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Abstract

Atopic dermatitis (AD) is the most common chronic skin inflammatory disease, with a profound 

impact on patients’ quality of life. AD varies considerably in clinical course, age of onset 

and degree to which it is accompanied by allergic and non-allergic comorbidities. Skin barrier 

impairment in both lesional and nonlesional skin is now recognized as a critical and often early 

feature of AD. This may be explained by a number of abnormalities identified within both the 

stratum corneum and stratum granulosum layers of the epidermis. The goal of this review is 

to provide an overview of key barrier defects in AD, starting with a historical perspective. We 

will also highlight some of the commonly used methods to characterize and quantify skin barrier 

function. There is ample opportunity for further investigative work which we call out throughout 

this review. These include: quantifying the relative impact of individual epidermal abnormalities 

and putting this in a more holistic view with physiological measures of barrier function, as well 

as determining whether these barrier-specific endotypes predict clinical phenotypes (e.g. age of 

onset, natural history, comorbidities, response to therapies, etc). Mechanistic studies with new 

(and in development) AD therapies that specifically target immune pathways, Staphylococcus 
aureus abundance and/or skin barrier will help us understand the dynamic crosstalk between these 

compartments and their relative importance in AD.
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Introduction

Epidermal barrier dysfunction is increasingly recognized as a key determinant of Atopic 

Dermatitis (AD, also referred as eczema) pathogenesis. Since the earliest reports of this 

disease, physicians have noted features that would suggest that the skin barrier was 

impaired; such as xerotic skin, the need for and benefit from emollients and the reduced 
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skin irritancy threshold. Starting in the late 1970s, with the development of methodology 

to quantify skin barrier features, evidence has accumulated that AD subjects have skin 

barrier abnormalities. However, the underlying mechanisms for these abnormalities remain 

only partially understood. Many studies have implicated cutaneous inflammation as a major 

contributor to epidermal barrier dysfunction. Unfortunately, modeling the dynamic and 

highly complex human epidermal differentiation process ex-vivo or in-vitro is still not ideal.

This review will provide an overview of the skin barrier defects in AD, starting from a 

historical perspective and covering what is known about the AD clinical phenotype(s) and 

endotypes associated with barrier impairment. A number of noninvasive clinical devices or 

techniques are available to measure different biophysical properties such as Trans Epidermal 

Water Loss (TEWL), capacitance (or skin hydration), skin pH. We will discuss several 

studies that use these measures to quantify AD skin barrier dysfunction. We will highlight 

research opportunities that would help define the contribution of skin barrier defects to 

AD pathogenesis and clinical phenotypes of AD. The new generation of more targeted and 

highly effective AD therapies provides an unprecedented research opportunity to evaluate 

the mechanisms responsible for AD skin barrier defects.

Historical perspective on AD skin barrier defects

Reports of AD like features (i.e. itchy, exudative, eczematous dermatitis) date back over 

2000 years, with possibly the first report by the Roman historian, Suetonius (69–140 

A.D.). Since then, numerous descriptions of skin lesions akin to AD can be traced over 

the centuries and among various races and ethnicities.1 Besnier coined the term “prurigo 

diasthésique” in 1892, as a clinically distinct entity to be differentiated from other allergic 

(asthma and hay-fever) and skin conditions (urticaria and ichthyosis).2,3 However, it was not 

until the early 1900s that the term “atopic dermatitis” was more commonly used.

In early 1900s, studies were undertaken to determine whether there was a relationship 

between food allergy (FA) or asthma and sensitization to food proteins. Blackfan observed 

that asthma patients who were food sensitized often had a history of eczema during 

infancy. This observation led him to evaluate the relationship between eczema and food 

sensitization.4 Key observations from his studies were that young patients with significant 

eczema were much more likely to have positive reactions to multiple foods, and that 

eliminating these from the diet improved the eczema.4 Subsequently, a number of other 

studies also demonstrated a high frequency of positive reaction to various food proteins in 

patients with eczema.5,6 One study made a puzzling observation, namely, that 42 of the 46 

infants with a positive skin reaction to egg white had never eaten egg.6 This observation has 

now been confirmed for other common food allergens and suggest that sensitization may 

occur through “leaky” and inflamed AD skin and not through the gastro-intestinal tract as 

was originally assumed.7–10

Rasch referred to AD as Besnier’s prurigo in 1914,2,3 and made the observation 

that even the non-eczematous skin was xerotic. Histologic analysis of AD lesions 

documented changes in both the epidermis (acanthosis) and dermis (inflammatory infiltrates 

Yoshida et al. Page 2

Allergol Int. Author manuscript; available in PMC 2022 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



characterized by mononuclear cells and eosinophils) which were also observed in 

nonlesional (NL) skin.11–15

It was not until 1978, when TEWL measurements were first performed on both lesional 

(L) and NL skin of AD patients that the scientific community began to accept that AD 

patients had a skin barrier defect and that this observed throughout the skin integument.16 

This accelerated interest in skin barrier research and lead to seminal observations such as 

NL TEWL values correlating with AD severity.11,17 Investigators also evaluated the changes 

observed in TEWL values in response to graded mechanical disruption of the stratum 

corneum (SC); originally using sandpaper18 and later using a tape stripping approach.19,20 

