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INTRODUCTION

A new coronavirus, an etiological agent of severe acute respiratory syndrome SARS-CoV-2, was
discovered in December 2019 in Wuhan, China, and the coronavirus 2019 (COVID-19) epidemic
rapidly escalated globally (1–3). The World Health Organization (WHO) officially declared a
pandemic on March 11, 2020; at that time, more than 118 million people got infected worldwide,
with the Americas accounting for 44% of the total cases (4).

Currently, one of the most significant issues is to predict who will eventually develop severe
illness and even death since this may have implications on public health policies, aiming at
preventive actions for specific groups. Risk factors associated with worse outcomes include
advanced age, systemic arterial hypertension, diabetes mellitus, ischemic heart disease, obesity,
and chronic lung disease (5). However, in many cases, there are no obvious risk factors. Studies are
being developed, looking for other associations that could lead to life-threatening outcomes in
COVID-19.

Although studies have documented COVID-19 primarily affects the respiratory and endothelial-
lining vascular systems, the SARS-CoV-2 may target other organs, such as the liver (6). Different
degrees of liver dysfunction are described, mainly inducing transaminases elevation, which is
generally transient and mild. No marked increased risk of SARS-CoV-2 infection in patients with
chronic liver disease has been observed, although this population is more likely to develop a more
severe form of COVID-19, requiring hospitalization, with high morbidity and mortality rates (7, 8).

Dementia seems to contribute as a risk factor for COVID-19 infection outcomes (9–11). This
finding raised the hypothesis that other unappreciated risk factors are involved in the pathogenesis
of the disease, such as apolipoprotein E (apoE=protein, APOE=gene) since the APOE4, one of the
APOE coding-alleles, has a strong association with late-onset Alzheimer’s disease. ApoE is a 299-
amino acid protein that binds to plasma lipoproteins and serves as a cholesterol carrier for liver
metabolization (12, 13).

Previous research supports that apoE4 protects liver disease progression in hepatitis C virus
(HCV)-induced liver injury (14). However, current evidence points to a greater risk for worse
COVID-19 in patients carrying this allele, suggesting an ambiguous effect of APOE. To date, no
studies have addressed whether chronic liver disease patients carrying the APOE4 gene would have
increased risk for more severe COVID-19 infection.
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In this opinion paper, we summarize the role of APOE4 on
the severity of COVID-19 infection and highlight liver disease
outcomes following COVID-19 infection. In addition, we discuss
up-to-date findings of APOE4 protection in HCV-induced
liver disease.
COVID-19 EFFECTS ON THE LIVER

First described in early Chinese publications about COVID-19, it
was evident that patients with mild disease had alterations in
aspartate aminotransferase (AST)/alanine aminotransferase
(ALT) 18.2/19.8%, respectively, and severe patients manifested
changes of 39.4/28.1% in these transaminases, well-recognized
biomarkers of liver dysfunction (2).

Other reviews also highlighted changes in liver enzymes and
bilirubin in patients with COVID-19, noting that these
manifestations could be multifactorial, including medications,
previous liver disease, and even direct viral injury (7, 8), since
hepatocytes also have the angiotensin-converting enzyme 2
(ACE2), which the virus binds to enter human cells (15). In
addition, the exacerbated inflammatory response triggered by the
virus and the hypoxia resulting from ARDS can also contribute
as mechanisms of liver damage (16). Monitoring liver function
biomarkers is important in all patients diagnosed with COVID-
19 to follow the disease evolution.

The association of APOE, HCV infection, and SARS-CoV-2
in liver disease is complex, thus the better understanding of the
interrelated injury causal-effects, such as direct viral damage,
drug-induced liver injury, hypoxia and microthromboses
requires novel clinic and basic research strategies.

SARS-CoV-2 itself can target the liver. Despite the lack of
evidence for a specifically targeted mechanism, SARS-CoV-2 may
directly or indirectly cause liver damage. The ACE2 receptor, a
gateway for SARS-CoV-2 entry in the cells, is highly expressed in
cholangiocytes, followed by hepatocytes. Transmembrane serine
protease 2 (TMPRSS2), expressed in endothelial cells and
involved in SARS-CoV-2 entry and dissemination, is also present
in cholangiocytes, erythroid cells, and hepatocytes, sinusoidal
endothelial cells of the periportal liver, and less expressed in non-
inflammatory macrophages and alpha-beta T cells (17).

The spike protein of SARS-CoV-2 exhibits a unique furin cleavage
site, suggesting a role of furin in the pathogenesis of the disease and
regulating the efficiency of viral entry. Furin is expressed in
hepatocytes and all cell populations present in the liver. Thus, these
findings point to the possibility that SARS-CoV-2 can cause liver
damage by direct action or by viral cytopathic effect. Also, SARS-
CoV-2 can cause liver damage by immune-mediated effects
associated with numerous active immune pathways, such as
inflammatory macrophages, natural killer cells, plasma cells, mature
B cells, and the wide endothelial microenvironment of the liver (17).

