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Abstract: Recent epidemic activity and its introduction into the Western Hemisphere have 

drawn attention to West Nile virus (WNV) as an international public health problem.  

Of particular concern has been the ability for the virus to cause outbreaks of disease in 

highly populated urban centers. Incrimination of Australian mosquito species is an 

essential component in determining the receptivity of Australia to the introduction and/or 

establishment of an exotic strain of WNV and can guide potential management strategies. 

Based on vector competence experiments and ecological studies, we suggest candidate 

Australian mosquito species that would most likely be involved in urban transmission of 

WNV, along with consideration of the endemic WNV subtype, Kunjin. We then examine 

the interaction of entomological factors with virological and vertebrate host factors, as well 

as likely mode of introduction, which may influence the potential for exotic WNV to 

become established and be maintained in urban transmission cycles in Australia. 
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1. Introduction 

The dramatic appearance and spread of West Nile virus (WNV; family Flaviviridae; genus 

Flavivirus) in Northern America is a disquieting reminder of the capacity of arboviruses to establish 

and cause devastating public health and veterinary impacts in locations with serologically naïve 

populations [1]. Despite its presence in the United States for over 13 years, widespread outbreaks of 

WNV can still occur, as evidenced by epidemic activity in 2012 that resulted in 2,873 cases of 

neuroinvasive disease and 286 deaths [2]. Consequently, there has been much concern regarding the 

potential introduction and establishment of exotic strains of WNV in Australia, and the subsequent 

impacts upon human and animal health [3]. The establishment of arboviruses in new areas is certainly 

possible if efficient vectors, suitable vertebrate amplifying hosts and a suitable overwintering 

mechanism are available [4]. A range of other factors could influence potential WNV transmission in 

Australia, including the mode of introduction, the potential role of native fauna in transmission, 

suitability of the Australian climate for virus transmission, and virological factors, such as the 

attributes of the strain/genotype introduced and the presence of closely-related endemic arboviruses. 

Herein, we examine the interaction of factors that could influence the potential introduction and 

establishment of an exotic strain of WNV in Australia and discuss this possibility in the context of the 

circulation of the endemic Australian WNV Kunjin strain (WNVKUN). We suggest the most likely 

candidate species for urban transmission and present factors that would influence their roles in 

transmission. We conclude that given the presence of potential mosquito vectors, urban Australia 

could be at risk of the importation and establishment of a more pathogenic strain of WNV.  

2. The Threat of Exotic WNV to Urban Australia 

Based on its antigenic properties, WNV is regarded as a member of the Japanese encephalitis virus 

serological group, which also includes Australasian members Murray Valley encephalitis (MVEV) and 

Japanese encephalitis viruses (JEV) [5]. There is some question regarding whether an exotic strain of 

WNV could establish in Australia in the presence of WNVKUN [3] particularly since WNVKUN is 

almost identical, both genetically and antigenically, to exotic strains of WNV including the New York 

1999 strain (WNVNY-99) [6–10]. Attenuated WNVKUN can protect against WNVNY-99 in mice [10] and 

crows [11], and it has been suggested that the presence of the endemic virus may make it more 

difficult for exotic WNV to spread rapidly and become established in Australia compared with what 

has occurred in North America [3]. However, as described by Russell and Kay [12], a viremic host or, 

perhaps more likely, an infected mosquito would most likely enter Australia via the eastern seaboard, 

where, until recently, WNVKUN has seldom been active [13] and where little protective immunity 

would naturally exist in the vertebrate fauna or humans. Indeed, the apparent rarity of detectable 

flavivirus infection in urban mosquito populations in eastern Australia suggests that endemic urban 

flaviviruses would have minimal influence on potential exotic WNV transmission [14]. However,  

in 2011, a highly pathogenic strain of WNVKUN caused an outbreak of acute encephalitis in  

horses [15,16]. Whilst centered west of the Great Dividing Range, cases were reported in coastal areas 

of New South Wales, suggesting that the virus can occasionally circulate near areas where an exotic 

strain of WNV may be introduced. 



