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Comprehensive analysis and comparison of protein 
ligand-binding pockets are important to predict the 
ligands which bind to parts of putative ligand binding 
pockets. Because of the recent increase of protein struc-
ture information, such analysis demands a fast and effi-
cient method for comparing ligand binding pockets. 
Previously we proposed a fast alignment-free method 
based on a simple representation of a ligand binding 
pocket with one 11-dimensional vector, which is suitable 
for such analysis. Based on that method, we conducted 
this study to expand and revise similarity measures of 
binding pockets and to investigate the effects of those 
modifications with two datasets for improving the ability 
to detect similar binding pockets. The new method exhibits 

higher detection performance of similar binding pockets 
than the previous methods and another existing accurate 
alignment-dependent method: APoc. Results also show 
that the effects of the modifications depend on the diffi-
culty of the dataset, implying some avenues for methods 
of improvement.

Key words: multidimensional scaling, alignment-free 
comparison, triangle descriptor, large-scale 
comparison

Elucidation of interactions between proteins and ligands 
such as small molecules is particularly important. They can 
be expected to facilitate the functional elucidation of pro-
teins, with relations to metabolism, drug discovery, and drug 
repositioning. With the recent increase of a database of known 
protein structure, the Protein Data Bank (PDB) [1], we have 
huge amounts of structural information for approximately 
300,000 known and 5.2 million unknown (estimated using a 
pocket identification program) ligand-binding pockets [2]. 

As the recent increase of protein structure information, comprehensive analysis of protein ligand-binding pockets 
demands an efficient method for comparing them. Based on our previous method using a vector representation of 
pockets, we conducted this study to expand and revise similarity measures of pockets by both changing the defini-
tion and increasing the number of pocket descriptors, and by using the PAM50 matrix. We investigated the effects of 
those modifications with two datasets, and found that the new method exhibits slightly higher detection perfor-
mance of similar pockets than the previous method and an existing accurate alignment-dependent method.
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of those classes. In addition to these points, we also exam-
ined use of the increased number, instead of 11 used in our 
previous method, of dimensions in the results of MDS. The 
new method belongs to the alignment-free classes, exhibit-
ing higher detection performance of similar binding pockets 
than our previous method and an existing fast sequence 
order-independent structural alignment method: APoc. This 
report describes that the effects of the modifications depend 
on the dataset difficulty. These results suggest some avenues 
for future development of similarity measures between bind-
ing pockets for improvement of pocket comparison methods.

Materials and Methods
New similarity measures for ligand-binding pocket 
comparison

We have proposed a simple representation, an 11- 
dimensional vector, of a ligand-binding pocket using triangle 
descriptor defined by a set of three amino acids in a pocket 
and MDS [8]. For this study, we intend to expand and revise 
similarity measures of our method and to elucidate their 
effects for improvement of the detection ability of similar 
binding pockets. We mainly emphasize and modify the fol-
lowing two points based on our previous method. i) Whereas 
our previous method used Miyata’s amino acid distance 
matrix [9] to represent physicochemical distance or dissimi-
larity between two amino acids to be compared, we employ 
an amino acid similarity matrix to present physicochemical 
similarity between two amino acids in our new method pre-
sented here. ii) To represent the geometrical dissimilarity 
between edges of the triangle descriptor, in our previous 
method, we considered edges that correspond to the Cα–Cα 
distances of residue pairs of 1.0 Å to 13.6 Å, and classified 
them into five classes at 2.2 Å intervals. In our new methods, 
we extended Cα–Cα distances to be considered, ranging 
from 1.0 Å to 15.8 Å, and added a class of edges. Edges were 
classified into 6 classes at intervals of 2.2 Å. We assigned 
them Roman numerals (I, II, III, IV, V, and VI) in ascending 
order (hereinafter designated as ‘interval set α’). We also 
investigated the effects of revising the interval distances 
which affect the classes of edges. We modified the intervals 
of 6 edge classes from 2.2 Å each to 1.0, 4.0, 6.36, 8.72, 
11.08, 13.44, and 15.8 Å (hereinafter, ‘interval set β’). 
According to these expansions and revisions, the definition 
of similarity between two triangle types is modified slightly 
(see below eq. (1)). In addition to these points, we also 
examined the use of a higher number of dimensions, instead 
of the 11 used in our previous method, in the results of MDS. 
Detailed explanations of modifications in our new methods 
are described below.