Hepatic dysfunction appears to be transient due to mild
COVID-19 infection, with satisfactory evolution in most cases,
and is rarely associated with permanent liver damage (16). In
addition, cirrhosis alone is associated with higher mortality in
patients with ARDS (18).
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NOVEL FINDINGS OF APOLIPOPROTEIN
E4 ON COVID-19 INFECTION

Discovered in the early 1970s, apoE is a glycoprotein expressed in
numerous human cells, first described with the crucial function of
cholesterol transport and lipid metabolism (19). Located on
chromosome 19, the APOE gene is polymorphic in humans. It has
three common alleles (E2, E3, E4) responsible for coding different
isoforms of this molecule, key for a plethora of biological processes,
not only causally linked to lipid transport function, including
immunoregulation, tissue repair, and infectious disease-related
outcomes (19, 20). Current studies have been documenting the
influence of different isoforms of ApoE on viral infections, such as
human immunodeficiency virus (HIV), herpes virus (HSV-1), and
chronic hepatitis C virus (HCV)-induced liver disease (19, 21, 22).

Since apoE4 is involved in some of other risk factors associated
with severe COVID-19, such as atherosclerosis and hypertension
(23, 24), there is a growing interest in better understanding how
apoE4 immunoinflammatory functions affect the underlying
mechanisms associated to severity contributors in SARS-CoV-2
infection. Studies point that APOE4 carriers would show a more
intense innate immune response that would lead to more severe
systemic inflammation during the Acute Respiratory Distress
Syndrome (ARDS) in SARS-CoV-2-infected patients (25). This
may partly explain why Afro-descendant Americans are believed
to have a more severe disease since they are known to carry the
APOE4 allele twice as frequently as European and Asian
populations (26). This potential association remains elusive and
requires further investigation.

Wang et al. using in vitro models identified that apoE4
contributes to the increase in SARS-CoV-2 infection in neuronal
and astrocytic cell lineages, suggesting that apoE4-secreting
astrocytes play a role in neurological symptoms related to disease
severity (27). Other data showed that APOE4 homozygous patients
had an independent association with increased risk for severe
COVID-19 infection, even when adjusted for preexisting
comorbidities, such as dementia, diabetes, and cardiovascular
disease (OR> 2.31, 95% CI: 1.65 to 3.24). APOE4 homozygous
individuals were 2.2 times more at risk for COVID-19 positivity and
4.3 times more at risk for COVID-19-related lethality than APOE3
homozygous patients (28).

Importantly, apoE is one of the highly expressed proteins in
type II alveolar cells in the lungs, where the receptor for SARS-
CoV-2 called ACE2 is conspicuous (29). The role of apoE in the
lungs is not fully understood and may vary with different
pathological conditions. The apoE deficiency in the lung has
been related to abnormal lung development in APOE knockout
mice. In addition, apoE has both protective and anti-inflammatory
properties in the setting of lung disease, reducing primary
pulmonary hypertension (30). On the other hand, apoE may
lead to pro-inflammatory events in the lung and can function as
a concentration-dependent pulmonary danger signal that
augments pulmonary inflammatory responses in asthma-related
airway conditions (31). In the COVID-19 scenario, yet we do not
know whether apoE-related pulmonary danger signals would
worsen clinical outcomes in infected patients.
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The role of human APOE4 in respiratory infections is poorly
explored, especially in COVID-19. The relationship of apoE4
and ACE2 receptors and related-signaling pathways require
more investigation. Further studies are needed to investigate
the role of APOE4 in pulmonary ACE2 levels and their possible
association with worse COVID-19 outcomes after controlling for
confounding factors, such as known comorbidities and other ill-
related factors.
PARADOXICAL EFFECTS OF APOE4 ON
HCV-INDUCED LIVER DISEASE AND
COVID-19 OUTCOMES

Mortality and severity due to COVID-19 are higher in patients
with comorbidities, and researchers have documented that the
same occurs among those with chronic liver disease. In recent
meta-analyses studies, patients with COVID-19 and chronic liver
diseases tend to have a more severe SARS-CoV-2 infection [OR
1.48 (95% CI 1.17, 1.87)] and a higher mortality rate [OR 1.78
(95% CI 1.09, 2.93)]. However, chronic liver disease patients are
not more often infected with SARS-CoV-2 compared to
individuals without this condition (7, 8).

Interestingly, Rhea and colleagues showed that APOE affects
radioiodinated S1 (I-S1) uptake in the liver when using APOE
target replacement mice. These authors show that male APOE3
mice had the fastest I-S1 uptake in the liver compared with the
APOE4 genotype. As the risk of contracting COVID-19 seems
greater with APOE4 carriage in humans, these authors suggested
that the COVID-19-associated risk seen with APOE4 carriers is
unlikely to be due to increased tissue S1 or SARS-CoV-2
uptake (32).