Int. J. Environ. Res. Public Health 2013, 10 3737 

 

Despite WNVKUN being classified as a subtype of WNV, key epidemiological differences between 

the viruses warrant further consideration of potential transmission cycles of exotic WNV strains. Most 

importantly, infection with WNVKUN rarely causes disease in humans. On such rare occasions it can 

cause encephalitis, but is more often associated with a febrile illness that may or may not be 

accompanied by rash, malaise, headache, photophobia, arthralgia, myalgia and lymphadenopathy [17–20]. 

Beasley et al. [21] demonstrated that a New York strain of WNV was significantly more neuroinvasive 

than wild-type WNVKUN: 1,000–10,000 fold more infectious virus is needed to produce disease in 

adult mice by peripheral inoculation. Furthermore, Brault et al. [11] demonstrated that no illness or 

death occurred in WNVKUN-inoculated American crows compared with 100% mortality observed in 

those inoculated with the WNVNY-99 strain. Like the North American strain of WNV, WNVKUN has 

been responsible for neurological disease in horses, although reports of severe disease in horses were  

rare [22] until the recent outbreak of acute encephalitis in horses in southeastern Australia [15,16]. 

WNVKUN has been isolated from all mainland states of Australia with the majority of isolates 

obtained from the tropical regions of northern Western Australia, the Northern Territory, and northern 

Queensland, where the virus appears endemic [23,24]. WNVKUN activity has been less frequently 

detected in the temperate regions of central and southern Australia [25]. Rather, WNVKUN activity in 

the southeast is considered a result of the introduction from endemic northern areas, principally by 

migrating water birds that follow the flooding of major watercourses in the southern regions or 

existence in otherwise unknown cryptic foci [23,26]. Elsewhere across the globe WNV commonly 

circulates in urban regions. Importantly, the epidemics in southern Romania, the Volga delta in 

southern Russia, the northeastern USA between 1996 and 1999, and southern USA in 2012 occurred in 

large urban populations [1,27,28], highlighting that urban environments are at risk of potential exotic 

WNV introduction. In contrast, WNVKUN is rarely associated with urban virus activity.  

Another key epidemiological difference between exotic WNV and WNVKUN concerns vertebrate 

reservoir hosts. Many species of birds, particularly water birds belonging to the order Ciconiiformes, 

are implicated in the natural transmission cycles of WNVKUN, as demonstrated by field isolations and 

serological surveys [29,30]. Of these, laboratory studies have shown that herons and egrets may 

develop particularly high viremia [23,31]. Interestingly, while ardeid wading birds are important in 

WNVKUN transmission in Australia [29,30], it seems that they are not for WNV transmission in the 

USA [32]. Conversely, American Crows (Corvus brachyrhynchos), which are considered important 

amplifying hosts of WNV in the USA, produce significantly lower viremia levels when infected with 

WNVKUN than when infected with the WNVNY-99 strain [11]. Furthermore, unlike the strains of WNV 

recently circulating in the USA and Israel, there is no evidence that WNVKUN is associated with 

disease in birds [13]. 

3. Potential Australian Vectors of West Nile Virus 

A vector is considered ―competent‖ if it permits infection, replication and transmission of a 

virus [33]. But, this statement does not alone indicate whether a particular species may play a role in 

enzootic transmission of a virus. Additional vector characteristics influence the potential role of a 

mosquito species in arbovirus transmission, including host feeding behavior, longevity, population 

densities and transmission dynamics [34]. WNV is transmitted between susceptible vertebrate hosts by 
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mosquitoes and those belonging to the genus Culex are considered the primary vectors throughout its 

geographical range. In Africa, Cx. univittatus is considered to be the most important vector of 

WNV [35] and in Europe the principal vectors include Cx. pipiens, Cx. modestus and Coquillettidia 

richiardii [36]. Major Asian vectors are Cx. quinquefasciatus, Cx. tritaeniorhynchus, and  

Cx. vishnui [36]. The primary vectors of WNV in the USA belong to the Cx. pipiens complex [37–39].  