This skin barrier assessment, is now referred to as SC integrity assay (Fig. 1).19,20 Based 

on these findings and others, ultrastructural and biochemical characterizations of the SC in 

AD patients became a focus for many laboratories worldwide. These studies revealed three 

features that may explain these barrier observations in AD patients: 1) increased number 

of intact lamellar bodies (LBs) in the uppermost cells of the stratum granulosum (SG), 2) 

reduced LBs fusing to the apical cell membrane, suggesting that the exocytosis of LBs is 

disturbed,21,22 and 3) alterations in the SC lipid composition (e.g. reduced ceramide 1) and 

ultrastructural conformation (Fig. 2).23–25

The debate on which epidermal structures were responsible for skin barrier function 

continued with observations that paracellular diffusion of tracers (such as ions, molecules 

or dextrans) across the epidermis was occluded at the level of the SG or at the interface 

between the SG and SC.26–29 In 1971, Hashimoto used lanthanum to identify the 

ultrastructural site where the tracer stopped and he found it did not move beyond the SG 

layer.26 It is now recognized that this is where tight junctions (TJ) form, and where LB 

contents are deposited.27 TJ mediate cell–cell adhesion and in so doing provide a barrier 

to water, solute and macromolecular diffusion and also establish a polarity to the skin 

epithelium. In 2002, Furuse et al. developed a mouse deficient in claudin-1 (CLDN1), the 

most highly expressed epidermal TJ transmembrane protein (Cldn1−/− mouse).30 Cldn1−/− 

mice died within 1 day of birth, which was due to excessive water loss through the 

skin. These mice had a profound skin barrier abnormality as demonstrated by markedly 

increased TEWL and permeability to biotin (MW = ~600 Da). This observation solidified 

the importance of TJ function and CLDN1 in a healthy skin barrier. Subsequent Cldn1−/− 

mouse studies demonstrated that this TJ defect lead to SC barrier defects.31 If TJ were 

a critical structure preventing insensible water loss through the skin, there had to be a 

mechanism to explain how this function was maintained during the orderly process of 

epidermal maturation. To address this conundrum, Yokouchi et al. proposed a flattened 

Kelvin’s tetrakaidecahedron (f-TKD) model, by which TJ-bearing SG keratinocytes could 

maintain skin barrier homeostasis in healthy skin.32 A key feature of this model is that the 

shape of TJ-bearing SG cells resembles a flattened Kelvin’s tetrakaidecahedron that was 

originally described as the shape observed for corneocytes,33–35 and this shape is maintained 

as SG cells differentiate into corneocytes. This results in highly orderly stacked columns 

of corneocytes and suggests that SG may influence SC cells. Schematic representation in 

Figure 2 summarizing SC and SG defects in AD as it compared to healthy skin.
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In the late 1980s and early 1990s, a number of studies demonstrated high expression 

of IgE, IL-4 and IL-13 in the skin of AD patients.36–39 Now several decades later, the 

importance of type 2 immunity in AD pathogenesis has been firmly established with the 

use of biologics that target one or more Th2 cytokines (e.g. dupilumab, tralokinumab, 

lebrikizumab and nemolizumab).40–47 Whether and how these cytokines affect the complex 

and inter-dependent epidermal structures that result in a healthy barrier is still being studied.

What is known about epidermal abnormality in AD?

The epidermis is composed of basilar keratinocytes that are highly proliferative and 

differentiate as they move toward the skin surface. This differentiation is characterized 

by the orderly expression of specific proteins, intercellular junction complexes, lipids and 

proteases/antiproteases. This terminates at the SC layer, where enucleated corneocytes are 

organized in vertical stacks embedded in a well-organized extracellular matrix composed 

of lipids.48 The membranes around the corneocytes are formed by highly cross-linked 

insoluble protein structures and are referred to as the cornified envelope. The lipid/protein 

ratio in the SC as well as the SC thickness are thought to play a role in skin barrier 

function (i.e. TEWL).49 Other AD abnormalities include epidermal hyper-proliferation 

(resulting in acanthosis), increased skin pH, enhanced protease activity, and increased 

sodium concentration. This last observation, coupled with the observation that high sodium 

chloride promotes Th2 responses (e.g. enhanced IL-4 and IL-13 production and suppressed 

IFN-γ) by regulating transcription factor activation, makes it worthy of further study. 

Sodium was detected in frozen skin biopsies using sophisticated high-resolution neutron 

measurements. The mechanism(s) responsible for this increased sodium chloride is currently 

unknown.50 Several review articles have summarized AD skin barrier defects,51–53 and 

therefore, we will discuss just the major AD skin barrier features.

