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Abstract

Background

Automatic and semi-automatic segmentation methods for PET serve as alternatives to man-

ual delineation and eliminate observer variability. The robustness of these segmentation

methods against statistical fluctuations arising from variable size, contrast and noise are

vital for providing reliable clinical outcomes for diagnosis and treatment response assess-

ment. In this study, the performances of several segmentation methods have been investi-

gated using the torso NEMA phantom against statistical fluctuations.

Methods

The six hot spheres (0.5-27ml) and the background of the phantom were filled with different

activities of 18F to yield 2:1 and 4:1 contrast ratios. The phantom was scanned on a TrueV

PET-CT scanner for 120 minutes. The images were reconstructed using OSEM (4itera-

tions-21subsets) for different durations (15, 20, 34 and 67 minutes) to represent different

noise levels and smoothed with a 4-mm Gaussian filter. Each sphere with different settings

was delineated using a fixed 40% threshold (40T), fuzzy clustering mean (FCM), adaptive

threshold and region based variational (C-V) segmentation methods and compared with the

gold standard volume, which was estimated from the known diameter and position of each

sphere.

Results

The smallest three spheres at the 2:1 contrast level are not evaluable for the 40T method.

For the other spheres, the 40T method grossly overestimates the volumes and the seg-

mented volumes are highly dependent on the statistical variations. These volumes are the

least reproducible (80%) with a mean Dice Similarity Coefficient (DSC) of 0.67 and 90%

classification error (CE). The other three methods reduce the dependency on noise and con-

trast in a similar manner by providing low bias (<10%) and CE (<25%) as well as a high DSC

(0.88) and reproducibility (30%) for objects >17mm in diameter. However, for the smallest
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three spheres at a 2:1 contrast level, the performances of all three methods were signifi-

cantly low, with the adaptive method being superior to the FCM and C-V (mean bias 168%

and 350%, mean DSC 0.65 and 0.50, mean CE 227% and 454% for the adaptive and other

two methods (approximately similar for FCM and C-V), respectively).

Conclusions

The segmentation accuracy of the fixed threshold-based method depends on size, contrast

and noise. The intensity thresholds determined by the adaptive threshold methods are less

sensitive to noise and therefore, the segmented volumes are more reproducible across dif-

ferent acquisition durations. A similar performance can be achieved with the FCM and C-V

methods. Though, for small lesions (< 2cm diameter) with low counts and contrast, the

adaptive threshold-based method outperforms the FCM and C-V methods, and the perfor-

mance of neither of these methods is optimal for volumes <2cm in diameter. These three

methods can only reliably be used to delineate tumours for diagnostic and monitoring pur-

poses provided that the contrast between the tumour and background is not below a 2:1

ratio and the size of the tumour does not fall not below 2cm in diameter in response to treat-

ment. They can also be used for different radiotracers with variable uptake. However, the

FCM and C-V methods have the advantage of not requiring calibrations for different scan-

ners and settings.

Introduction

Positron emission tomography (PET), a functional imaging technique, provides 3D images of

the whole body. The availability of a wide range of physiologically relevant imaging contrast

agents also makes PET a flexible imaging modality. Functional or metabolic volumes along

with standardized uptake values (SUVs) extracted from 3D whole-body PET images are

becoming a vital component in early disease detection and staging [1, 2], treatment planning

[3, 4] and assessing response to therapy [5–7] in oncology.

Functional volume segmentation of clinical images typically relies on the manual delinea-

tion of regions of interest (ROIs) by expert radiologist either directly on PET images or using

co-registered anatomical images (CT or MRI) [8, 9]. The accuracy of the manual ROI delinea-

tion on PET images is very much dependent on the intensity window chosen for visualization

[10]. Additionally, the precision and accuracy of the co-registration procedures are limited

[11] and co-registration does not adequately account for movement [12, 13]. Furthermore,

anatomical images do not always necessarily relate to the underlying physiological process.

Irrespective of the method employed, manual delineation of ROIs is always labourious, highly

operator dependent, requires significant knowledge of the local anatomy and may be expected

to produce significant intra and interobserver variability [7, 14].

