
Study on the classification of benign and malignant breast lesions using a 
multi-sequence breast MRI fusion radiomics and deep learning model

Wenjiang Wang a, Jiaojiao Li b, Zimeng Wang a, Yanjun Liu a, Fei Yang b, Shujun Cui b,*

a Graduate Faculty, Hebei North University, Zhangjiakou, Hebei, China
b Department of Medical Imaging, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China

H I G H L I G H T

• The multimodal model combined the radiomics features and deep learning features from the three sequences of T1WI, T2WI, and DCE-MRI of breast MRI.
• The dataset includes various breast diseases, providing broader applicability.
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A B S T R A C T

Purpose: To develop a multi-modal model combining multi-sequence breast MRI fusion radiomics and deep 
learning for the classification of benign and malignant breast lesions, to assist clinicians in better selecting 
treatment plans.
Methods: A total of 314 patients who underwent breast MRI examinations were included. They were randomly 
divided into training, validation, and test sets in a ratio of 7:1:2. Subsequently, features of T1-weighted images 
(T1WI), T2-weighted images (T2WI), and dynamic contrast-enhanced MRI (DCE-MRI) were extracted using the 
convolutional neural network ResNet50 for fusion, and then combined with radiomic features from the three 
sequences. The following models were established: T1 model, T2 model, DCE model, DCE_T1_T2 model, and 
DCE_T1_T2_rad model. The performance of the models was evaluated by the area under the receiver operating 
characteristic (ROC) curve (AUC), accuracy, sensitivity, specificity, positive predictive value, and negative 
predictive value. The differences between the DCE_T1_T2_rad model and the other four models were compared 
using the Delong test, with a P-value < 0.05 considered statistically significant.
Results: The five models established in this study performed well, with AUC values of 0.53 for the T1 model, 0.62 
for the T2 model, 0.79 for the DCE model, 0.94 for the DCE_T1_T2 model, and 0.98 for the DCE_T1_T2_rad model. 
The DCE_T1_T2_rad model showed statistically significant differences (P < 0.05) compared to the other four 
models.
Conclusion: The use of a multi-modal model combining multi-sequence breast MRI fusion radiomics and deep 
learning can effectively improve the diagnostic performance of breast lesion classification.

1. Introduction

Breast cancer is the most common cancer among women worldwide 
and a leading cause of cancer-related deaths. Currently, breast cancer 
has surpassed lung cancer to become the most prevalent malignant 
tumor globally, and its incidence continues to rise [1]. Therefore, early 
screening and diagnosis of breast cancer are of utmost importance [2,3]. 
However, traditional methods for diagnosing breast cancer have 

numerous limitations [4]. Firstly, the screening stage primarily relies on 
imaging techniques, which require radiologists with extensive profes-
sional knowledge to make accurate diagnoses of breast cancer. Secondly, 
for patients with high-risk indications from imaging, core needle biopsy 
or fine-needle aspiration biopsy is used mainly for qualitative diagnosis 
of breast cancer. However, biopsy samples may not be representative of 
the entire tumor and involve invasive procedures [5], limiting the 
application of the pathological gold standard. Thus, there is an urgent 
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need to find a more widespread and suitable new auxiliary method.
Among imaging examination methods, magnetic resonance imaging 

(MRI) has a significant advantage in diagnosing breast cancer compared 
to mammography and breast ultrasound [6,7]. MRI utilizes magnetic 
fields and radio waves to generate multi-parametric images, displaying 
information from different soft tissues [8,9]. Therefore, it plays a crucial 
role in the diagnosis of breast cancer. T1-weighted MRI (T1W1) provides 
clearer images of the anatomical structure of breast tissue [10], while 
T2-weighted MRI (T2W1) offers more distinct visualization of lesions 
[11,12]. Additionally, dynamic contrast-enhanced MRI (DCE-MRI), 
which involves intravenous injection of contrast agents, enhances tissue 
contrast and provides excellent morphological and some functional in-
formation [13,14], showing significant advantages in the detection of 
early and high-risk breast cancer. Meta-analysis studies have shown that 
MRI has a sensitivity of 90–92 % and a specificity of 72–75 % in 
detecting malignant breast lesions [15,16]. However, this requires the 
extensive professional knowledge of radiologists.