Cx. pipiens and Cx. restuans are considered major vectors in the northeastern and north central  

USA [40], while Cx. tarsalis is particularly important in the great plains and western USA [41]. 

Finally, Cx. nigripalpus and Cx. quinquefasciatus are important in southeastern USA [42–44]. 

However, with the exception of Cx. quinquefasciatus, these mosquito species do not occur in 

Australia. Nevertheless, several Australian mosquito species are potential urban vectors of exotic 

virulent strains of WNV, based on their ability to transmit endemic flaviviruses including WNVKUN, 

host feeding behavior, urban distribution and seasonal abundance. Recent studies, involving vector 

competence experiments with the WNVNY-99 strain and analysis of host feeding patterns, have 

provided further evidence to incriminate candidate Australian vectors [45–47]. 

WNVKUN was first isolated in 1960 from Cx. annulirostris at Kowanyama (previously Mitchell 

River Mission) in northern Queensland [48] and, since then, this species has yielded the majority of 

isolates [24,49,50]. It is also an efficient laboratory vector, although there is considerable intraspecific 

variation in transmission efficiency between populations [46,51]. WNVKUN has occasionally been 

isolated from other Australian species including Aedes tremulus, Cx. australicus, Cx. squamosus,  

Ae. alternans, Ae. normanensis, Ae. vigilax, Anopheles amictus and Cx. quinquefasciatus, but the role 

of most of these species is likely to be secondary to Cx. annulirostris [24,49,50,52]. 

Given its accepted status as the primary vector of WNVKUN, it is not surprising that Cx. annulirostris 

would most likely be the primary potential vector of exotic WNV strains in Australia. This species is 

widely distributed on mainland Australia and has the capacity to reach high population densities under 

optimal weather conditions. Cx. annulirostris has been implicated as a major vector in urban arbovirus 

outbreaks [53] and is also considered to be the major vector of MVEVand JEV, which are related to 

WNV within the JEV serocomplex [5]. Recently, populations of Cx. annulirostris from eastern 

Australia were shown to be the most competent laboratory vectors of exotic WNVNY-99 from nineteen 

species tested, displaying transmission rates between 48% and 84% [46]. Cx. annulirostris is 

opportunistic in terms of its host feeding patterns, readily feeding on mammals and birds [45,47,54]. 

The percentage of mosquitoes feeding on human or birds can each exceed 20% in urban areas of 

Australia indicating that Cx. annulirostris could be involved not only in enzootic WNV transmission 

between birds, but also in bridge transmission to mammals, including humans. 

Many WNV vectors identified abroad belong to the Cx. pipiens group of mosquitoes. Although 

Australia has four members of the Cx. pipiens group, including Cx. quinquefasciatus, Cx. australicus, 

Cx. globocoxitus and Cx. molestus [55], only Cx. quinquefasciatus has been assessed for its ability to 

become infected with and transmit WNVNY-99 [46]. Commensurate with its role overseas,  

Cx. quinquefasciatus was a competent vector, with at least half of the mosquitoes tested from Sydney 

and Brisbane expectorating virus in saliva. Although some studies have demonstrated that it does feed 

on humans and other mammals, Cx. quinquefasciatus is highly ornithophilic in urban areas of  

Australia [45,56–58] and species-specific identification of avian bloodmeals showed that 96% of avian 

bloodmeals identified from this species from the northern Queensland city of Cairns originated from 
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passeriform birds [45], the primary reservoir hosts of WNV in North America [59–61]. For these 

reasons, Cx. quinquefasciatus has great potential not only as a primary enzootic vector facilitating 

virus transmission between passerine birds, but also, to a lesser extent, as a bridge vector to humans. 

Like Cx. quinquefasciatus, Cx. australicus is an avian feeder [56] and has yielded isolates of both 

WNVKUN [62] and MVEV [63]. Other Australian members of the Cx. pipiens group, including  

Cx. molestus, should also be considered potential WNV vectors in their respective geographical 

distributions. 