To overcome these limitations of the manual segmentation method, several automatic and

semi-automatic segmentation methods have been proposed over the years [15–18]. The valida-

tion of the precision and accuracy of these algorithms poses different sorts of challenges [19].

For validation purposes, manual delineation is still considered as the gold standard for clinical

images. However, the gold standard manual delineation method has its own limitations, as

mentioned earlier. Moreover, since the anatomical boundary of a lesion provided by anatomi-

cal CT or MRI images does not necessarily overlap with the functional boundary provided by

Reproducibility, robustness and accuracy of PET image segmentation methods against statistical fluctuations

PLOS ONE | https://doi.org/10.1371/journal.pone.0219127 July 8, 2019 2 / 18

https://doi.org/10.1371/journal.pone.0219127


PET, the use of anatomical CT or MRI images to validate a PET segmentation algorithm is

also restricted. Validating PET image segmentation techniques with macroscopic surgical

specimens for clinical studies [19–21] is another alternative, provided that shrinkage of the

specimen after surgical excision is appropriately considered [22], and can only be considered

as a surrogate of the actual imaging data [23]. However, this validation procedure is not suit-

able across multiple settings. Experimental or simulated phantom studies can overcome these

limitations as the phantom can either be scanned or simulated with different settings [24], and

thus phantoms are now widely used to validate PET segmentation algorithms [25–28]. A

recent study proposes a reconstruction frame-work for simultaneous estimation of the activity

distribution, parametric images and segmentation [29].

The performances of different automatic and semi-automatic segmentation methods have

been evaluated using different parameters for different scanners, scanning protocols and

reconstruction algorithms by several groups and hence, the selection of a single common

parameter for validation is challenging [30]. Moreover, the size, contrast and signal to noise

ratio (SNR–representing counts or scan duration) of different lesions are subject to change

due to intra and intertumour uptake variability within and between patients both before and

after treatment [8, 31]. The changes in contrast and SNR can also result from the use of differ-

ent radiotracers [32, 33].

The aim of this study is to investigate the robustness of four most commonly used PET

image segmentation algorithms with different parameters against variations in size, contrast

and SNR using a torso NEMA phantom. The methods were chosen based on the PET segmen-

tation literature. The reference volume was estimated using the calculated boundaries based

on the known diameter and position of each sphere of the phantom, which serves as an alter-

native to the ground truth.

Materials and methods

Phantom data acquisition

The torso NEMA phantom contains six spheres with diameters of 10, 13, 17, 22, 28 and 37

mm, which correspond to volumes of 0.52, 1.15, 2.57, 5.58, 11.49 and 26.52 cm3, respectively,

that were filled with 18F solutions to yield two different contrast ratios between the homoge-

neous hot spheres and the cold uniform background (2:1 and 4:1). In this article, the diameter

and volume will be used interchangeably to indicate a particular sphere. The activity ratio

between the spheres and background are shown in Table 1.

The phantom data were acquired in 3D mode on the TrueV PET-CT scanner (Siemens,

USA) for 120 minutes, which provides 109 image planes or slices covering a 21.6 cm axial

FOV (field of view). The images were reconstructed into a 256×256×109 matrix with voxel

dimensions of 2.67×2.67×2.00 mm using an OSEM reconstruction algorithm with 4 iterations

and 21 subsets for five different scan durations (900, 1200, 2000 and 4000 seconds correspond-

ing to 15, 20, 33.3 and 66.6 minutes) to represent different levels of noise. The starting time of

each static frame was shifted to reconstruct five different non-overlapping and overlapping

realizations for all durations (Fig 1). All the reconstructed images were smoothed with a 4-mm

Table 1. Activity concentration of the spheres and background for different contrasts.

2:1 (kBq/ml) 4:1 (kBq/ml)

Sphere 1668.52 2775.43

Background 838.59 697.24

Measured Ratio 1.99:1 3.98:1

https://doi.org/10.1371/journal.pone.0219127.t001
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FWHM (full width at half maximum) Gaussian filter after correcting for decay. The true vol-

ume of interest (VOITrue) was estimated using the boundaries calculated from the known

diameter and position of each sphere.