In recent years, with the development of Artificial Intelligence (AI), 
early detection and diagnosis of breast cancer are undergoing significant 
transformations. The application of AI technology in medical image 
analysis, especially in breast cancer screening, has shown tremendous 
potential and has garnered widespread attention from researchers [17, 
18]. Radiomics and deep learning are two key methods in this area. 
Radiomics primarily includes steps such as image acquisition, region of 
interest segmentation, feature extraction and selection, model con-
struction, and validation. It can capture high-dimensional features such 
as intensity, shape, and texture of medical images at the pixel or voxel 
level to build models for the diagnosis, prediction, and treatment of 
medical diseases. Its multimodal fusion models have shown extraordi-
nary potential in the benign and malignant classification of breast dis-
eases. However, radiomics still faces numerous challenges regarding 
feature bias and clinical relevance [19]. In contrast, deep learning uti-
lizes advanced mathematical algorithms to extract features in an 
end-to-end manner. Among them, Convolutional Neural Networks 
(CNNs) are based on a hierarchical structure and can identify subtle 
differences in image intensity and shape features, providing more 
complex and high-dimensional abstract information [20]. Several 
studies have shown that deep learning is highly effective in breast cancer 
diagnosis [18,21], with many studies indicating that it has surpassed 
traditional radiomics and, in some aspects, even outperformed 
human-level performance, becoming an indispensable assistant in 
AI-assisted healthcare [22].

Currently, radiologists often need to combine information from 
various imaging modalities when diagnosing breast MRI, including 
clinical laboratory results and physical examination findings. This is 
because different modalities provide complementary information, and 
the integration of this information aids in a more comprehensive diag-
nosis. Previous studies have demonstrated that integrative models using 
multiple information sources outperform any single modality in diag-
nostic effectiveness [23], highlighting the significant advantages of 
multimodal models in disease diagnosis. In breast MRI, one study indi-
cated that the BreastScreening-AI framework integrates multimodal 
imaging and AI image analysis, enhancing the efficiency of breast cancer 
diagnosis and reducing the workload of physicians while increasing 
clinician satisfaction [24]. These results suggest that the application of 
multiple sequences provides rich information for clinicians, and the 
multimodal fusion of these sequence data can effectively deliver more 
lesion information, aiding clinicians in making more accurate decisions. 
By combining AI technology with multi-sequence data, a more 
comprehensive analysis can be achieved. This multimodal approach not 
only improves the accuracy of early detection but also significantly re-
duces misdiagnosis and missed diagnosis rates, thereby offering patients 
more effective treatment options.

At present, multimodal feature fusion networks have been exten-
sively researched and applied in breast cancer; however, the fusion 
methods vary significantly. Zheng et al. [25] constructed a multimodal 

deep learning system for predicting lymph node metastasis in breast 
cancer by integrating T1WI, T2WI, DCE-MRI, and clinical imaging fea-
tures, achieving significant results. This study demonstrates the enor-
mous potential of multimodal information in the clinical application of 
breast cancer. Similarly, Daimiel Naranjo et al. [26] proposed a multi-
parametric breast MRI model that fuses radiomics with traditional ma-
chine learning, successfully classifying breast lesions with an accuracy of 
88.5 % and an AUC of 0.96, further highlighting the effectiveness of 
multimodal fusion technology. Although the aforementioned studies 
employed multimodal feature fusion methods, there are significant 
differences in specific fusion strategies and algorithm designs, affecting 
the comparability and generalizability of their results [27]. For instance, 
some studies focus on simply concatenating multimodal features, while 
others apply more complex feature extraction and selection mecha-
nisms. Additionally, the weighting allocation of imaging data and 
radiomic features, fusion methods, and the design of deep learning 
network architectures can also impact the final predictive performance 
differently. Therefore, despite the promising prospects of multimodal 
feature fusion technology in the diagnosis and classification of breast 
diseases, optimizing feature fusion methods to enhance the model’s 
generalization ability across different datasets and clinical scenarios 
remains a key challenge in the field. This not only requires methodo-
logical innovation but also demands in-depth exploration of the adapt-
ability of different data sources, features, and algorithms in practical 
applications, with the aim of more accurately distinguishing between 
benign and malignant breast conditions and providing more reliable 
decision-support tools for clinical practice.

