GDP-fucose complex into the apo-form structure. Asn43,
Arg240, Trp245 and Phe261 are shown as sticks with grey carbons. GDP-fucose is represented as stick models with green carbon atoms. A water
molecule localised in the a-face is shown as a cyan sphere. Dotted hydrogen bonds between Asn43 and Arg240 from the apo structure and sulphate
are shown as grey while the same amino acids from the complex and GDP-fucose are shown as black. Asn43, Arg240, Trp245 and Phe261 from both
structures superpose with a RMSD of 0.21 Å, 0.77 Å, 0.91 Å and 0.29 Å, respectively. Sulphate of apo structure mimics b-phosphate of GDP-fucose
because adopts an analogous position. (C). SN1-like catalytic mechanism with formation of an intimate ion pair in the transition state. R in blue is the
hydrogen of a water molecule or the rest of the incoming EGF repeat. Arg240 and Asn43 are in green, GDP is in red, fucose is in black and the
incoming acceptor substrate is in blue. The proton transferred during the reaction is in blue. Protein-ligand and incoming acceptor substrate-ligand
hydrogen bonds are shown as dotted black lines.
doi:10.1371/journal.pone.0025365.g006
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Consequently, we mutated the only two acidic amino acids,

Asp242 and 244, which were close to the sugar donor binding site.

We firstly characterised them by thermal denaturation curves,

showing two different groups of amino acids, both less and more

stable than the wild type. R40A, N43A and R240A/K were more

stable while F199A, D309N, D242A, D244A, W245A, F261A and

F357A were less stable (Table 1). We further incubated them with

increasing concentrations of GDP to compare the DTm with that

of the wild type in the same conditions (Table 1). F199A, D242A,

D309N, D244A, F261A showed increases similar to the wild type

at 1 mM GDP; N43A was half of the wild type DTm; while R40A,

R240A/K, W245A and F357A had less than 4-fold reduction in

the DTm. DTm of the latter mutants was increased with 5 mM

GDP except for R240A, which did not show any significant

change. Finally both mutants, N43A and F261A, had a decrease in

DTm at 1 mM GDP-fucose compared to that of the wild type

(Table 1). These results suggest that mutated amino acids with

less increase in the DTm compared to the wild type, may show

decreased binding to the nucleotide. In order to confirm this

hypothesis, we further evaluated the binding of these mutants by

ITC experiments. All the mutants were titrated with GDP. Three

different groups of mutants were found in relation to the binding

of GDP. N43A and F199A bound to GDP with similar Kd

(Table 2) to the wild type, in accordance with a non direct

interaction of these amino acids with the nucleotide (Figure 5). A

second group of mutants such as R40A, R240A/K, W245A and

F357A showed a decrease in binding to GDP (Table 2). From this

group, R40A and W245A bound better to GDP than F357A,

R240K and R240A, with the latter being impaired in binding

under our conditions (see Table 2 and Materials and
Methods). These results suggest that Arg40 and Trp245 may

have an important structural role in the active site, while Phe357

and Arg240 are critical amino acids in binding to the nucleotide

(Figure 5). A third group, which includes mutants such as D242A,

D244A and F261A, showed 3-fold improvement in binding,

although none of these residues interact directly with GDP.

On the other hand we evaluated the hydrolase activity of these

mutants on GDP-fucose (Figure 6A). D309N and D242A showed

a very similar activity to the wild type enzyme while D242A,

R40A, F199A, D244A, F261A and F357A displayed a slight

decrease in activity. Finally the activity of W245A and N43A was

diminished 12.5 and 25-fold, respectively, while R240A/K were

impaired catalytically (Figure 6A). These results suggest that the

majority of the mutated amino acids may affect activity due to

changes in their ability to bind the nucleotide or due to their

influence in the nature of the folding of the active site. Only

Asn43, Arg240 and Trp245 were critical for activity.