Segmentation methods

All the spheres were delineated using four different segmentation methods. Each segmentation

method was applied separately on each roughly delineated volume of interest (VOI) that con-

tained only one sphere to generate the corresponding VOIs. The first delineation method was

with a fixed threshold set to 40% (I40T) of the maximum intensity (IMax) within the sphere with

the delineated VOI, noted as VOI40T [34, 35]. The second method was a fuzzy c-mean (FCM)

clustering method with two clusters to provide a VOIFCM [36]. The FCM method defines the

varying degrees of membership of each voxel in multiple clusters and is based on the minimi-

zation of the following objective function:

Dm ¼
PI

i¼1

PJ
j¼1
mm

ij kxi � cjk
2

ð1Þ

Where I is the number of data points, J is the number of clusters, xi is the ith voxel, cj is the

centre of the jth cluster, and mm
ij is the degree of membership of xi in the jth cluster, with m

being a weighting exponent to control for the fuzzy aspect of the image and is usually set to 2.

The sphere and background are defined as the two clusters for the purpose of phantom image

segmentation.

Fig 1. Start and end times to generate five realizations for 900, 1200, 2000, 4000 second reconstruction durations. For the 2000 and 4000 second reconstruction

durations, the start and end times of the static frames had to be overlapped to generate five realizations. In total, twenty 3D PET images were reconstructed from 7200

seconds of list-mode data.

https://doi.org/10.1371/journal.pone.0219127.g001
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The third method of estimating the VOI was an adaptive threshold-based method [37],

where the adaptive threshold intensity (IAdaptive) is given by the following equation:

IAdaptive ¼ ða� I70TÞ þ ðb� IBGÞ ð2Þ

where I70T is the mean intensity in a contour containing all voxels with a value greater than

70% of the IMax in the sphere, and IBG is the mean background intensity within a sphere that is

26.52 cm3 in size and is located away from all the other spheres to avoid partial volume effect

(PVE). The α and β parameters for the adaptive threshold were calculated for each acquisition

duration using the mean values of the optimal cutoff intensities (Ioptimal) of the five realizations

of both contrast ratios. The IOptimal of each hot sphere was derived using the optimal threshold

(TOptimal) and IMax.

IOptimal ¼ TOptimal � IMax ð3Þ

where TOptimal is the percentage threshold value of Imax that provides the best matched thre-

sholded volume for the VOITrue of each sphere. The optimized values of α and β parameters

for all the acquisition durations are shown in Table 2.

The threshold value (TAdaptive) is then defined by the percentage ratio of IAdaptive to IMax.

TAdaptive ¼ 100�
IAdaptive

IMax
ð4Þ

Three different ways to calculate the α and β parameters were considered and compared.

First, the adaptive threshold-based volume of interest (VOIAdaptive) was delineated using the

IAdaptive value that was derived using the α and β parameters of each individual acquisition

duration. Two other different volumes of interests, VOIA-900 and VOIA-4000, which correspond

to two different TAdaptive values derived from IA-900 and IA-4000, were generated for all spheres

and acquisition durations using only the α and β values obtained from the 900 second (A-900)

and 4000 second (A-4000) acquisition duration data, respectively. The purpose of generating

three different segmented volumes of interest using the adaptive threshold method was to

investigate the effects of noise on α and β.

The final segmentation method considered was region based variational method proposed

by Chan and Vese (C-V) [38] to provide the segmented volume VOIC-V. This method was con-

sidered over an edge-based method [39] because the boundaries of the lesions in the PET

images cannot necessarily be defined by a gradient. The method works by minimizing an

energy function E(c1,c2,C) related to a particular segment of the image O(x,y,z). The variable

curve, C segregates the images O in two regions c1 and c2. The energy function E(c1,c2,C) is

given by the following equation:

Eðc1; c2;CÞ ¼ m:LengthðCÞ þ W:areaðinsideðCÞÞ þ l1

R

insideðCÞjOðx; y; zÞ � c1j
2dxdydz

þl2

R

outsideðCÞjOðx; y; zÞ � c2j
2dxdydz

ð5Þ

Table 2. Values of and for adaptive thresholds of the different acquisition durations.