In this study, we propose a novel predictive framework that in-
tegrates radiomic features from T1WI, T2WI and DCE-MRI, along with 
deep learning features from these three sequences, to classify the benign 
and malignant lesions of breast diseases. The innovation of our research 
lies in employing a transfer learning approach for training after the 
fusion of radiomics and deep learning techniques for multi-sequence 
breast MRI, rather than simply merging their image features and using 
a classifier to output classification results. Notably, we also compared 
the performance of the fusion model with single-sequence models. The 
primary objective of this study is to establish a multimodal model for 
breast MRI that further enhances the accuracy of classifying the benign 
and malignant nature of breast diseases.

2. Materials and methods

2.1. Patient selection

This retrospective study was approved by the Ethics Committee of 
our hospital (Approval No.: W2024014), with a waiver of informed 
consent requirements. All patients who underwent breast MRI exami-
nation at the First Affiliated Hospital of Hebei North University from 
January 2022 to June 2024 were included. The inclusion criteria were as 
follows: (1) clinically diagnosed with breast disease; (2) underwent 
breast MRI examination within 2 weeks before surgery; (3) had com-
plete postoperative pathological results. The exclusion criteria were: (1) 
underwent chemotherapy or biopsy before the breast MRI scan; (2) had 
multifocal breast disease; (3) DCE sequences did not show the lesion 
area; (4) MRI image quality did not meet the inclusion requirements. A 
total of 314 patients were included, with 146 benign cases and 168 
malignant cases. The participant selection flowchart is shown in Fig. 1.

2.2. Imaging acquisition

All breast MRI examinations were performed on a Philips 3.0 T 
scanner. All patients were positioned prone, using a dedicated breast 
coil. The T1WI parameters were: TR = 541.7 ms, TE = 8.0 ms, slice 
thickness = 4 mm, and field of view (FOV) = 260×320 mm. The T2WI 
parameters were: TR = 3771.8 ms, TE = 90.0 ms, slice thickness =
4 mm, and FOV = 260×320 mm. The DCE-MRI parameters were: FOV =
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340×410 mm, TR = 4.3 ms, TE = 2.1 ms, and slice thickness = 4 mm. 
During the DCE-MRI scan, a high-pressure injector was used to admin-
ister a contrast agent, gadopentetate dimeglumine or gadoterate 
meglumine, via the median cubital vein at a dose of 0.1 mmol/kg and a 
flow rate of 2.5 ml/s. After the contrast injection, 30 ml of saline was 
injected at the same flow rate. The total scan time was 10 min and 15 s. 
The second-phase DCE-MRI images were used in this study.

2.3. Data acquisition and ROI delineation

The T1WI, T2WI, and DCE-MRI images of eligible patients were 
retrieved from the PACS system and exported in DICOM format. Two 
radiologists with over three years of experience independently reviewed 
the images without knowledge of the diagnostic results and reached a 
consensus. Regions of interest (ROIs) of the breast lesions were delin-
eated on the DCE-MRI images for each patient using 3D Slicer software 
(https://www.slicer.org). In cases of disagreement between the two 
radiologists, a third senior radiologist with over ten years of experience 
made the final decision.