APOE4 allele while predisposing to comorbidities that favor a
more severe evolution of COVID-19, such as dementia,
hypertension, and ischemic heart disease (33), conversely
behaves as a protective factor for some chronic viral-related
liver diseases. Studies show that APOE4 patients are more
resistant to chronic HCV infection, have a slow progression of
liver fibrosis, and are less likely to have alcoholic cirrhosis, non-
alcoholic steatohepatitis (NASH) hepatocellular carcinoma
(HCC), or virus hepatitis B (HBV) (34–36).

HCV entry into human hepatocytes is a multistep mechanism
involving various host factors, including low-density lipoprotein
receptor (LDL-R) and heparan sulfate proteoglycans (HSPGs). The
lipoviral particle, important for viral infectivity, initially binds to
LDL-R and HSPGs through apoE. It has been recognized that the
LDL-R is down-regulated in APOE4 carriers (34, 37).

SARS-CoV-2 enters the cell through the binding of the viral
spike protein to the ACE2 cell receptor. We speculate that
increased apoE4 binding to HSPGs in the lung may enhance
SARS-CoV-2 infection, bridging the virus to ACE2 and
facilitating viral tissue spread. It has been suggested that
HSPGs, such as syndecan, may be an alternative way through
which SARS-CoV-2 may enter the lung epithelial cells (38, 39).

ApoE4 is associated with worse cardiovascular outcomes and
favors inflammation and obesity that may jeopardize the
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patient’s health, thus raising the vulnerability to COVID-19
(39, 40). Recent studies provide evidence indicating that apoE4
is associated with coronavirus infection and clinical severity (41).

Knowledge whether carrying apoE4 is more than simply a
risk factor, but a pathway for SARS-CoV-2 viral entry and cell
infectivity is paramount to identify novel molecular targets for
pharmacological intervention.
CONCLUSION REMARKS

The epidemic of COVID-19 has spread worldwide, and many
questions have arisen since then, mainly about the fundamental
risk factors involved in the more severe course of the disease.
Among the genetic factors studied, the E4 allele of APOE seems
to predispose patients to worse outcomes. However, this role is
unclear and appears ambiguous when counteracted by some
beneficial effects seen in HCV infections and other liver disease
conditions. While APOE4 deleteriously affects the pathogenesis
of comorbidities that influence the severity of COVID-19, such
as dementia, hypertension, and heart disease, paradoxically,
APOE4 may be a protective factor against the chronicity of
most liver diseases, which could lead to more severe conditions
of COVID-19.

Findings of APOE4 deleterious effects on COVID-19
outcomes have been identified in UK biobank studies enrolling
patients living in developed settings; however, there is a gap of
knowledge whether this potential effect could be replicated in
populations living under adverse environments, as APOE4 could
have a different role in such conditions (42–44). In addition,
APOE4 may be relevant in affecting long COVID-19
cardiovascular sequelae in risk groups (45), which raises public
health concerns. Yet we do not know whether HCV-liver injury
could increase later cardiovascular effects in APOE4-bearers with
long COVID-19.

More studies are needed to dissect the APOE4 immunomodulatory
functions related to the deleterious and protective mechanisms seen in
different liver viral infections (virus cell entry, viral-induced steatosis
and fibrosis, and related-fine inflammatory pathways), which should
be better understood to improve disease management and treatment.
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42. Oriá RB, de Almeida JZ, Moreira CN, Guerrant RL, Figueiredo JR.
Apolipoprotein E Effects on Mammalian Ovarian Steroidogenesis and
Human Fertility. Trends Endocrinol Metab (2020) 31:11. doi: 10.1016/
j.tem.2020.06.003

43. Oriá RB, Patrick PD, Oriá MOB, Lorntz B, Thompson MR, Azevedo OGR,
et al. ApoE Polymorphisms and Diarrheal Outcomes in Brazilian Shanty
Town Children. Braz J Med Biol Res (2010) 43(3):249–56. doi: 10.1590/S0100-
879X2010007500003

44. Freitas RS, Roque CR, Matos GA, Belayev L, de Azevedo OGR, Alvarez-Leite
JI, et al. Immunoinflammatory Role of Apolipoprotein E4 in Malnutrition and
Enteric Infections and the Increased Risk for Chronic Diseases Under Adverse
Environments. Nutr Rev (2021) 18:nuab063. doi: 10.1093/nutrit/nuab063
Frontiers in Immunology | www.frontiersin.org 5
45. Xie Y, Xu E, Bowe B, Al-Aly Z. Long-Term Cardiovascular Outcomes of
COVID-19. Nat Med (2022). doi: 10.1038/s41591-022-01689-3

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Lima, Bezerra, Nascimento, Meneses and Oriá. This is an open-
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