A recently introduced species into Australia [64,65], Cx. gelidus, is also a highly efficient 

laboratory vector of WNVNY-99 [46], as it is for a range of JEV serological group viruses, including 

WNVKUN and JEV [66]. Whilst there is potential for this species to spread [67], Cx. gelidus does not 

currently share the wide geographical distribution of Cx. annulirostris or Cx. quinquefasciatus, being 

restricted mostly to focal regions in northern Australia and usually at low densities. Further, Cx. gelidus is 

largely mammalophilic [54,68] which may reduce its potential role in urban enzootic transmission of 

WNV. Nonetheless, the establishment of Cx. gelidus in Australia clearly demonstrates the potential 

impact of exotic mosquito species on the transmission cycles of both exotic and endemic arboviruses. 

A number of other Culex spp. could play a regional or supplemental role in virus transmission of an 

exogenous WNV strain. For example, despite being a relatively poor laboratory vector of WNV NY-99 

(transmission rates < 10%; [46]), Cx. sitiens readily feeds on birds [45], is widely distributed in coastal 

areas and can reach high population densities during favorable conditions [69]. Similarly, Cx. squamosus 

may be important for potential WNV transmission in urban centers of northern Queensland where it is 

abundant, has yielded isolates of WNVKUN [70], and is reported to feed extensively on birds [57], 

supported by its abundance in the tree canopy [71]. 

As mentioned previously, WNV transmission is reliant upon the involvement of Culex 

mosquitoes [72,73]. Indeed, when compared with Culex species, Australian mosquitoes belonging to 

other genera are less competent for WNVNY-99 [46] and some species, including An. farauti sensu lato, 

appear relatively refractory to infection. Whilst flavivirus isolates are obtained from various species of 

Aedes in Australia, there is scant evidence for the involvement of these species in endemic flavivirus 

transmission [24]. Further, as most Aedes spp. are primarily mammalian feeders and typically do not 

feed readily on birds [45,47], Aedes mosquitoes are less likely than Culex spp. to maintain endemic 

WNV transmission in Australia. However, these species may be involved in transmission as bridge 

vectors, transmitting the virus to mammals from avian hosts, much in the same way that Ae. albopictus 

and Ae. japonicus do in the USA [73]. Indeed, two common Australian urban species, Ae. notoscriptus 

and Ae. vigilax, may fulfill the role of bridge vector for WNV, similar in the way they have been 

implicated in the transmission of JEV [54]. Additionally, species belonging to the genera Aedes or 

Verrallina with desiccation resistant eggs may be involved in virus overwintering, as they likely are 

for other endemic arboviruses, including the flavivirus, MVEV [74,75]. Importantly, throughout its 

distribution, transmission cycles of WNV are both highly variable between geographical locations and 

are ecologically broad, encompassing a variety of vector and host species, so the potential role of other 

species cannot be discounted. 
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4. Other Factors Influencing Vector Roles in WNV Transmission 

We state that Australia possesses a number of mosquito species that could facilitate the 

establishment and maintenance of an exotic strain of WNV. Nonetheless, a number of other factors 

would contribute to the complexity of urban WNV transmission cycles. The impact of seasonal shifts 

in mosquito feeding behavior can greatly influence WNV transmission. For instance, in North 

America, populations of Cx. pipiens in the mid-Atlantic states exhibit a shift in feeding patterns from 

feeding predominantly on birds in early summer, to feeding moreso on humans in autumn, coinciding 

with the dispersal of its preferred avian host and potentially driving the observed patterns of human 

epidemics of WNV [76]. Unfortunately, longitudinal studies of mosquito feeding patterns in Australia 

are limited. Kay et al. [57] did not observe any seasonal patterns in host feeding behavior of  

Cx. annulirostris and Cx. quinquefasciatus in a remote community in northern Australia, but seasonal 

variation in feeding behavior has been described for Cx. annulirostris in restricted foci on the south 

coast of New South Wales [77], and may be observed in other populations and species if examined. 