Duration α β

900 Seconds 0.40 0.59

1200 Seconds 0.41 0.57

2000 Seconds 0.42 0.59

4000 Seconds 0.44 0.52

https://doi.org/10.1371/journal.pone.0219127.t002
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where μ�0,ϑ�0,λ1,λ2>0 are fixed parameters and are typically fixed to λ1 = λ1 = 1 and ϑ = 0.

The method will be referred to as the C-V method.

Performance analysis metrics

Along with the conventional measurements of change in the delineated VOIs due to changes

in sphere size, noise and contrast, the percent bias of segmented volume, Dice similarity coeffi-

cient (DSC) and classification error (CE) were also analysed for each segmentation method.

The percent bias is calculated with the following equation:

%Bias ¼ 100�
ðVOIMean � VOITrueÞ

VOITrue
ð6Þ

where is the mean of the segmented volumes of the five realizations, and DSC provides quanti-

tative measures of the spatial overlap index with VOITrue. DSC can be used to evaluate the seg-

mentation accuracy, and is given by the following equation:

DSC ¼
2ðVOITrue \ VOISegÞ
VOITrue þ VOISeg

ð7Þ

where \ is the intersection, and is the segmented volume. A DSC value of 0 indicates complete

non-overlap, and a value of 1 indicates a complete match or overlap between the two volumes.

Classification error (CE) is defined as the following:

CE ¼ 100�
ðPCEþNCEÞ

VOITrue
ð8Þ

where PCE (positive classification error) refers to the background voxels that are classified as

voxels belonging to the sphere. In contrast, NCE (negative classification error) refers to the

voxels within the sphere belonging to the background. A high CE value is indicative of poor

segmentation accuracy.

Results

For the threshold-based segmentation, different threshold intensities (IOptimal, I40T and IAdap-

tive) are estimated as a fraction of IMax within the lesion; thus, it is important to understand the

relationship of these intensities with IMax and their dependencies on lesion size and varying

data conditions, e.g., contrast and noise. The mean of IMax, IOptimal, I40T and IAdaptive of the five

realizations as a function of the log of the segmented volume of each method is shown in Fig 2.

IMax is the lowest for the 10 mm sphere and highest for the 37 mm sphere for all acquisition

durations (55% to 70% difference between these two spheres based on acquisition durations).

However, for any given size, IMax is the lowest for 4000 second acquisitions (6.34 for 37 mm

sphere for a contrast of 2:1) followed by 2000, 1200 and 900 second acquisitions (6.71, 7.16

and 7.47 respectively, approximately 18% difference between the 4000 and 900 second acquisi-

tion durations). The differences between IMax for the different acquisition durations decrease

as the size of sphere decreases (e.g., 3.91, 4, 4.14 and 4.31 are the intensity values for 4000,

2000, 1200 and 900 second acquisition durations for the smallest sphere for contrast 2:1 yield-

ing a 10% difference between the 4000 and 900 second durations). The difference is even

smaller for the smallest sphere for contrast 4:1 (6.60, 6.67, 6.64 and 6.38 for 4000, 2000, 1200

and 900 second acquisition durations, respectively, a 3% difference).

Since IMax is higher for longer acquisition durations (i.e., low noise), the 40T threshold

value is always higher for these acquisition durations that for the short durations for lesions
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larger than 17 mm in diameter for both contrasts. The VOI40T for the 4000 second acquisition

duration is approximately 80% bigger than that of 900 second acquisition duration (Figs 3 and

4). For the same given activity, IMax is always lower for smaller volumes due to PVEs [40]. IMax

increases as the volume increases and remains the same after a certain volume, especially for

low noise cases.

IOptimal shows less noise dependency, and the values are similar for both contrasts irrespec-

tive of the acquisition duration (ranging from 3.06 for 4000 seconds and 10 mm spheres to

3.68 for 900 seconds and 37 mm spheres for a contrast of 2:1 with a maximum difference of

25%, whereas a maximum difference of 75% is observed for IMax). The difference amongst

acquisition duration is also less noticeable, especially for contrast 4:1. Since IOptimal is related to

IMax via TOptimal (Eq 3), TOptimal increases with acquisition duration, decreases with size and is

inversely related to IMax to compensate for the noise for shorter acquisition durations. I40T is

the highest for the 900 second duration (ranging from 1.72 to 2.99, depending on the size, for a

contrast of 2:1 and 2.55 to 5 for a contrast of 4:1) and lowest for the 4000 second duration

(1.57 to 2.54 for a contrast of 2:1 and 2.64 to 4.50 for a contrast of 4:1); the values become stable

for spheres larger than 17 mm in diameter. The values of I40T are always lower than those for

IOptimal. The differences between I40T and IOptimal decrease the most for the 900 second acquisi-

tion durations, followed by the 1200, 2000 and 4000 second durations for the biggest three

spheres. The differences also decrease as the size of the spheres increases for a contrast of 4:1.