Stratum corneum defects in AD

The epidermal differentiation complex (EDC) is a chromosomal region located at 

1q21.3 that harbors over fifty genes encoding proteins expressed in late keratinocyte 

differentiation.54 This includes genes for cornified envelop proteins such as loricrin, 

involucrin and small proline-rich proteins (SPRRs), as well as genes encoding calcium-

binding proteins of the S100A family, late cornified envelope (LCE) and multifunctional 

proteins such as filaggrin (FLG) and trichohyalin.55

In 2005, Sugiura et al. identified reduced expression of cornified envelope genes (i.e., FLG, 

LORICRIN, LCE) and upregulation of S100A7 and A8 in AD skin from DNA microarray 

analysis.56 Other studies have validated and extended this observation, demonstrating 

dysregulation of a number of EDC genes in both L and NL skin of AD subjects. One, 

if not the most, striking finding has been the strong association between the loss-of-function 

FLG mutations and risk of AD; initially reported in a North European cohort and later 

reproduced in other (but not all) populations.57–59 Mutations in FLG confer a significantly 

increased risk not only of developing AD but publications have also suggested this is true 

for other allergic disorders such as asthma, allergic rhinitis and FA.60,61 The association 

with respiratory diseases (allergic rhinitis and asthma) is controversial as several studies 
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have shown that when you exclude patients with history or active AD from these airway 

disease cohorts the FLG association was lost.62,63 Importantly, genome-wide association 

study suggests that in addition to FLG, other EDC gene variants are risk factors for AD (e.g. 

FLG2, SPRR3, LELP1).64–68

In addition to SC proteins, a number of studies have identified lipid abnormalities in AD 

skin. Under homeostatic conditions, the SC lipids are enriched for cholesterol (about 25% by 

weight), free fatty acids (FFAs; about 25% by weight) and ceramides (about 50% by weight) 

with smaller amounts of cholesterol sulfate and phospholids. These lipids are organized 

into a 3-dimensional structure of stacked lipid layers or lamellae precisely arranged around 

protein elements. Both the synthesis and organization of epidermal lipids are critical for the 

optimal skin barrier function.69–71 AD subjects have abnormalities in both lipid composition 

and architectural organization.72

Recently, Berdyshev et al. demonstrated an increased proportion of short-chain CER [NS], 

non-hydroxy fatty acid sphingosine ceramides, that consists fatty acid with carbon chain 

ranging from 14 to 24 (N-14:0 to N-24:0), sphingomyelins, and lysophosphati-dylcholines 

that consists fatty acid with carbon chain ranging from 14 to 22 (14:0 to 22:0 LPC), and 

reduced proportion of long-chain species in AD skin when compared with healthy controls. 

In vitro, treatment of human keratinocytes with IL-4 and IL-13 induced similar changes, 

further supporting the role of these cytokines in AD pathogenesis.73

Much of the AD lipid research has focused on the ceramides abnormalities49 and led 

to development of numerous ceramide-containing moisturizers, with the assumption they 

would improve dry skin and barrier function.74 There is a real need for randomized double 

blind placebo control studies of these products to evaluate their effect on skin barrier 

function and AD clinical improvement.

The filaggrin dilemma: the strongest genetic association whose contribution to AD 
pathogenesis is still unclear

Over the past 15 years, a number of publications have demonstrated reduced, and in some 

cases complete absence, of FLG expression in Ichthyosis Vulgaris (IV) and AD subjects. We 

know that the majority of AD subjects have reduced FLG expression on either a genetic61 or 

acquired basis (e.g. in response to inflammation including Th2 cytokines).75

Within corneocytes, FLG aggregates with keratin filaments providing a scaffold for the 

assembly of other structural proteins (i.e. involucrin, loricrin, and SPRPs) which are then 

cross-linked by transglutaminases to form the cornified envelop.76 AD subjects with FLG 
loss-of-function mutations have abnormal corneocyte morphology and reduced natural 

moisturizing factors (NMFs; histidine, pyrrolidone-5-carboxylic acid and urocanic acid) 

that contribute to SC hydration.77 What remained to be fully understood is the biological 

consequence of reduced FLG expression in AD pathogenesis and perhaps in other atopic 

conditions. Several murine models have been employed to study FLG function(s). The first 

attempt was with the flaky tail (ft) mice.78,79 Homozygous flaky tail ft/ft mice showed 

AD like phenotype with dry and flaky skin, skin barrier defects (increased TEWL), high 

serum IgE and enhanced epicutaneous sensitization to protein antigen.80 Initially only the 
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Flg mutation (Flg5303delA, resulting in hypomorphic FLG expression) was identified in 

this spontaneously occurring mouse model,81 but further studies uncovered an additional 

mutation, namely Tmem 79/Matt (linked to Flg mutation on murine chromosome 3). Two 

independent groups showed that the Tmem79 mutation alone was associated with matted fur 

and AD-like dermatitis with high IgE.82,83 The targeted inactivation of Flg in C57BL/6 mice 

resulted in the expected IV-like phenotype but failed to reproduce the AD-like phenotype.84 

To further clarify the role of Flg deficiency in skin barrier function and inflammation, 

recently Muhandes et al. generated Flg−/− deficient mice on a pure BALB/c background 

(BALB/c Flg−/−) and were able to demonstrate that even this pro-allergic mouse strain did 

not spontaneously develop dermatitis or skin barrier impairment following Flg knockout.85 