Catalytic mechanism
To our surprise, the activity data with D242A and D244A

suggested that the enzyme may not have any amino acid acting as a

catalytic base. Unlike Asp242 or Asp244, Arg240 played an

important key role in binding and catalysis. Under the conditions

assayed, R240A was completely impaired with respect to binding to

GDP while R240K was 175-fold decreased with respect to binding

to GDP. R240K may have better binding than R240A since R240K

may mimic the positive charge present in Arg240. Strikingly,

although R240K showed a reduced binding to GDP, the activity

was completely abolished. Our data with Arg240 are supported by

mutagenesis studies of an equivalent Arg245 in Drosophila melanogaster

POFUT1 (DmPOFUT1, Figure 1) which is also present in a-1,2

and a-1,6 fucosyltransferases. In these enzymes, mutations of this

key arginine also impaired the activity [44-46]. Therefore Arg240

(Arg245 in DmPOFUT1) plays a conserved and critical function in

POFUT1 which is also extended to other fucosyltransferases.

A detailed analysis of the active sites of the crystal structures

(Figure 5), together with a superposition of the GDP-fucose

complex on the apo structure (Figure 6B), suggests that Arg240,

through a hydrogen bond with the glycosidic bound oxygen, may

facilitate the cleavage of the glycosidic bond. The stacking

hydrophobic interaction between Arg240 and Trp245 may

explain the decreased affinity and activity of W245A. Finally,

Asn43 is a flexible amino acid involved in binding to fucose

(Figure 5) and it is also important in catalysis. The superposed

structures show that Asn43 may be critical in positioning the

incoming water or Ser-Thr residue of the EGF repeat in order for

catalysis to take place. Certainly this suggestion would fit with our

data showing its importance in catalytic activity. Based on the

superposition study we also propose b-phosphate as the catalytic

base due to a possible hydrogen bond with the incoming water/

Ser-Thr of the EGF repeat (see hydrogen bond between sulphate

and water molecule in the apo structure, Figure 5). Thus, the

model would be that the cleavage of the glycosidic bond would

take place first; and an oxocarbenium ion would be formed

leading to a transition state with an ion pair. In this scenario,

Arg240 should maintain the salt bridge and hydrogen bond to b-

phosphate but not to the fucose ring oxygen, in order for the

oxocarbenium ion to be stable (Arg240 would make the

oxocarbenium ion unstable if the interaction was maintaned).

Furthermore, the b-phosphate group would associate closely with

the incipient oxocarbenium ion blocking the upper face and

allowing the backside attack of the incoming acceptor substrate.

This mechanism is also favoured by the concomitant proton

transfer from the acceptor substrate to the phosphate group as

illustrated in Figure 6C. The cleavage of the glycosidic bond

before the attack to the anomeric carbon has been also suggested

for an inverting a-1,3 fucosyltransferase V [47].

In order to support this proposal, we explored the mechanism of

the reaction by using DFT methods at a B3LYP/6-31+G(d,p) level

(see Materials and Methods, and Figure S2 and S3). the

transition structure TS-1 was located after an exploration of the

potential energy surface guessed as a function of the predefined

reaction coordinates based on X-ray data. The analysis of the

geometrical change occurring along the reaction pathway

demonstrates that the phosphate-anomeric carbon bond is broken

leading to the formation of an oxacarbenium ion pair with the

concomitant entry of the water molecule and without the

formation of any intermediate. In the transition structure both

geometrical parameters and frequency analysis confirm the above

proposed mechanism. Analyzing the located transition state it is

possible to see the breaking of the bond between the anomeric

carbon and the b-phosphate. The length of such a bond is 1.40 Å

in the reactants increasing to 3.18 Å at the TS; however the

oxygen phosphate involved in proton transfer remains at 2.63 Å

indicating a stabilizing electrostatic interaction. The attack of the

water molecule is facilitated by the hydrogen bond with the

phosphate group leading to a distance between the water oxygen

and the anomeric center of 2.72 Å at the TS. In this transition

state the proton transfer occurs between the water molecule and

the phosphate group. The role of Arg240 is crucial in order to

stabilize the charge of the incipient free phosphate group thus

promoting its dissociation from the anomeric center.

Concluding Remarks
Despite the biological importance of Protein O-fucosylation as a

post translational modification event in both embryogenesis and

adult homeostasis, there has not been a single study devoted to the
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molecular or catalytic mechanism of the enzymes involved in this

modification event. Furthermore, although POFUT1 and PO-

FUT2 fucosylate a large number of acceptor substrates with

different functions, both enzymes still recognise similar types of

small domains or repeats. Thus, POFUT1 and POFUT2 may

follow a similar folding and catalytic mechanism. In the present

study we have solved the first crystal structure of CePOFUT1, which

serves as a conserved family member.