The implications of variability in host feeding patterns between mosquito populations can have 

huge implications for WNV transmission dynamics. Kramer et al. [1] postulates that the absence of 

human cases in Northern Europe, when compared with southern Europe, may be explained by 

differences in the feeding behavior of the dominant vector, Cx. pipiens. In this region, Cx. pipiens form 

molestus feeds predominantly on humans, whilst form pipiens feeds on birds. Unlike in southern 

Europe or in the United states, these two forms do not hybridize, so the difference in feeding behavior 

is distinct [38]. This phenomenon has important implications for Australia, as the taxonomy of the 

Australian Cx. pipiens group is unclear [55,78–80], and the associated behavioral differences between 

morphologically similar populations have not been fully examined. As the most widespread Australian 

member of this group, Cx. quinquefasciatus, is implicated as a major potential vector of WNV, 

resolution of the taxonomic status of Australian members of this group may greatly enhance the 

understanding of flavivirus ecology in the Australasian region. 

Recently, the identification of distinct genetic lineages and, in some cases cryptic species, within 

Cx. annulirostris has provided some context for the reconsideration of both morphological and 

epidemiological uncertainties [81–83]. Indeed, further examination of population genetic structure may 

explain differences in vector competence observed between populations of Cx. annulirostris for both 

WNVKUN [51] and WNV NY-99 [46]. Geographic variation in the vector competence for WNV between 

populations of the same mosquito species is well documented in North America [59,84–86]. However, 

behavioral differences between morphologically similar Australian vector populations have not been 

fully examined and are a major impediment for detailed understanding of arbovirus transmission 

cycles, especially if considering the potential transmission of an ecological generalist like WNV. 

5. Vertebrate Reservoir Hosts 

When incriminating mosquito species, it is also necessary to identify potential reservoir hosts which 

serve as a source of infection for these vectors [87,88]. A blood meal with viral titre of approximately 

5 log10 plaque forming units (PFU)/mL is generally considered sufficient for mosquito  

infection [59,89,90]. In addition to physiologically supporting virus amplification, an effective 
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reservoir for WNV must be relatively abundant in comparison with other avian species, have frequent 

exposure to infection via mosquitoes, and be biologically capable of infecting vector species [91].  

In the USA a number of bird species, particularly those belonging to the order Passeriformes, are 

highly competent reservoir hosts of WNV [32,60] and, combined with high urban abundance and 

peridomestic distribution, are considered important for WNV ecology. 

Australia possesses a rich bird diversity, which is approximately comparable in terms of species 

diversity to North America [92]. As WNV is considered an ecological generalist in terms of reservoir 

hosts, it is probable that at least some Australian bird species may fulfil the criteria required for an 

effective reservoir host. Only one species, the Little Raven (Corvus mellori) has been examined for its 

ability to become infected with a North American strain of WNV. After inoculation with WNV NY-99, 

C. mellori developed an average viremia of around 4–5 log10 PFU/mL, with a maximum viremia of  

7 log10 PFU/mL in one individual [93]. Whist this viremia is only moderate if compared with that of 

the American crow (mean viremia up to 10.2 log10 PFU/mL) [60], it may be sufficient to infect at least 

some recipient mosquito vectors [60,90,94,95]. 

Clearly, there is a need to further examine the potential of other Australian bird species to amplify 

WNV and their degree of exposure to mosquito bites. The bird species identified from urban mosquito 

bloodmeal analysis [45] may suggest which bird species should be considered with priority. Other 

potentially important avian species that warrant examination include ardeid wading birds which are 

considered amplifying hosts of both WNVKUN and other Australian flaviviruses [29–31]. 