BALB/c Flg−/− presented with transitory ichthyosis (dry and scaly skin) early in life, 

but it resolved in older animals. Increase TEWL and reduction of keratohyalin granules 

were observed in older mice (16–18 weeks). BALB/c Flg−/− show no signs of atopy, with 

normal IgE at baseline and even after skin colonization with Staphylococcus aureus (S. 
aureus) or after OVA-epicutaneous sensitization. However, these mice had reduced microbial 

diversity (Shannon diversity index) associated with reductions in the Lachnospiraceae or 

Muribaculaceae families. Interestingly, keratinocytes isolated from BALB/c Flg−/− showed 

alterations in gene expression with enrichment of type-2 immune gene. Altogether these 

data suggest that FLG knockout alone is not sufficient to cause an AD-like phenotype in 

mice. The authors proposed the intriguing hypothesis that to cause atopy in the context of 

FLG-deficiency additional atopypromoting gene variants are required.85

These observations are consistent with what is observed in humans who carry a FLG 
mutation, with some developing early onset AD or IV (or both) but many having no obvious 

skin phenotype. A research opportunity is to explore the gene–gene and gene-environment 

effects of FLG mutations on risk for AD and IV and impact on disease phenotype and 

endotypes.

Tight junction abnormalities in AD

TJs are an intercellular junctional complex found in all epithelial and endothelial cells 

and composed of transmembrane proteins (e.g. claudins, occludin, junctional adhesion 

molecules) linked to cytoplasmic proteins (e.g. ZO-1).86 In all epithelial surfaces (e.g. 

gut, airway, blood, urogenital) TJs control paracellular flux (i.e. passage of molecules 

through intercellular space between adjunct cells) and epithelial permeability (i.e. selective 

permeable barrier that limits penetration of harmful molecules). TJs also have a fence 

function, which is required to generate cell-membrane polarity.87 The TJ fence function 

in keratinocytes is still controversial, as the fence function could be relevant at either the 

level of a single cell or the entire epidermis.88 In addition to barrier, TJs play a role in 

proliferation, migration and differentiation of keratinocytes.88,89 Disruption of epithelial 

TJs has been observed in most of the allergic disorders: asthma, chronic rhinosinusitis, 

eosinophilic esophagitis and AD.90,91

About a decade after Furuse et al. generated Cldn1−/−mice and demonstrated that they 

had a profound skin barrier defect,30 a new human CLDN1-deficient disease characterized 

by ichthyosis and AD-like features was discovered (Neonatal Ichthyosis and Sclerosing 
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Cholangitis syndrome or NISCH).92 In 2011, our group identified electrophysiologic barrier 

defects (i.e. increased permeability and reduced transepithelial resistance) in the NL skin 

of AD subjects which was seen in association with reduced expression of CLDN1 and 

CLDN23.93 Subsequently, studies demonstrated a dose dependent role of CLDN1 in skin 

barrier function, assessed by TEER and permeability assays in murine keratinocytes in 

which the claudin-1 expression was altered94 which was also confirmed in AD subjects.95 

We also noted that CLDN1 inversely correlated serum biomarkers of type 2 immunity.93 

This suggests a dynamic crosstalk between epithelial barrier and type 2 inflammation. 

The role epithelium plays in tissue inflammation has been more extensively evaluated 

for intestinal epithelium, and the effects of a number of environmental factors have been 

studied.96 How breakdown of the TJ barrier functions affect antigen penetration and immune 

responses is an active area of investigation, with clear implications for AD and even 

epicutaneous administration of vaccine and drug delivery strategies.97

Genetic and acquired mechanisms have been reported to cause TJ defects in AD subjects. 

Polymorphisms of CLDN1 associate with AD both in Black/African American (strongest 

association) and White/European American subjects in a US population.93 One of the SNPs 

(rs893051) associated with AD severity in the population of African descent in the USA 

cohort, was later associated with childhood onset AD in an Ethiopian population.98

The expression of CLDN1 and other TJ components are dynamically regulated during 

differentiation of keratinocytes, and are also influenced by the inflammatory milieu in 

AD skin. In vitro studies have shown that several cytokines relevant to AD modulate 

CLDN1 expression and TJ function (with IL-33, IFN-γ and IL-4 reducing and IL-17A 

enhancing).99–101 We also observed that TLR2 activation enhanced TJ function, suggesting 

positive feedback of innate immune pathways on skin barrier function which may be 

particularly beneficial to respond to pathogens like S. aureus. We and others have 

hypothesized that this protective mechanism may be defective in AD subjects who express 

defective TLR2 responses.102–105 Enhanced endogenous protease activity (e.g. Trypsin-like 

and Chymotrypsin-like serine proteases)106 or exogenous (e.g. protease active allergens such 

as house dust mite or cockroach or protease produced by Bacteria)107 in the skin has also 

been discussed as possible pathway to disrupt TJ in AD, via a direct enzymatic mechanism 

or following activation of the protease activated receptor 2.106,108–112

Whether there is a dynamic interaction between TJ function (or expression of CLDN family 

members) and FLG expression (or mutations) is an important but not entirely unanswered 

question. Most studies have not observed an effect of FLG-deficiency on TJ function and/or 

composition. This was true in the Flg-deficient mouse model113 and in human subjects with 

AD.114 Interestingly, reduced immunoreactivity for two TJ proteins (occludin and ZO-1) 

was observed in IV subjects.114 However, reduced CLDN1 expression affects SC barrier 

function, including processing of pro-FLG.31 An important challenge will be to uncover the 

mechanism(s) responsible for TJ impairment in AD, and investigating the crosstalk between 

TJ and SC barriers as well between TJ and the immune system. Ultimately, the goal is to 

develop targeted treatments that improve skin barrier function and are safe and improve 

disease severity.
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Nonlesional AD skin is not unaffected

Clinically unaffected skin is in fact “abnormal” in AD as compared to non-AD subjects. 