2.4. Dataset partition

Each patient was labeled for breast cancer based on pathological 
results. The dataset was randomly divided into training, validation, and 
test sets in a ratio of 7:1:2, with the training set containing 215 cases, the 
validation set containing 38 cases, and the test set containing 61 cases. 
The neural network model was trained on the training set and validated 
on the validation set. Model training was stopped when the loss on the 
validation set continued to increase. Finally, the performance of the 
model was evaluated on the test set.

2.5. Radiomics feature extraction

The ROIs delineated on the DCE-MRI were then mapped onto the 
T1WI and T2WI sequences to obtain the ROIs for the T1WI and T2WI 
sequences. Using the PyRadiomics library (https://pyradiomics.readthe 
docs.io/en/latest/), the original DCE-MRI images and ROI images of 
each patient were input to extract radiomic features from the lesion 
area, resulting in 107 features (14 shape features, 18 first-order features, 
and 75 texture features). Radiomic features were then extracted from 

the T1WI and T2WI sequences of each patient. In total, 321 radiomic 
features were extracted for each patient from the T1WI, T2WI, and DCE- 
MRI sequences.

2.6. Deep learning model

The pixel values of the original breast MRI images for each patient 
were adjusted to a range of 0–1500, enhancing the contrast of the MRI 
and highlighting the lesion areas. Additionally, noise was removed from 
the original images using min-max normalization and mean normali-
zation methods. The slice with the largest ROI and the slices immedi-
ately above and below it were identified for each patient. The center 
coordinates of the ROI were mapped to the corresponding original image 
slices, and the area centered on these coordinates was cropped to 
224×224 pixels. These three cropped slices were then combined into a 
three-channel image and input into the ResNet50 [28]. Shared weights 
were used for deep learning feature extraction. The deep learning fea-
tures extracted from the T1WI, T2WI, and DCE-MRI, along with the 321 
radiomic features, were fused at the fully connected layer. The predic-
tion was then output using the Softmax function. Additionally, online 
data augmentation techniques were applied to the breast MRI dataset, 
with a 0.5 probability of random horizontal and vertical flips and 
random rotations within a range of [-10◦, 10◦]. Based on the number of 
fused features used in the fully connected layer, the following models 
were established: T1 model, T2 model, DCE model, DCE_T1_T2, and 
DCE_T1_T2_rad model. The overall framework of the multimodal breast 
MRI model is shown in Fig. 2.

In this study, the ResNet50 model from the deep learning neural 
network was used for feature extraction. The ResNet50 network was 
loaded with pre-trained parameters from ImageNet. However, during 
training, all parameters except those of the final fully connected layer 
were frozen, and only the parameters of the last layer were trained. The 
cross-entropy loss function was used to construct the loss function for 
training the proposed network. During model training, the SGD opti-
mizer with a weight decay factor of 5×10− 4 and a momentum of 0.9 was 
used. The batch size was set to 30. The initial learning rate was 0.01. The 
training epoch was set to 100. The learning rate was reduced to 0.5 of 
the original learning rate at epochs 10, 30, 40, and 100. All experiments 
were conducted on an Intel(R) Core(TM) i5–13490F 2.50 GHz and 
NVIDIA GeForce RTX 4060ti 16 GB GPU. The software environment was 
Windows 10 and the Python programming language (version 3.9, http 
s://www.python.org/). The Python packages used included gdcm, 
matplotlib, nibabel, numpy, opencv_python, Pillow, pydicom, sciki-
t_learn, scipy, SimpleITK, skimage, xlrd, xlwt, and pytorch.