There is increasing evidence that mammals and reptiles may serve as competent amplifying hosts of 

WNV and studies have shown that a number of small mammals are capable of developing viremias 

sufficient to infect mosquitoes [96–99]. Platt et al. [97] suggests that some of these peridomestic 

species, especially squirrels, may be important in WNV transmission in the urban environment in 

North America. Aside from birds, few vertebrate species have been implicated in JEV serological 

group flavivirus transmission in Australia. In addition to ardeid wading birds, pigs are primary 

amplifying hosts of JEV in northern Australia [100] and black flying foxes (Pteropus alecto) can 

develop a viremia sufficient to infect recipient mosquitoes [101]. If WNV were to be introduced into 

urban Australia it would be pertinent to consider the potential role of small peridomestic mammals 

such as flying foxes (Pteropus spp.) and marsupial possums (Trichosurus vulpecula; Pseudocheirus 

peregrinus) as these mammals are potential reservoirs of a number of Australian arboviruses and can 

be abundant in urban environments [50]. 

6. Environmental Considerations 

For a virus to persist in a novel environment, it must exploit a suitable overwintering mechanism. 

WNV probably uses a variety of overwintering mechanisms in North America including persistent 

infection in mosquitoes or birds, continual low level transmission and dispersal by migratory  

birds [102] and, for this reason, WNV seems to be somewhat adaptive to local conditions. 

Accordingly, it is likely that WNV could use a range of overwintering mechanisms in various regions 

in Australia, depending on climate and local conditions. 

Climate can affect entomological factors that impact arbovirus transmission, including host seeking 

behavior, the length of the extrinsic incubation period, vector activity, and the longevity of individual 
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vectors [103,104]. The importance of temperature in the epidemiology of WNV is apparent when 

considering major outbreak epicenters in temperate USA, where higher than normal temperatures were 

always associated with virus invasion and major amplification [102]. Conversely, in warmer southern 

areas, average summer temperatures were adequate to initiate and maintain WNV amplification. It is 

possible that climatic variability across the Australian continent would likewise present divergent 

amplification scenarios. 

Likewise, anthropogenic influences or modifications to the environment can alter the risk of 

arbovirus transmission, particularly in urban areas. Most recently, changes in water storage behavior in 

response to drought has attracted much concern due to the potential creation of urban habitats for some 

container-inhabiting species [105,106]. Further, the development of natural coastal wetland 

rehabilitation areas provides an excellent environment for both water birds and mosquito species like 

Cx. annulirostris and Cx. sitiens [107], potentially creating a niche for arboviruses like WNV that are 

maintained in a mosquito-bird transmission cycle. 

7. Vector-Virus Interactions 

The potential establishment of WNV in Australia may be driven by the strain of virus introduced. 

Indeed, the recent emergence of a new dominant WNV genotype (WNV02) in the USA has highlighted 

phenotypic differences between different WNV strains [108,109]. For instance, comparison between 

the WNV02 and WNVNY-99 strains has revealed differences in the transmission efficiency in 

mosquitoes [108,110], but some subsequent studies have not observed similar differences in 

transmission rates using the same virus strains [111]. Likewise, further phenotypic differences are 

evident if more divergent strains, including WNVKUN are considered [11,13,15,21]. 

8. Potential Introduction of Exotic WNV 

Exotic viruses may enter Australia through a range of modalities, including migratory birds,  

wind-blown insects and air transport of infected humans, animals and insects [3,112]. Indeed, it was 

proposed that wind-blown mosquitoes may have been responsible for the introduction of JEV from the 

New Guinea landmass into the Torres Strait and Cape York Peninsula [113]. However, introduction of 

wind-blown WNV-infected insects into Australia would probably be unlikely, because strains of WNV 

(other than WNVKUN) are not recognized in the Australasian region. Similarly, the introduction of 

WNV via a migratory bird is probably unlikely, due to both the route and duration of migration 

required [3]. 

Thus the most likely route of introduction of an exotic strain of WNV into Australia would 

probably be via transport in an aircraft. Of these, an infected mosquito may be the most likely  

threat [114]. Using a risk assessment methodology, Hernandex-Jover et al. [115] confirmed that 

infected mosquitoes arriving via aircraft arriving in Sydney represented a risk of entry into Australia, 

albeit considered low to moderate. Further, this study indicated that the proportion of aircraft 

containing infected mosquitoes and the number of mosquitoes present have a significant influence on 

the probability of exotic WNV entry into Australia. During a study of 307 planes arriving in Australia 

between 1971 and 1979, Russell et al. [116] determined that an average of 2.2 live mosquitoes arrived 
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on each incoming aircraft. To best manage this threat, inflight aircraft disinsection and residual 

insecticidal treatments are employed [117,118]. 