IAdaptive, estimated using Eq 2, has the highest value for the 4000 second duration (ranging

from 1.67 to 3.72 for a contrast of 2:1 and 2.28 to 5.55 for a contrast of 4:1, depending on the

size of the sphere) and the lowest value for the 900 second duration (1.48 to 3.44 for a contrast

of 2:1 and 1.70 to 4.98 for a contrast of 4:1); the values are in reverse order in terms of

Fig 2. Voxel activity and percent threshold against the log of the volumes. (A) Voxel activity against the log of the volume for both contrasts for all acquisition

durations. The log of the volume was used to highlight the separation between the small spheres. IOptimal, I40T and IAdaptive are the intensities derived by applying the

optimal, 40% and adaptive thresholds, respectively. (B) The optimal (TOptimal) and adaptive (TAdaptive) percentage thresholds against the log of the volume for both

contrasts and acquisition durations.

https://doi.org/10.1371/journal.pone.0219127.g002
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acquisition durations compared to those of IMax and I40T. The values of IAdaptive do not change

significantly for spheres larger than 5.58 cm3 (equivalent log volume of 1.72 cm3) for a contrast

of 2:1. Since TAdaptive is directly proportional to IAdaptive (Eq 4) and inversely proportional to

IMax, the values of TAdaptive increase with the acquisition duration. TAdaptive has the highest

value for the 4000 second duration (ranging from 47.45 to 61.09 for a contrast of 2:1 and 34.03

to 48.02 for a contrast of 4:1, depending on the size) and the lowest value for the 900 second

duration (38.83 to 48.43 for a contrast of 2:1 and 28.03 to 39.23 for a contrast of 4:1). The order

of TOptimal and TAdaptive values are opposite to each other with respect to acquisition duration.

The log of the volumes of all five realizations segmented by different methods along with

the mean and standard deviations are shown in Figs 3 and 4 for contrasts of 2:1 and 4:1,

respectively. The representative segmentation results of the three methods (40T, FCM, adap-

tive and C-V) along with the true volume of the 28 mm sphere for both contrasts are shown in

Fig 5.

The 40T method always overestimates the volumes. The overestimation is consistent irre-

spective of the acquisition duration for 10 mm, 13 mm and 17 mm spheres for both contrasts,

and the segmented volume is several times larger than the true volume and matches the size of

the roughly delineated VOI. For large spheres, the overestimation of the volumes by 40T

increases as the acquisition duration increases for contrast 2:1 (+110% to 291% bias based on

acquisition durations for the 37 mm sphere). The differences in overestimation between acqui-

sition durations decreases with the increase in contrast (+8 to 17% bias for a contrast of 4:1 for

the same sphere).

Fig 3. Log of all the segmented volumes for contrast 2:1. Each circle represents the log of the segmented volume of each realization. The thick black line within each

coloured rectangle represents the mean of the five realizations of each segmentation method. The maximum and minimum limit of each rectangle is represented by the

meanSD (standard deviation). The dotted red line is the log of the true volume.

https://doi.org/10.1371/journal.pone.0219127.g003
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For a contrast of 2:1 (Fig 3), both the FCM and C-V methods significantly overestimate the

volumes for 10 mm and 13 mm spheres. The rate of volume overestimation decreases as the

contrast increases (from 13% to 5% for the 37 mm sphere, as shown in Figs 3 and 4). For the

17 mm sphere, the FCM and C-V methods overestimate the volumes for 900, 1200 and 2000

second acquisition durations for a contrast of 2:1 (+233% to 66% bias based on the acquisition

durations). At the same contrast level, both the FCM and C-V methods match the true volume

more closely for spheres larger than 17 mm in diameter than for small spheres, with a bias of

15%. However, the mismatch of volumes segmented by the FCM and C-V methods is further

reduced for a contrast of 4:1 for large spheres. For large spheres, both methods are less depen-

dent on noise. Similar to the FCM method, all the three adaptive methods show less depen-

dency on the acquisition durations, and the volumes estimated by the different methods

closely match with the true volume, except for the smallest two spheres (approximately 7%

across acquisition durations). The differences in volume estimation between the three different

adaptive threshold methods with different α and β parameters are not noticeable.