2.7. Statistical methods

For normally distributed measurement data, the mean ± standard 
deviation (x±s) was used, while for non-normally distributed data, the 
median and interquartile range M (Q1, Q3) were used. The classification 
performance of the models was evaluated using the area under the 
receiver operating characteristic (ROC) curve (AUC), accuracy (ACC), 
sensitivity (SEN), specificity (SPE), positive predictive value (PPV), and 
negative predictive value (NPV). The DeLong test [29] was used to 
compare the significance levels of the AUC between the DCE_T1_T2_Rad 
model and the other four models. A P-value <0.05 was considered sta-
tistically significant.

3. Results

3.1. Patient characteristics

A total of 314 female patients were included in this study. Among 
them, 146 had benign lesions, including types such as intraductal pap-
illoma, fibroadenoma, adenosis, benign phyllodes tumor, breast abscess, 
and lipoma. The 168 malignant cases included types such as ductal 

Fig. 1. Participant Selection Flowchart, illustrating the steps for partici-
pant inclusion.
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carcinoma in situ, invasive ductal carcinoma, invasive lobular carci-
noma, mucinous carcinoma, lymphoma, inflammatory breast cancer, 
and intraductal papillary carcinoma. The clinical characteristics of the 
dataset are detailed in Table 1.

3.2. Train and validation loss

The loss results of the fusion model on the training and validation 
sets are shown in Fig. 3. When both loss curves gradually decreased and 
flattened, it indicated that the model was converging and stabilizing on 
both the training and validation sets, suggesting good fitting on the test 
set as well.

Fig. 2. Multi-modal Fusion Network Architecture; DCE: Dynamic Contrast-enhanced Breast MRI sequence; T2WI: T2-weighted Breast MRI sequence; T1WI: T1- 
weighted Breast MRI sequence; CNN: Convolutional Neural Network using ResNet50; PyRadiomics: Radiomics Feature Extraction; Concat: Feature Concatena-
tion; Softmax: Activation Function; Benign: Predicted as benign; Malignant: Predicted as malignant.

Table 1 
Clinical Features of the Data.

Classification Age 
(x±s)

Category Quantity Percentage

Benign (n = 146) 32.3 
±10.5

intraductal papilloma 25 45 %
fibroadenoma 90
adenosis 7
benign phyllodes 
tumor

9

breast abscess 13
lipoma 2

Malignant (n =
168)

51.6 
±12.4

ductal carcinoma in 
situ

25 54 %

invasive ductal 
carcinoma

83

invasive lobular 
carcinoma

53

mucinous carcinoma 1
lymphoma 1
inflammatory breast 
cancer

2

intraductal papillary 
carcinoma

3

footnote: This table describes the patient’s age, classification and proportion of 
benign and malignant tumors, and the number of patients in each tumor 
category. Fig. 3. Training and Validation Losses.
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3.3. Performance on the test set

3.3.1. Class activation maps
Using the class activation mapping technique with generalized gra-

dients [30], the regions of interest within the model could be visualized 
as heatmaps, thereby enhancing model interpretability. In the 
DCE_T1_T2_rad model, class activation maps were visualized for 
DCE-MRI images (Figure (a)), highlighting the regions of interest iden-
tified by the network model, thus enhancing the model’s interpret-
ability. Specifically, T1WI, T2WI, and DCE-MRI images were input into 
the network model, generating class activation maps for the DCE 
sequence (Figure (b)), which were then fused with the original images to 
obtain the combined display results (Figure (c)), as shown in Figs. 4 and 
5. Fig. 4 presented an example of invasive carcinoma, while Fig. 5
presented an example of fibroadenoma. The model was observed to 
accurately focus on the lesion areas, enabling correct diagnosis.

3.3.2. AUC of each model
In the single-sequence models, the AUC for the T1 model was 0.53 

(95 % CI: 0.39–0.68), the AUC for the T2 model was 0.62 (95 % CI: 
0.48–0.76), and the AUC for the DCE model was 0.79 (95 % CI: 
0.67–0.90). In the fusion models, the AUC for the DCE_T1_T2 model was 
0.94 (95 % CI: 0.87–1.00), and the AUC for the DCE_T1_T2_Rad model 
was 0.98 (95 % CI: 0.95–1.00). The ROC curves for each model are 
shown in Fig. 6, and other evaluation metrics are detailed in Table 2.