CePOFUT1 is a catalytically competent non manganese-

dependent enzyme, transfering fucose to MmEGF12. The protein

shows a typical GT-B fold formed by two Rossmann domains. A

cavity for GDP-fucose is localised in the interface between the

domains and a contiguous solvent exposed pocket for EGF repeats

was identified by electrostatic and docking studies. Mutagenesis

studies on several amino acids suggest the importance of Arg240,

Phe261 and Phe357 in binding to the sugar nucleotide, and Asn43

together with Arg240 as important catalytic residues. The absence

of an amino acid as a catalytic base and the presence of a water

molecule interacting with a sulphate in the fucose a-face of the apo

structure, suggest that b-phosphate may represent the catalytic base.

Thus, we propose that Arg240 facilitates the cleavage of the

glycosidic bond with formation of a oxocarbenium ion, prior to a

proton transfer from the incoming acceptor substrate to the leaving

phosphate and consequently attacking of the acceptor substrate to

the anomeric carbon. In this mechanism Asn43 may position the

hydroxyl group of the incoming substrate close to the b-phosphate.

We further support this mechanism by means of theoretical

calculations at a DFT level, which clearly indicated the formation

of an ion pair at the transition state, between the incipient

oxocarbenium ion and the phosphate group, in which the charge

transfer is facilitated by the residue Arg240. The reaction can be

considered to follow a SN1-like mechanism even though the proton

transfer between the water and the phosphate group takes place

with the entry of the nucleophile and the formation of the ion pair,

and without formation of any intermediate.

Furthermore these studies may represent a significant advance for

the design and development of future compounds which may be useful

to treat diseases in which Notch signalling activity is up-regulated.

Materials and Methods

Cloning, expression and purification
The DNA sequence encoding amino acid residues 26–382 of

the Caenorhabditis elegans CePOFUT1 (swissprot: locus OFUT1_

CAEEL; accession Q18014; GeneID: C15C7.7), defined as

cepofut1, was made synthetically and codon optimized by Gen-

Script for expression in Pichia pastoris. The DNA, containing at the

59 end a recognition sequence for XhoI and a KEX2 cleavage

signal and at the 39 end a sequence for SacII, was cloned into the

pUC57 vector (GenScript). Following digestion with XhoI and

SacII the cloned sequence was subcloned into the Pichia pastoris

protein expression and secretion vector pPICZaA (Invitrogen),

resulting in the expression plasmid pPICZaAcepofut1 (T26-A382).

The plasmid pPICZaAcepofut1 (T26-A382), referred to here as

the wild type, was used as a template for introducing the following

single amino acid changes by site-directed mutagenesis: R40A,

N43A, F199A, R240K, R240A, D242A, D244A, W245A, F261A,

D309N, F357A, such that each of the resulting 11 plasmids carried

the indicated mutation. Site-directed mutagenesis was carried out

following the ‘QuikChange’ kit protocol (Stratagene), using the

KOD HotStart DNA polymerase (Novagene). All plasmids were

verified by sequencing (Sistemas Genómicos, Servicio de Secuen-

ciación; www.sistemasgenomicos.com).

All plasmids were isolated from the E. coli strain DH5a,

linearised with SacI and used to transform the Pichia pastoris strain

into X-33 by electroporation. Transformants were selected on

YPD plates (1% (w/v) yeast extract, 2% (w/v) peptone, 2% (w/v)

dextrose) containing 100 mg/ml of zeocin (InvivoGen). Batch

cultures were performed in 100 ml volume of BMGY medium

(1% (w/v) yeast extract, 2% (w/v) peptone, 100 mM potassium

phosphate (pH 6.0), 1.34% (w/v) yeast nitrogen base and 1% (v/v)

glycerol). 50 ml were used to grow 500 ml of BMGY medium

overnight at 30uC and expression was induced by methanol (1%,

v/v) for 72–96 h at room temperature in a shaking incubator (270

rpm). Yeast cells were harvested by centrifugation at 3480 g for

30 min. The supernatants containing soluble CePOFUT1 were

filtered to 0.45 and 0.2 mm, concentrated to 20–50 ml using a

Pellicon XL device (10,000 MWCO, PES membrane; Millipore)

and dialyzed against 25 mM Tris pH 8.5.