Reproducibility, as represented by standard deviation (SD), of the five realizations is shown

in Figs 3 and 4 for contrasts of 2:1 and 4:1, respectively. Fig 3 shows that for a 2:1 contrast, the

segments from the 40T method are roughly the same delineated areas for the three smallest

spheres, hence the reproducibility of these spheres are not evaluable. For the three biggest

spheres, the SD for VOI40T decreases as the acquisition duration increases (14.93, 11.95, 4.86

and 1.97 for 900, 1200, 2000 and 4000 second acquisition duration, respectively, for the 37 mm

Fig 4. Log of all the segmented volumes for contrast 4:1. Each circle represents the log of the segmented volume of each realization. The thick black line within each

coloured rectangle represents the mean of the five realizations of each segmentation method. The maximum and minimum limit of each rectangle is represented as the

meanSD (standard deviation). The dotted red line is the log of the true volume.

https://doi.org/10.1371/journal.pone.0219127.g004
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sphere). The reproducibility improved between 2 between the different acquisition durations

compared to that of the 900 second acquisition. With an increase in contrast, the performance

of the 40T method improves for the smallest three spheres. The performance of the 40T

method for the other three spheres are also significantly improved (SD 0.74, 0.73, 0.65 and

0.40 for 900, 1200, 2000 and 4000 second acquisition duration, respectively, for the 37 mm

sphere). In this case, the reproducibility improved between 1 between the different acquisition

durations compared to that of the 900 second acquisition. The reproducibility between the

contrasts of 2:1 and 4:1 for the biggest three spheres increases between 80 to 95%, with the big-

gest improvement being observed for the shortest acquisition duration of 900 seconds. The

reproducibility for the FCM, C-V and adaptive threshold methods significantly improves for

these spheres compared to that of the 40T method. For the 2:1 contrast, all three methods,

Adaptive, C-V and FCM, provide similar SDs ranging between 0.52 to 0.84 (an improvement

of 60–95% based on the acquisition duration compared to that of the 40T method). At a con-

trast of 4:1, the SD range for these methods is 0.07 to 0.19—a reduction of 75 to 87% compared

to that at a contrast of 2:1, and the biggest improvement is observed for the shortest acquisition

duration of 900 seconds. These results indicate that with the increase in contrast, the reproduc-

ibility of the volume segmentation increases, and the improvement is more remarkable for

high noise conditions.

Fig 5. Representative contours and VOIs of the four segmentation methods along with the true volume for a 28

mm sphere. First row: contrast 2:1 and 900 seconds; second row: contrast 2:1 and 4000 seconds; third row: contrast 4:1

and 900 seconds; and fourth row: contrast 4:1 and 4000 seconds.

https://doi.org/10.1371/journal.pone.0219127.g005
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The mean DSCs of the five realizations for all methods at both contrasts are shown in Fig 6.

The DSC increases as the size of the sphere and contrast increase for all methods. The DSCs

for the FCM, A-900, A-4000, adaptive and C-V methods increase as the acquisition duration

increases. However, the DSC for the 40T method decreases as the acquisition duration

increases for spheres larger than 17 mm, especially for a contrast of 2:1. For 22 mm, 28 mm

and 37 mm spheres, the differences in DSCs between the FCM, A-900, A-4000, adaptive and

C-V methods are insignificant at both contrasts. At a contrast level of 2:1, the DSC for the

FCM method is smaller than that for the adaptive threshold-based methods for the 10 mm, 13

mm and 17 mm spheres. A similar trend is observed for the C-V method. The 40T method

always provides a lower DSC than all other methods, except with the 28 mm and 37 mm

spheres at a contrast level of 4:1.