This has been shown at the functional (i.e. TEWL and skin irritation)115 and molecular 

level.116,117 Of note, in addition to skin barrier abnormalities, NL skin also is characterized 

by inflammation representing both innate and adaptive pathways (mostly skewed toward 

Th2, Th17/Th22).118,119

Several studies have reported a strong correlation between degree of NL skin 

barrier disruption (e.g. increased TEWL) and disease severity both in adult and 

pediatric cohorts.115,120 Understandably “correlations” do not address causality or confer 

directionality and therefore skin barrier defects may simply be a consequence of diseases 

severity or in contrast it could be a key driver of AD severity. Studies have started to 

investigate the clinical phenotype of subjects with greater barrier disruption. Recently 

has emerged that in AD patients NL barrier dysfunction is associated with other allergic 

comorbidities. In a large AD pediatric cohort (Mechanisms of Progression from Atopic 

Dermatitis to Asthma in Children; n = 400), greater barrier impairment (e.g. increased 

TEWL and decreased FLG expression), and more severe disease (SCORAD) was observed 

in AD subjects who were poly-sensitized (specifically to peanut, egg, cat or dog) than 

children with no AD or with AD and other allergen sensitizations.121 Another study found 

that pediatric AD patients with FA have greater skin barrier abnormalities (increased TEWL, 

reduced FLG breakdown products and reduced CER [EOS], esterified ω-hydroxy fatty acid 

sphingosine ceramides/CER [NS], non-hydroxy fatty acid sphingosine ceramides, ratio) as 

compared to AD without FA or non-AD controls.122

Another important feature of NL AD skin barrier disruption is the association with microbial 

dysbiosis and more specifically, S. aureus colonization.123,124 Skin infections are commonly 

associated with AD flares and treatment of these is important for the management of 

the disease.125 As part of the Atopic Dermatitis Research Network, we investigated 

the phenotype and endotype of AD subjects colonized with S. aureus in a multicenter, 

cross-sectional study.126 We found that AD patients who were S. aureus colonized had 

significantly greater skin barrier impairment in NL skin and greater systemic immune 

activation, type 2 immunity and allergen sensitization than those who were not colonized.

A number of SC alterations, commonly seen in AD subjects, have been shown to promote 

S. aureus adhesion to the skin. For example, S. aureus isolated from AD skin binds to 

corneocytes more avidly when NMF levels are reduced which was thought to be due to the 

unmasking of adhesion sites (N-terminal region of corneodesmosin).127,128 Disturbances in 

skin lipids (i.e. lower levels of CER [AH]C38, α-hydroxy fatty acid 6-hydroxy-sphingosine 

ceramides, with 38 total carbons and CER [AP]C40, α-hydroxy fatty acid phytosphingosine 

ceramides, with 40 total carbons and two unsaturated FFAs, FFA16:1 and FFA18:1) strongly 

associated with S. aureus colonized AD vs uncolonized AD subjects.129 Using a multi-omics 

approach Altunbulakli et al. observed an inverse relationship between Staphylococcus 
species and expression of TJ components (CLDN4, CLDN5, TJP1, and TJP2); with 

CLDN4 and TJP1 negatively correlated with S. aureus and positively with Staphylococcus 
epidermidis.130 Further studies are needed to better understand the role these TJ proteins 

play in chronic S. aureus skin colonization. It is important to acknowledge that this 
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interaction between the host (epidermis) and microbes is not unidirectional, but in fact 

bidirectional with the skin microbiome and particularly S. aureus, impacting epidermal 

inflammation and skin barrier composition and function.131

Methods to assess skin barrier in vivo

Non-invasive clinical devices are available to measure different biophysical properties such 

as TEWL, capacitance, and skin surface pH for a skin barrier assessment.

Transepidermal water loss measures the amount of water evaporating from the skin surface. 

This instrument has been widely utilized to assess skin barrier in AD subjects. Numerous 

studies have demonstrated that even NL AD skin has higher TEWL values than healthy 

individuals.115,122,126 As mentioned earlier, TEWL values are also higher in AD subjects 

who are colonized with S. aureus (based on routine cultures) vs those that are not 

colonized126 and also higher in AD subjects who have FA vs those without.122 While 

FLG mutations are highly predictive of those at risk for AD,61 the relevance of reduced 

FLG expression to barrier abnormalities such as increased TEWL is hotly debated with 

most observations in humans and refined mouse models showing no relationship.132–135 

Interestingly, subjects with asthma and/or allergic rhinitis do not have TEWL abnormalities 

suggesting that skin inflammation may responsible for the abnormal TEWL values in AD 

subjects.136,137 This could also suggest that in subjects with those atopic airway diseases 

(without concomitant AD) their allergen sensitization likely occurs via the respiratory 

mucosa rather than the skin.