The samples were then loaded onto a 165 ml HiTrap Blue

Sepharose (Amersham Biosciences) that had been equilibrated

with 10 column volumes of 25 mM Tris pH 8.5 on an AKTA

purifier system. Following loading, the column was washed with 10

column volumes of 25 mM Tris pH 8.5. The protein was eluted

with a salt gradient (0–1 M NaCl) over 15 column volumes,

collecting 3 ml fractions. The fractions containing the proteins

were then pooled and dialyzed against 25 mM Tris pH 8.5.

The dialysed sample was loaded onto a 165 ml HiTrap Q FF

column (Amersham Biosciences) that had been equilibrated with

10 column volumes of 25 mM Tris pH 8.5 on an AKTA purifier

system. Following loading, the column was washed with 10

column volumes of 25 mM Tris pH 8.5. The protein was eluted

with a salt gradient (0–1 M NaCl) over 15 column volumes,

collecting 3 ml fractions. The fractions containing the proteins

were then pooled and concentrated to 2.5 ml using centrifugal

filter units of 10,000 MWCO (Millipore). Subsequently, gel

filtration was carried out using a Superdex 75 XK26/60 column

in 25 mM Tris, 150 mM NaCl, pH 8.5. The concentrated

CePOFUT1 protein, previously dialysed in 25 mM Tris pH 8.5,

was used for both kinetic analysis and crystallization trials.

Thermal shift ligand binding assays
To monitor the binding of ligands to CePOFUT1, the thermal-

shift assay was performed. The method is based on the observation

that ligands change protein thermal stability upon binding to the

protein. This results in a change of the midpoint temperature for

the thermal protein unfolding transition, Tm.

The protein unfolding process is monitored using the environ-

mentally sensitive dye 1-anilino-8-naphthalene sulfonate (ANS). Its

quantum yield increases upon binding to hydrophobic surfaces

exposed during protein unfolding and so does the fluorescence

signal.

The thermal-shift assay was conducted in the FluoDia T70

(Photal Otsuka Electronics). Solutions of 2 mM CePOFUT1,

100 mM ANS, 20 mM HEPES pH 7.0, and 200 mM NaCl final

concentration and a volume of 100 ml were added to the wells of a

96-well PCR plate. Mineral oil was last added to avoid

evaporation during the experiment. The final concentration of

the ligands were: GDP-fucose/GDP at 1 and 5 mM, MnCl2 at

5 mM, and GDP-fucose with MnCl2 at 5 mM. Mutants were also

evaluated under the same conditions.

Data were analysed with the Origin software. To obtain Tm, a

Boltzmann model from Origin was used to fit the fluorescence

imaging data:

I = (A+B ((B-A)/(1+exp (Tm-T)/C))
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where I is the fluorescence intensity at temperature T, A and B are

pretransitional and posttransitional fluorescence intensities, re-

spectively, and C is a slope factor.

Data points after the fluorescence intensity maximum were excluded

from fitting. In the absence of ligands, Tm = T0, and the ligand-

dependent changes in midpoint temperature, DTm = Tm2T0, could be

calculated for each ligand.

Isothermal titration microcalorimetry (ITC)
ITC was used to evaluate the dissociation constants of

CePOFUT1 and mutants against GDP-fucose and GDP. All

experiments were carried out at 25uC with concentrations of

CePOFUT1 and mutants between 10 and 30 mM, and concen-

trations of GDP-fucose and GDP between 150 mM and 1 mM, in

25 mM Tris, pH 7.5.

The reactions were performed on an AUTO ITC instrument

Microcal Auto-iTC200. Data integration, correction and analysis

were carried out using Origin 7 (Microcal) with a single-site

binding model.

Hydrolysis of GDP-fucose by CePOFUT1
CePOFUT1 activity was assayed by testing its ability to

hydrolyse GDP-fucose. 5 mM CePOFUT1 was incubated with

100 mM GDP-fucose and 0.01 mg/ml NTPDase 3 (R&D Systems)

in 25 mM Tris, 5 mM CaCl2, pH 7.5 to a final volume of 36 ml.

Mixtures were incubated for 3 and 20 hours at 25uC. The reaction

was stopped by heating the samples at 80uC for 10 min. Release of

inorganic phosphate was measured with the Malachite Green

Phosphate Detection kit (R&D Systems) and the absorbance was

read at 620 nm with a microplate reader from Biotek sinergy HT.