3.3.3. Confusion matrix of each model
To intuitively demonstrate the superiority of the proposed fusion 

models, we presented the confusion matrices for the five models, as 
shown in Fig. 7. The confusion matrices clearly illustrated the classifi-
cation performance of each model across different categories, further 
validating the accuracy advantage of the fusion models.

3.3.4. Comparison using Delong test
The Delong test [29] is a non-parametric statistical method used to 

compare the area under the ROC curve (AUC) of two or more models. 
Delong test was applied to assess the significance of differences in 
discriminative ability between the DCE_T1_T2_Rad model and the other 
four models. The results indicated that all pairwise comparisons yielded 
P-values < 0.05, suggesting significant differences among them (details 
in Table 3).

4. Discussion

The aim of this study was to explore the use of deep learning and 

radiomics to fuse features from T1WI, T2WI, and DCE-MRI in a dataset 
containing various breast diseases for the diagnosis of breast lesions. 
Overall, the proposed multi-sequence breast MRI fusion deep learning 
and radiomics model demonstrated superior diagnostic performance in 
the test set compared to single-sequence models and a fusion model with 
all three sequences. The model showed higher AUC and other evaluation 
metrics (ACC, SEN, SPE, PPV, NPV) also performed well.

In most studies, researchers often select specific datasets that may 
not comprehensively cover all types of breast tumors. However, in our 
study, the breast MRI data encompassed a wide range of types including 
intraductal papilloma, fibroadenoma, adenosis, benign phyllodes tumor, 
breast abscess, lipoma, ductal carcinoma in situ (DCIS), invasive ductal 
carcinoma (IDC), invasive lobular carcinoma (ILC), mucinous carci-
noma, lymphoma, inflammatory breast cancer, and intraductal papillary 
carcinoma. This comprehensive inclusion of both common and rare 
types of breast cancer enhances the applicability of our study results 
across diverse scenarios.

In our study, we first delineated ROIs on DCE-MRI and then mapped 
them onto T1WI and T2WI to create ROIs for these sequences, which 
were used for extracting radiomic features and cropping input images 
for deep learning. This approach was primarily chosen due to our limited 
data volume, aiming to effectively reduce noise interference by focusing 
on ROI features. Additionally, discrepancies in lesion boundaries 
observed between DCE-MRI and T1WI/T2WI sequences motivated us to 
map the DCE-MRI findings onto T1WI and T2WI, considering that lesion 
areas identified on DCE-MRI, even if not visualized on T1WI and T2WI, 
were considered abnormal and included within the ROI. Breast MRI 
provides more sensitive and detailed pathophysiological information 
[31], with T1WI, T2WI, and DCE-MRI being crucial for breast lesion 
diagnosis. We utilized the ResNet50 CNN to extract deep learning fea-
tures from breast MRI images for building a classification model. In 
single-sequence analysis, the AUC was lowest for the T1 model at 0.53, 
slightly higher for the T2 model at 0.62, and highest for the DCE model 
at 0.79, highlighting the higher diagnostic value of DCE-MRI in lesion 
diagnosis. Upon fusing data from all three sequences, the AUC signifi-
cantly improved to 0.94, demonstrating the deep learning model’s 
capability to learn discriminative features. Furthermore, leveraging the 
PyRadiomics library for radiomic feature extraction across these se-
quences and integrating these with deep learning features yielded a 
combined AUC of 0.98. This marked improvement underscores the 
enhanced performance of the model through the fusion of diverse im-
aging features, particularly integrating deep learning and radiomic 
features. These findings underscore the potential and significance of 
multimodal fusion in medical image analysis for substantially improving 
lesion diagnosis accuracy.