The SC Integrity Assay assesses the cohesiveness of corneocytes. Tape-stripping technique 

was initially used to demonstrate that TEWL increases as you remove SC layers.19,20 

The SC integrity assay combines repeated TEWL measurements following sequential tape 

stripping.138 An abnormal SC integrity assay is characterized by a steeper slope of TEWL 

measurements following the sequential tape strips and is often represented as the area 

under the curve (AUC). Therefore, a higher AUC value indicates a poor (or reduced) 

SC integrity comparing to a lower AUC value as illustrated in Figure 1. Subjects with 

higher AUC presumably have more SC layers removed with each tape strip or have a 

blunted barrier repair response. The SC integrity assay can be abnormal even when “basal” 

TEWL measurements are normal. For example, basal TEWL values in NL skin were not 

significantly different between AD subjects with and without FA, while the SC integrity 

assay showed that those subjects with FA had a significantly higher TEWL AUC than those 

without FA.122 This tape-stripping technique has recently been employed as a much less 

invasive way of sampling the skin with the goal of characterizing genomic, transcriptomic, 

lipidomic, proteomic and/or even metabolomic profiles of both L and NL skin in AD 

subjects. This approach is particularly appealing in children where skin biopsies can be more 

challenging.139–144

SC hydration and pH are relatively simple and rapid assessments often used to fully 

characterize skin barrier function. Instruments that measure SC hydration emit high 

frequency (3.5 MHz), to measure either skin conductance or capacitance.145 SC hydration is 

reduced in AD skin and inversely correlates with FLG degradation products (NMF).133 The 
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optimal skin pH is slightly acidic (4–6), while AD skin is more neutral and sometimes even 

basic in its pH.146 Acidification is important for direct and indirect anti-bacterial actions, 

optimal activity of serine proteases and ceramide levels.

New non-invasive methods used to evaluate the epidermis in vivo

Confocal Raman spectroscopy uses the vibrational signatures of chemical groups such as 

lipids, amino acids, NMF and water in the SC of the human skin to quantify them.147,148 

This technology was uses to show reduced levels of NMF in AD children who carry one 

of the FLG null mutation(s), making this a potential assay to identify carriers of FLG 
mutations.134,149 Electrical impedance spectroscopy (EIS), is a new non-invasive method 

currently used for the detection of melanoma and uses alternating currents of various 

frequencies to measure overall resistance within a tissue.150 EIS has recently been used 

to evaluate skin barrier in AD subjects.151 The EIS score was significantly reduced in NL 

and L AD skin compared to healthy controls and inversely correlated with TEWL, disease 

severity (SCORAD) and serum CCL13.

In summary, we have a plethora of tools to measure a wide range of physiological features 

of the human epidermis but exactly what abnormal readings mean mechanistically for each 

of these is still not entirely clear. Which of these would most accurately reflect a skin surface 

that is more permissive and responsive to environmental allergens? Additionally, some of 

these assays require equipment that is both expensive and operator-dependent making their 

widespread use problematic. Nevertheless, we can appreciate that each of these assays have 

demonstrated how distinctly different even NL AD skin is than healthy controls and we can 

hope that what they reflect biologically will be better understood in the years to come.

How barrier defects lead to AD

The “outside-in” barrier hypothesis postulates that a leaky skin barrier allows penetration 

of toxins, allergens and microbes which then elicits an immune response. This response 

likely arises from allergen uptake by immature DCs, made possible by the extension of 

DC dendrites to the skin surface.152 When this happens to an individual predisposed to AD 

(genetically, epigenetically or environmentally), the ensuing response will lead to type 2 

inflammation. A number of studies have demonstrated that barrier defects promote type 2 

immunity, at least in part, because of the epidermal production of alarmins (IL-33, TSLP and 

IL-25).153–156 Consistent with this hypothesis, epicutaneous allergen sensitization of mice 

requires mechanical disruption of the skin with either tape-stripping, acetone or occlusion or 

a combination of these.157 Tape-stripping activates Langerhans cells and induces movement 

of Langerhans cells’ dendrites through TJ to the skin surface.152 Disruption of TJs also 

promotes the extension of sensory nerve endings to the skin surface where they are more 

readily activated by both host and environmental factors that induce itch.158 The contrasting 

hypothesis, often referred to as the “inside-out” theory, suggests that the epidermal defects 

including barrier dysfunction are the consequence of tissue inflammation. In other words, 

more dermal inflammation - greater barrier defects which may result in a feed forward 

loop of enhanced inflammatory responses to microbes, irritants and allergens. Further 

support for this theory comes from the observation that anti-inflammatory treatments 
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from topical (corticosteroids and calcineurin antagonists) have been shown to improve 

barrier function159–163; while data on the effect of systemic treatment on skin barrier 

functions are lacking at this time as studies have mainly looked at molecular changes 

after intervention.163 Additional support for this hypothesis comes from the evidence that 

elevated levels of the type 2 alarmin, TSLP from skin tape strips taken from infants predict 

risk for AD.164

We might also learn something from the study of rare monogenetic disorders caused by 

mutations in skin barrier or immune genes (Table 1). It is interesting to note that a number 

of these syndromes have some similarities with AD subjects and therefore they provide 

clues about the role of a single mutated protein in AD features. This also suggests that 

AD features can emerge from a combinatorial effect of either epidermal barrier and/or 

immune gene abnormalities, providing further support for both AD hypotheses (inside-out 

and outside-in).