100 mM GDP-fucose and 100 mM GDP with 0.01 mg/ml

NTPDase 3 were also assayed as controls. The same protocol

was used to assay CePOFUT1 mutants’ activity.

Mass spectrometry analyses
A folded synthetical MmEGF12 repeat was purchased from JPT

Peptide Technologies GmbH, in order to determine the transfer

activity of CePOFUT1. The MmEGF12 repeat, at ,70% purity,

was incubated with 5 mM CePOFUT1 and 100 mM GDP-fucose in

25 mM Tris, 5 mM CaCl2, pH 7.5, for 20 hours at 25uC. A sample

of MmEGF12 repeat in the same buffer was taken as a control.

The samples were concentrated and desalted by passing them

through ZipTip C18 columns (Millipore) following the manufac-

turer’s instructions and eluting with 70% acetonitrile (ACN), 0.1%

trifluoroacetic acid (TFA) in water.

Sample (0,4 ml) and matrix (0,8 ml saturated solution of alpha-

Cyano-4-hydroxycinnamic acid in 50% ACN, 0.1% TFA in water)

were spotted in duplicate onto a Opti-Tof 384 well insert plate

(Applied Biosystems). MALDI-TOF MS was performed using a

4800plus MALDI-TOFTOF (Applied Biosystems) in the reflector

negative mode with accelerating voltage of 20 kV, mass range of

1000 to 5000 Da, 500 shots/spectrum and laser intensity of 2800.

Spectra were calibrated externally using bovine insulin (+2) m/z

2867,8, bovine insulin (+1) m/z 5734,6.

Crystallization and data collection
CePOFUT1 was spin-concentrated to 30 mg/ml. Three different

crystal forms corresponding to two different space groups (Table 3)

were grown by sitting drop experiments at 18uC through mixing

1 ml of protein with an equal volume of a reservoir solution. Native/

apo crystals, belonging to C2 space group (crystal-form-I), were

obtained in 100 mM BIS-TRIS, 2 M ammonium sulphate, pH 6.0.

The other C2 crystals (crystal-form-II) obtained by cocrystallisation

among the protein and 5 mM GDP were grown from 100 mM

HEPES, 100 mM MgCl2, 20% PEG3350, pH 7.5. To obtain the

second space group, P65 (crystal-form-III), the protein was

cocrystallised as described above, and crystals were produced from

a solution containing 100 mM HEPES, 2% PEG 400, 1.8 M

ammonium sulphate, pH 6.5. The crystals grown in ammonium

sulphate were cryoprotected with saturated lithium sulphate, while

the ones grown in PEG3350 were cryoprotected in the same mother

liquor plus 35% PEG3350, and flash cooled prior to data collection

at 100 K. GDP-fucose complex was generated by soakings of native

and crystal-form-IIs with 10–100 mM GDP-fucose in mother liquor

for 10–20 minutes prior to data collection (crystal-form-II at high

resolution was also soaked with 100 mM MnCl2). The latter crystal

soaked with this high concentration of metal contains a manganese

atom localised in the fucose position and appears to be coordinated

by b-phosphate group oxygen atom of GDP together with two

water molecules (Figure S1). We think that this is probably an

artefact due to the high amount of the metal used and thus does not

have any significant function.

Highly redundant sulphur SAD and a native crystal soaked with

GDP-fucose data were collected in house on a Bruker microsource

with a Kappa goniometer and an Axiom detector, all other data

were collected at beamline BM16 and ID23-1 (ESRF, Grenoble).

All data were processed and scaled using the XDS package [48],

the PROTEUM suite and CCP4 software [49], relevant statistics

are given in Table 3.