The mean percentage CEs, along with the standard deviations as error, are shown as bar

graphs in Fig 7. The CE decreases as the size of the sphere and contrast increase for the FCM,

A-900, A-4000, adaptive and C-V methods. In contrast, the CE increases as the acquisition

duration increases but decreases with high contrast for the 40T method. The CE for the 40T

method is always higher than that of the other four segmentation methods, except for a 900

second acquisition duration with the 28 mm sphere at a contrast of 4:1. The performance of

both the FCM and C-V methods is inferior compared to that of the different adaptive methods

for the 13 mm and 17 mm spheres at a contrast of 2:1 and for the 10 mm sphere at a contrast

of 4:1. For the 13 mm, 17 mm and 22 mm spheres at a contrast of 4:1, the FCM method per-

forms better than the C-V method, and the performance is comparable to that of all the adap-

tive methods in terms of percentage CE.

Discussion

PET is currently being used for different clinical purposes ranging from diagnosis [1] and

treatment planning [3] to early response assessments [8]. To exploit the full potential of PET

for reliable clinical outcomes, robust and accurate delineations of lesions from PET images are

vital. Fully automatic and semi-automatic segmentation methods are being developed to

remove the influence of intra- and interobserver variability in PET lesion segmentation. The

accuracy and robustness of these segmentation methods have generally been assessed against

certain criteria [19]. However, these criteria are not fixed for different tracers and can change

for different clinical settings. The objective of this study is to quantitatively assess the perfor-

mance of four different PET lesion segmentation methods for different statistical settings to

determine the most suitable segmentation method against statistical fluctuations. Before seg-

menting images with the four segmentation methods used in this study for comparison, all

images were smoothed with a 4 mm Gaussian filter to reduce the effects of noise.

This investigation confirms that though the widely used fixed threshold-based automatic

segmentation method is straightforward to implement, it is highly dependent on the maxi-

mum intensity within the lesion (IMax). IMax is also dependent on the size of lesion, contrast

and acquisition duration [24] and thus, the segmentation results can differ with the variations

of noise in the image. For small spheres, the PVE has more significant influence than acquisi-

tion duration and therefore, the segmented volume using a fixed threshold of 40% does not

depend on the noise, and roughly, the segmented volume is generally the same delineated area.

This study also confirms that the magnitude of overestimation, and hence voxel classification

errors, using the 40T method result from the combined effects of the size of the lesion and con-

trast [34] as well as the acquisition duration [41]. Because of this reason, for small objects

where PVE plays a main role, the 40% fixed threshold may not provide bias-free estimates of

the volumes. Though the performance of the 40% threshold method may improve with high
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Fig 6. Mean DSCs of the five realizations for all six spheres at a contrast of 2:1 (top two rows) and a contrast of 4:1 (bottom two rows) for all segmentation methods

considered (40T, FCM, A-900, A-4000, adaptive and C-V).

https://doi.org/10.1371/journal.pone.0219127.g006
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Fig 7. Mean percentage classification error of the five realizations for all six spheres at a contrast of 2:1 (top two rows) and a contrast of 4:1 (bottom two rows) for all

segmentation methods (40T, FCM, A-900, A-4000, adaptive and C-V). The error bars indicate the standard deviations of the means.

https://doi.org/10.1371/journal.pone.0219127.g007
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contrast and large spheres, the problem of volume overestimation will still remain. Another

finding of this study is that the fixed threshold-based segmentation method is a suboptimal

automatic segmentation method that does not provide the same VOI in response to only a

reduction in contrast. The fixed threshold-based segmentation method also provides subopti-

mal segmented volumes even for two different lesions of same size in the same patient with

varying contrasts.

The standard deviations of the five realizations representing the reproducibility of the seg-

mented volumes indicate that reproducibility increases as the acquisition duration increases

for all the methods. However, the reproducibility of the volumes with the fixed threshold

method is the lowest, and the FCM, C-V and adaptive methods have similar performances for

the largest three spheres (>17 mm).