In summary, we accept the overwhelming evidence that AD subjects skin barrier is impaired. 

But a more holistic view of this barrier abnormality, taking into account the combinatorial 

effects of the components that make up a healthy epidermal barrier will be enlightening. 

In other words, how do these abnormalities individually and collectively contribute to AD 

pathogenesis? To achieve these lofty goals, we will need more robust and sophisticated tools 

to better characterize and quantify this barrier abnormality in human subjects (and not mice 

whose epidermis does not faithfully model human skin). Combining these barrier assays 

with a multiomic (i.e. transcriptomic, lipidomics, metabolomics, metagenomics) approach 

will help us understand the drivers of this seminal AD feature. This will enable us to ask 

a number of key questions. What is the relative import of SC constituents (corneocyte 

compaction, lipid composition and conformation, endogeneous proteases/antiproteases ratio) 

vs intercellular junctional complexes (TJ, corneodesmosomes and adherens junctions) in 

AD phenotypes (such as severity) or endotypes? Do you need more than one epidermal 

barrier defect to develop AD? Is there a barrier defect threshold needed to become allergen 

sensitized and is that different for allergen elicitation?

Until the mechanism(s) of skin barrier defects are fully elucidated it will be difficult to 

answer these questions. A greater understanding of AD pathogenesis is informing the 

development of more targeted treatments. In Figure 3, we propose a simplified model with 

therapies directed at the immune system, the skin barrier or both to obtain an optimal 

clinical improvement. Considering the dynamic cross talk between barrier and immune 

system it is reasonable to speculate that BOTH need to be addressed to reach an optimal 

clinical improvement and stop the feed-forward loop we think contributes to the chronic 

relapsing/remitting course seen in our AD patients. Although better itch management as well 

as normalization of the microbial dysbiosis may also be critical to achieve the best clinical 

outcome, since they were not discussed in this review, we have omitted them from this 

overview.

With the development of highly targeted treatments, which are primarily directed at 

inflammatory mediators, we have an opportunity to clarify the relative import of these 

mediators on skin barrier physiology and composition. One such therapy is dupilumab 
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(Dupixent, Regeneron Inc.), a fully humanized monoclonal antibody targeting IL-4Rα, a 

shared subunit for both IL-4 and IL-13 receptors. Pivotal trials have demonstrated significant 

clinical improvement and a favorable safety profile in moderate to severe AD subjects, and 

confirms the central role of IL-4 and IL-13 in this disease.40,41 Mechanistic studies showed 

that blocking IL-4/IL-13 signaling suppressed systemic type-2 inflammation,165 increased 

microbial diversity, reduced S. aureus abundance166 and normalized AD-associated 

epidermal transcriptomic abnormalities.167 Specifically, dupilumab increased the expression 

of FLG, LEKTI (proteases inhibitor) and HBD-3 (antimicrobial peptide) within 6–8 

weeks of treatment.168 In a small study, 12 weeks of Dupilumab treatment significantly 

increased SC hydration (L and NL) and this barrier improvement correlated with EASI 

improvement.169 These studies suggest that Th2 inflammation is responsible for a number 

of epidermal abnormalities observed in AD subjects. Future studies will need to investigate 

how changes seen at early time points may predict later improvement in barrier and disease 

severity.

Both topical and oral Janus kinase (JAK) inhibitors that target the JAK/STAT signaling 

cascade common to many inflammatory mediator and growth factor receptors, have shown 

efficacy in clinical trials for patients with moderate-to-severe AD.170 The JAK inhibitors 

(depending on their JAK specificity) target multiple cytokines pathways including Th2 

(IL-4, IL-13, IL-31 and TSLP), Th22 (IL-22), and Th1 (IFN-γ, IL-12, and IL-23) and 

therefore are much less selective than biologics.

Several studies have suggested that JAK/STAT signaling may be important for skin barrier. 