Structure determination and refinement
By sulphur single anomalous diffraction (SAD) phasing method-

ology, using highly redundant data from a crystal cocrystallised with

GDP (Table 3) and using the software pipeline Auto-Rickshaw

[50,51], SHELXC/D/E [52] identified 17 sites, yielding initial

phases to resolution 2.6 Å. Iterative phase improvement was

conducted with an isomorphous high resolution data set of crystal-

form-II at 1.54 Å to generate initial maps (to be described

elsewhere), from which a model for the apo structure was built with

ARP/warp [53] (initially building 315 out of 346 residues of the

single protein monomer in the asymmetric unit) and improved

through cycles of manual model building in Coot [54] and

refinement with REFMAC5 [49]. Molecular replacement with this

structure as a search model was used to generate phases and starting

models for the remaining data sets, which were refined as described

above. Topologies for the oligosaccharide ligands were generated

with SKETCHER [49] (part of the CCP4 software). The final

models were validated with PROCHECK [55], model statistics are

given in Table 3. Coordinates and structure factors have been

deposited in the Worldwide Protein Data Bank (wwPDB) under

accesion codes 3ZY2, 3ZY3, 3ZY4, 3ZY5 and 3ZY6.

Rigid Body Docking
The CePOFUT1 crystal structure was used for rigid body docking

together with HsEGF12 structure obtained form the pdb 2VJ3 [56].

The fully automated online docking program ClusPro was used to

dock the structure [41]. The PDB file for the CePOFUT1 crystal

structure was submitted as the receptor structure, whereas the PDB

file of an HsEGF12 was submitted as the ligand structure. The

selected docking program was PIPER, which uses a clustering

radius of 9 Å and provides 1000 low energy structures [41,57–59].

The top 30 structures were returned and only one of them was

selected based on the orientation with GDP-fucose bound to

CePOFUT1. Images were generated using PyMOL.

Theoretical Calculations
All calculations were conducted using the DFT method, using

the B3LYP functional as implemented in Gaussian 09 [60]. The
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basis set used is the standard all-electron split-valence basis set 6–

31+G(d,p). Frequency calculations were conducted to characterize

transition state, reagents and products, as well as to use as a basis

for determining free energy values at 298 K. Geometry

optimizations and vibrational analyses were performed without

any coinstraint. On the basis of the existing structural data and to

reduce computational cost, a model maintaining the fundamental

characters of the real reaction system has been chosen. We used

the simplest model with one phosphate unit, which is involved in

proton transfer and nucleophilic attack and the presence of the

fundamental residue Arg240, modelled as a guanidine unit

involved in hydrogen bonding with the phosphate unit. The

calculated reaction coordinates are illustrated in Figure S2 and

the located transition structure TS-1 in Figure S3.

As discussed in the manuscript, the calculated reaction pathway

and the located transition structure confirm the hypothesis

outlined from X-ray data. The crucial Arg240 promotes the

initial bond breaking between the phosphate group and the

anomeric center by forming an incipient oxacarbenium ion, which

is stabilized in the form of a ion-pair formed through pivotal of the

phosphate unit to approximate the second oxygen atom involved

in proton transfer with the nucleophile. Such a situation is favored

by the presence of Arg240 which stabilizes the negative charge

formed at the oxygen atom previously linked to the anomeric

carbon, in addition to a hydrogen bond with the hydroxyl group at

C-2 of the fucose unit. Simultaneously, Arg240 goes far from the

endocyclic fucose oxygen atom to allow the charge displacement

responsible of the formation of an electrophilic anomeric center

and, at the same time, the nucleophile approximates such

anomeric carbon bringing out the proton transfer to the phosphate

group. This situation is captured in the located transition structure

TS-1 thus supporting the initial hypothesis concerning the

formation of an intimate ion pair in the transition state as well

as the only need of the intrinsic phosphate group to promote the

reaction.

Supporting Information

Figure S1 Stereo view of the active site of the high
resolution dataset of CePOFUT1 in complex with GDP.
The amino acids placed in the active site are shown as sticks with

grey carbons. The density suggests the presence of GDP, GDP-

fucose and a manganese atom. Due to a partial density for fucose

(see black arrows), we decided to include two molecules of GDP.

GDP are represented as stick models with green carbon atoms.

Manganese is shown as brown sphere and appears to be

coordinated by b-phosphate group oxygen atom and two water

molecules. Protein-ligand and water-ligand hydrogen bonds are

shown as dotted black lines. Only water molecules localised in the

fucose binding site are shown for clarity purposes. Water

molecules are shown as cyan spheres. Unbiased (i.e. before

inclusion of any ligand model) |Fo |- |Fc |, fcalc electron density

map is shown at 2.5 s.

(TIF)

Figure S2 Calculated Reaction Coordinate.
(TIF)

Figure S3 Optimized transition structure at a B3LYP/6-
31+G** level.
(TIF)
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