Fig. 4. Class activation map of a patient with invasive breast cancer in DCE-MRI.
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In previous studies, several deep learning methods have been pro-
posed for the diagnosis of breast lesions, achieving promising results. 
Tomoyuki Fujioka et al. [32] employed multiple deep learning networks 
to extract DCE-MRI network features for distinguishing benign from 
malignant breast lesions. The best-performing InceptionResNetV2 
model achieved an AUC of 0.90, comparable to the diagnostic accuracy 

of expert radiologists. However, this study utilized only a single 
DCE-MRI sequence. In our research, despite achieving an AUC of 0.79 
with a single DCE-MRI sequence, integrating T1WI, T2WI, and DCE-MRI 
sequences through deep learning boosted the AUC to 0.94. Furthermore, 
by incorporating radiomic features, the AUC further increased to 0.98. 
This highlights that the fusion of multimodal information significantly 
enhances model performance. In another study, Wang et al. [33]. 
employed transfer learning to classify benign and malignant breast MRI 
DCE-MRI images, fine-tuning MobileNet within CNNs and developing 
MobileNetV1 and MobileNetV2 models with variations in pre-training 
parameter usage (V1_False, V1_True, V2_False, and V2_True). While 
achieving a high accuracy of 0.98 for the best-performing V1_True 
model, their AUC was only 0.74, indicating an imbalance in model 
evaluation metrics. In contrast, our study not only fused multi-sequence 
images but also integrated deep learning and radiomics, demonstrating 
balanced performance across all evaluation metrics. These findings un-
derscore the efficacy of multimodal fusion approaches in enhancing the 
diagnostic accuracy of breast lesion classification models, aligning well 
with the standards of scientific literature.

AI has achieved revolutionary advancements in breast cancer diag-
nosis [34], and multimodal models have garnered significant attention 
due to their notable improvements in accuracy. Our fusion model 
demonstrates high accuracy and can be widely applied in clinical set-
tings. Firstly, it can be used for breast cancer screening, facilitating early 
diagnosis and treatment, thereby improving the survival rate and quality 
of life for breast cancer patients [35]. Secondly, limiting pathological 
evaluations to only those lesions predicted to be malignant would 
significantly reduce the need for preoperative biopsies. On the other 
hand, current clinical diagnosis primarily relies on radiologists inter-
preting images, and in large hospitals, the high patient volume can lead 
to human fatigue, causing subtle features of lesions to be overlooked, 
resulting in misdiagnoses. Moreover, for less experienced younger doc-
tors, our model can enhance their diagnostic accuracy regarding lesions. 

Fig. 5. Class activation map of a patient with fibroadenoma in DCE-MRI of the Breast.

Fig. 6. ROC Curves of Various Models.

Table 2 
Evaluation metrics of models on the test set.

model AUC 
(95 % CI)

ACC 
(95 % CI)

SEN 
(95 % CI)

SPE 
(95 % CI)

PPV 
(95 % CI)

NPV 
(95 % CI)

T1 0.53(0.39–0.68) 0.48(0.33–0.62) 0.44(0.29–0.59) 0.52(0.37–0.67) 0.54(0.39–0.68) 0.42(0.28–0.57)
T2 0.62(0.48–0.76) 0.56(0.41–0.70) 0.49(0.34–0.63) 0.65(0.52–0.79) 0.65(0.52–0.79) 0.49(0.34–0.63)
DCE 0.79(0.67–0.90) 0.72(0.59–0.85) 0.54(0.40–0.69) 0.96(0.91–1.00) 0.95(0.90–1.00) 0.61(0.47–0.75)
DCE_T1_T2 0.94(0.87–1.00) 0.85(0.76–0.95) 0.80(0.69–0.91) 0.92(0.86–0.99) 0.93(0.87–1.00) 0.77(0.66–0.89)
DCE_T1_T2_rad 0.98(0.95–1.00) 0.93(0.87–1.00) 0.97(0.93–1.00) 0.89(0.81–0.97) 0.92(0.85–0.99) 0.96(0.91–1.00)