The adaptive threshold method removes some of the aforementioned limitations by allow-

ing the threshold value to be determined by the initial rough estimate of the activity within the

lesion (I70T) and background (IBG). To determine the threshold value, the method also requires

the calculations of two parameters (and) using the optimal threshold (IOptimal), where IOptimal

is defined as the percentage of IMax that provides the volume closest to the true volume. Since

the true volume for the tumour is not known, a phantom with different sizes of spheres with

known volumes are generally used to determine IOptimal. In this study, the effects of noise on

the parameters and that are used to determine the adaptive threshold intensity have been

investigated. The values of decrease and increase as noise increases. In contrast, I70T increases

with more noise. Since IAdaptive is related to I70T via, the influence of noise is lower for the

adaptive threshold method as decreases with increasing noise, which minimizes the effect

increasing I70T values due to noise. Nonetheless, IAdaptive still shows noise dependency for high

noise and low contrast conditions as IAdaptive is related to IMax via I70 (Eq 2).

The optimal results are obtained when the and values correspond to the same noise level.

The segmentation results using and values derived from the longest acquisition duration

closely match with the optimal results. Since it is cumbersome to derive and values for each

noise level, the and values estimated using the longest acquisition duration can be used for the

other noise levels. Though an adaptive threshold can minimize the effects of noise on the seg-

mented volumes for spheres larger than 13 mm diameter, one of its major drawbacks is that

the and parameters need to be calibrated for different PET scanners and data acquisition

protocols.

The segmentation volumes estimated using the FCM and C-V methods are less dependent

on noise. However, the dependency of the FCM and C-V methods is higher for low contrast

and smaller spheres (less than 2 cm diameter) compared to that of the adaptive method. A sim-

ilar observation has previously been reported for the FCM method [42]. The FCM, C-V and

adaptive threshold methods overestimate volumes for small objects. However, the overestima-

tion is small compared to that of the fixed threshold method. As the sphere size increases, both

methods provide bias-free volume estimations, which is in accordance with previous findings.

For all segmentation methods, the reproducibility, bias DSC and CE are at their lowest and

the dependency on volume and contrast are at their highest for a typical clinical scan duration

of 15 minutes, which is equal to a 900 second scan duration, compared to those of longer

acquisition durations for the same object size and contrast level.

Conclusion

In this study, the performance of four different PET volume segmentation methods against sta-

tistical fluctuations were compared using a torso NEMA phantom. The study demonstrates

that the differences in performance between all the methods decreases as the object size,
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contrast and acquisition duration increases. The fixed threshold method always overestimates

the segmented volume, and its overall performance is inferior compared to that of all the other

methods. The fixed threshold method is also the most sensitive to statistical fluctuations and

hence should not be used when statistical fluctuations are expected (e.g., for monitoring

response). The FCM, C-V and all adaptive threshold-based methods provide similar improved

performance compared to the fixed threshold-based method. The adaptive threshold method

with individually calculated parameters for each acquisition duration outperforms all other

methods and is the most robust method against statistical fluctuations in the PET data. The

drawbacks of this method are that its performance is not optimal for small volumes (less than

17 mm in diameter) with low contrast and the method also requires a calibration for every

PET scanner, acquisition protocol and acquisition duration or counts. In contrast, the adaptive

threshold method with parameters derived from the longest acquisition duration has a similar

performance to the other methods and only needs to be optimized once for each PET scanner

and acquisition protocol. The performances of the FCM and C-V methods are similar to those

of the adaptive methods for spheres larger than 2 cm in diameter, and these methods do not

require calibrations. Therefore, the FCM and C-V methods are the most suitable in cases

where the tracer uptake is expected to vary across tumours, patients or tracers and the tumour

is not expected to shrink in size in response to treatment. Furthermore, both these methods

are only inferior to the adaptive method in cases where both the size of the lesion and contrast

are very low. This study also highlights the importance of assessing the robustness of automatic

PET segmentation methods against statistical fluctuations (e.g., volume, contrast, acquisition

durations, etc.), especially if the method is going to be used for delineating tumours for differ-

ent radiotracers with variable uptake as well as for assessing treatment response. The study

also suggests that the reproducibility, accuracy and robustness of the automatic PET segmenta-

tion methods are still not reliable for low contrast levels and small lesions with diameters less

than 22 mm.
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