In the NC/Nga AD mouse model, the topical application of a JAK inhibitor (JTE-052) 

reduced TEWL, increased NMF and resulted in clinical improvements.171 Ruxolitinib, a 

selective JAK1/2 inhibitor, was able to reverse TJ disruption and CLDN1 downregulation 

induced by IFN-γ in primary human keratinocytes.100 In a small AD clinical trial, ASN002 

(an oral dual JAK/SYK inhibitor) demonstrated clinical improvement and a qualitative 

reversal of some epidermal barrier abnormalities (e.g. hyperplasia, reduced FLG and 

increased Keratin 16) as early as 15 days into treatment.172

Tapinarof, is a topical aryl hydrocarbon receptor (AhR) agonist is currently in trials 

for the treatment of psoriasis and AD. In a phase 2b AD trial, clinical improvement 

(EASI, IGA and pruritus score) was seen after 12 weeks of treatment.173 AhR is a ligand-

activated transcription factor, highly expressed in keratinocytes. Activation of AhR promotes 

differentiation and skin barrier repair. Tapinarof treatment of human keratinocytes enhances 

the expression of FLG and loricrin.174

Emollients and moisturizers are a cornerstone of AD management and are recommended to 

try to reverse the xerosis and potentially improve the skin barrier. However, there are few 

studies that directly address their mechanism of action, even though their clinical benefit 

in AD is not questioned.175 Research is ongoing to investigate whether the early use of 

emollients in high-risk infants will prevent AD development or FA. At this time results 

are controversial possibly because critical differences in the study design, control groups, 

emollients used (and their frequency of applications), duration, and outcomes. In a seminal 

randomized controlled trial in the United States and United Kingdom 124 neonates at 
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high risk for AD were enrolled. Caregivers in the treatment arm were instructed to apply 

emollient therapy (full body) daily starting within 3 weeks of birth for 6 months; whereas, 

in the control arm they were asked to use no emollients. Remarkably, a significant protective 

effect was found with daily emollient use on cumulative AD incidence (relative risk, 

0.50; 95% CI, 0.28–0.9).176 In contrast, larger studies (Barrier Enhancement for Eczema 

Prevention [BEEP] and PEBBLES) showed no benefit from daily emollient use during the 

first year of life in high-risk children, but the control groups were not forbidden to use 

moisturizers.177,178 The Enquiring About Tolerance (EAT) study recently demonstrated that 

greater moisturizing frequency was associated with greater food allergen sensitization.179 

This has been argued to arise by introduction of allergens to the skin surface with 

parental moisturizing. Further investigations into the impact of emollient use on AD and 

FA prevention are ongoing.178,180 Should these studies confirm the initial evidence of a 

protective effect of emollients in AD prevention, they will have profound impact in public 

health by reducing the overall burden of these common allergic diseases.

Conclusion

A cardinal AD feature is global alteration in epidermal biology, which among other things 

leads to a leaky barrier and inflammation that promotes a type 2 immune response. This is 

at least in part, responsible for AD subjects poly-sensitization, widespread xerosis, S. aureus 
colonization and pruritus. The epidermal components responsible for the barrier function of 

the skin are numerous and highly integrated. Sorting out the hierarchy and relevance of each 

of these as they relate to barrier function and ultimately AD severity (and phenotypes) is 

the goal. The AD treatment pipeline is impressive and expanding daily. It includes therapies 

that are intended to target one or several of the key features of this disease with the majority 

focusing on inflammation or pruritus and only more recently targeting skin dysbiosis or 

epidermal abnormalities. We believe the future is very bright, not just because we can 

more effectively treat AD patients, but because these more targeted therapies will lead to 

a much more refined and nuanced understanding of AD pathogenesis. This of course will 

only happen if we design mechanistic studies of the most highly effective AD therapies. 

These studies should be longitudinal intervention trials that capture mechanistic readouts 

coupled with multi-omics at early timepoints to model how they impact objective measures 

of disease severity.
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Fig. 1. 
The SC integrity assay. This illustrates the area under the curve (AUC) which integrates 

TEWL changes after sequential tape strippings. A larger AUC with a steeper slope (Blue) 

reflects poor (or reduced) SC integrity comparing to smaller AUC (pink).
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Fig. 2. 
The key components of the SC and SG that are important for skin barrier function are 

shown in this figure. Using the f-TKD model, we speculate how inflammation (even the 

NL AD skin) contributes to a disrupted barrier. In healthy skin, keratinocytes become more 

flattened as they differentiate and assume a f-TKD shape in the SG where TJ are assembled. 

LBs fuse with the cell membrane, which are indicated by circles with black stripes, and 

are seen at the SC-SG interface. They release their contents at about the same time f-TKD 

corneocytes emerge. AD skin inflammation disrupts the differentiation process: 1) affecting 

keratinocytes flattening and ultimately the f-TKD shape which should be seen at the SG 

layers, 2) TJ assembly is disrupted, 3) which in turn affects the SC-SG interface where LB 

contents are released, leading to reduced LB exocytosis, 4) cornification of f-TKD SG1 cells 

is incomplete, leading to alterations in the SC. All of these features contribute to defective 

skin barrier observed in AD skin. f-TKD, flattened tetrakaidecahedron; KC, keratinocyte; 

LB, lamellar body; SC, stratum corneum; SG, stratum granulosum; TJ, tight junction.
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Fig. 3. 
The optimal clinical improvement will likely only be achieved with treatment strategies 

that target immune system, skin barrier or both. Here we propose a simplified model with 

therapies targeting the immune system (IL4/IL-13 blockade) or the skin barrier (emollients) 

or both (JAK inhibitors and AhR agonist). Therapies directed at itch or microbial dysbiosis 

are not included since they were not discussed in this review.
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