As a number of mammals can develop viremia sufficient to infect mosquitoes [97–99], it is 

plausible that a viremic mammal, possibly a human, may be capable of importing WNV into a naïve 

environment. WNV is recognized as a ―disease of quarantine concern‖ to Australia and the importation 

of animals is subject to strict quarantine requirements, including a period of post entry quarantine and 

mandatory vaccination of horses [119]. However, a viremic human or illegally imported animal may 

pass undetected/unregulated. Importation of human WNV infection has been documented [120], but it 

is unlikely that humans would develop a viremia sufficiently high to infect mosquitoes as humans 

typically develop only a transient viremia of low magnitude [121]. Nothwithstanding,  

non-arthropod-borne transmission has been documented in cases of organ transplantation, blood 

transfusion, intrauterine transmission and probable transmission via breast milk [122,123]. 

Accordingly, WNV is recognised as a potential threat to the Australian blood supply [124], and given 

the absence of an approved blood screening assay for WNV in Australia, donors are excluded from 

donating fresh blood components for four weeks after leaving an endemic country (including the USA 

and Canada), however plasma collection for fractionation can continue during this time [125]. 

As mentioned previously, exotic WNV would most likely enter Australia via the eastern  

seaboard [12] where, considering the rural distribution of WNVKUN [13], little protective immunity 

from previous infection with WNVKUN would be expected amongst the resident populations of 

potential vertebrate reservoirs [12]. Indeed, the lack of detection of any flavivirus in mosquitoes in 

some recent studies from urban areas of eastern Australia [14] supports the notion that previous 

exposure to endemic urban flaviviruses would have little impact upon the establishment of novel 

flaviviruses that may be introduced into these regions. Nevertheless, other endemic flaviviruses 

including Edge Hill and Stratford viruses have been isolated from mosquitoes collected in coastal areas 

of New South Wales, including some urban locations in the greater Sydney region [126]. 

9. Conclusions 

Herein, we evaluated entomological factors that could influence the establishment of an exotic 

strain of WNV in Australia, and suggest endemic mosquito species that would most likely play a role 

in potential transmission cycles, particularly in urban environments. Of the common Australian 

mosquito species examined, Cx. annulirostris, Cx. quinquefasciatus and Cx. gelidus appear to be the 

most competent vectors and, of these, Cx. annulirostris also has the capacity to act as a major vector, 

able to facilitate both enzootic transmission and epizootic transmission from reservoir hosts to 

mammals. Consideration of ornithophilic feeding behavior incriminates Cx. quinquefasciatus as likely 

to be involved in enzootic transmission of WNV. Conversely, Aedes or Verrallina spp., due to 

observed opportunistic or mammalophilic feeding, are more likely to act only as bridge vectors that 

transmit the virus from birds to mammals. 

From an entomological perspective, urban centers of eastern Australia could support the 

transmission of an exotic strain of WNV. The widespread abundance of competent vector species, in 

addition to evidence of host feeding on passerine bird species, suggests that the major prerequisites for 

transmission may be readily available. Further, the apparent rarity of flaviviruses in urban populations 
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of mosquitoes suggests that endemic flaviviruses would have little impact on potential transmission 

cycles of an exotic WNV strain in urban centers. Obviously, there is a need to identify competent 

avian hosts in these environments, but the variety of bird species available, coupled with the 

knowledge that WNV can replicate in a wide variety of avian species, implies that suitable vertebrate 

hosts are most likely available. As has been observed in North America, it is probable that WNV 

transmission cycles would vary, depending on the unique environmental, climatic and ecological 

conditions present in different geographical locations, but hypothetical transmission in urban Australia 

is certainly plausible. 
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