The table describes the AUC, accuracy (ACC), sensitivity (SEN), specificity (SPE), positive predictive value (PPV), negative predictive value (NPV), and their confidence 
intervals (CI) for each model.
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Thus, our multimodal model can better assist clinical practice [36,37].
However, our study still has some limitations. First, when extracting 

radiomic features, we relied on manual delineation of the ROIs, which 
may introduce certain subjective biases [38]. This bias not only affects 
the accuracy of the features but may also compromise the performance 
of the final model. In the future, we will explore more objective neural 
network approaches for ROI segmentation. Second, our data was 
sourced from a single center, which may lead to selection bias. Due to 
differences in equipment, operational procedures, and patient popula-
tion characteristics among various medical institutions, a single-center 
dataset may not adequately represent broader clinical realities, 
limiting the generalizability of our findings in real-world screening [39]. 
Thus, the applicability of our results in different populations needs 
further validation. In the future, obtaining a large-scale, multicenter 
dataset will be crucial for training and validating deep learning models, 
as it will enhance the model’s generalization capabilities and reliability 
in practical clinical applications. Third, the current application of AI in 
image analysis lacks unified standards and protocols. There are signifi-
cant discrepancies between the existing public datasets and the T1WI, 
T2WI, and DCE-MRI data we used, making it difficult to directly expand 
our training data. Therefore, we plan to utilize neural network 

technology to register different image data in the future, reducing the 
differences between datasets and thereby improving model performance 
and adaptability. Fourth, this study is retrospective and still contains 
many uncertainties. When partitioning the dataset, we randomly 
divided it into training, validation, and test sets in a 7:1:2 ratio. This 
random division may lead to variations in results across different splits. 
Additionally, retrospective studies often exclude patient data that do not 
meet inclusion criteria, resulting in selection bias that lowers the 
model’s simulation of real breast cancer data [40]. Therefore, further 
prospective validation is needed. Lastly, our research mainly focused on 
exploring the image features of T1WI, T2WI, and DCE-MRI, while not 
addressing other imaging sequences, ultrasound examinations, 
mammographic images, and clinical laboratory data [41]. As more 
datasets become available in the future, we will further investigate the 
integration of multimodal features to enhance the diagnostic capabilities 
for breast lesions.

In summary, despite some limitations, the developed multimodal 
fusion model achieves high accuracy in diagnosing breast lesions. For 
certain suspicious lesions, biopsies are often chosen to pursue aggressive 
treatment. If our model is used for diagnosis, predicting suspicious le-
sions as malignant before proceeding to pathology can reduce unnec-
essary biopsies. However, it is crucial to explain the diagnostic process of 
the AI model, as visualizing the model will enhance patient under-
standing. Focusing on deploying a tool that is both highly accurate and 
easy to interpret should be a priority.

5. Conclusions

Our study demonstrated that the multimodal fusion of breast MRI 
sequences using radiomics and deep learning can enhance the diagnosis 
of breast lesions, potentially improving the automated diagnostic per-
formance of breast MRI. This approach aims to reduce subjective 

Fig. 7. Confusion Matrices of Each Model; (a) the confusion matrix for the T1 model; (b) the confusion matrix for the T2 model; (c) the confusion matrix for the DCE 
model; (d) the confusion matrix for the DCE_T1_T2 model; and (e) the confusion matrix for the DCE_T1_T2_rad model.

Table 3 
Delong Test Comparison of DCE_T1_T2_Rad Model with Other 
Models.

Model P-values

DCE_T1_T2_rad VS T1f <0.01
DCE_T1_T2_rad VS DCE T2 <0.01
DCE_T1_T2_rad VS DCE <0.01
DCE_T1_T2_rad VS DCE_T1_T2 <0.01

f VS: Versus
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interference and enhance diagnostic consistency.
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