Enumerating possible triangle types
First, similarly to our previous study, we enumerated all 

possible triangle types. In this study, we eventually increased 
the classes of edge labels to 6 labels from the 5 labels used 

Consequently, comprehensive comparison and classification 
of both known and predicted protein ligand-binding pockets 
provide important insights into predicting ligands and drug 
discovery. For such a comprehensive analysis, a fast pocket 
comparison method is extremely useful. Indeed, various 
approaches have already been proposed [3].

Pocket comparison methods are divisible into two classes, 
i.e., alignment-dependent and alignment-free methods [4]. 
Although alignment-dependent methods for pocket com-
parison perform structural alignment of binding residues, 
alignment- free methods are independent of the structural 
alignment. Such methods often use descriptors that repre-
sent binding residues in a pocket. Both methods have been 
developed to be applicable to large-scale comparison of 
binding pockets. For instance, Gao et al. developed a fast 
alignment- dependent method called APoc [5]. They argued 
that alignment- dependent methods are “generally more 
accurate, albeit slower than alignment-free methods.” How-
ever, although alignment-free methods are unable to provide 
information of matched residues, they are efficient in terms 
of computational time. Consequently, these methods enable 
comparison of known binding pockets with numerous pre-
dicted ligand-binding pockets estimated using a pocket detec-
tion program. Furthermore, alignment-free methods are com-
patible with analysis of “flexible” binding pockets, and are 
readily applicable to binding pockets comprising multiple 
protein chains. It remains difficult to apply alignment- 
dependent methods directly to such pockets.

Considering these reasons, we assume that alignment-free 
methods can particularly contribute to protein–ligand inter-
action prediction and can enable the prediction of protein 
function. Therefore, we developed an alignment-free method 
that enables us to perform exhaustive comparison of both 
known and predicted ligand-binding pockets of 1,000,000 
order [6], and to develop a database called PoSSuM that 
includes the comparison results [2,7]. Recently, we also pro-
posed a fast method based on a simple representation, an 
11-dimensional vector, of a ligand-binding pocket using a 
triangle descriptor defined by a set of three amino acids in a 
pocket and multidimensional scaling (MDS) [8]. In this 
method, the vector representation of a ligand-binding pocket 
is obtained using the linear combination of the occurrence 
frequency of triangles using their coordinates in a metric 
space. Using this method, one can calculate the similarity 
between two ligand-binding pockets merely by calculating 
the inner product of two reduced vectors.

For this study presented here, we sought to revise the defi-
nition of the triangle descriptor of ligand-binding pockets 
for improving the discriminative ability of our method. To 
define new similarity measures of binding pockets, we used 
an amino acid similarity matrix instead of the distance 
matrix used in our previous method to present physicochem-
ical similarity between amino acids in pockets. We expanded 
the classes to consider the geometrical similarity between 
edges of the triangle descriptor, and modified the definition 
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over the previously described similarity matrix S to obtain 
the centered similarity matrix S because we want to obtain, 
eventually, those coordinates which have zero mean. The 
ele ment of the centered similarity matrix S is obtainable as

Sij = Sij – 1
N

∑N
a=1

 Sia – 1
N

∑N
a=1

 Saj + 1
N 2

 ∑N
a=1

 ∑N
b=1

 Sab .

Then, the eigenvalue decomposition of S is performed, 
thereby yielding eigenvalue vector λ and a matrix of eigen-
vector Z. Using λ and Z, the coordinates of triangle types are 
then found using the following formula:

X = (√λ1z1, √λ2z2, √λ3z3, ..., √λlzl ) .

We used the randomized algorithm [12] to conduct large-
scale singular-value decomposition for eigenvalue decom-
position of S because the order of S is huge, and because the 
only necessary eigenvalues are those with a large absolute 
value.

Convert pockets into reduced vector representations
We defined n as a 295,240-dimensional vector based on 

the occurrence frequencies of triangle types at a ligand- 
binding pocket. All triangles that occur in a pocket with edge 
lengths of 1.0 Å to 15.8 Å are classified as one of 295,240 
triangle types. Using X described in the previous section, we 
found the following.

X Tn = (√λ1z1, √λ2z2, √λ3z3, ..., √λlzl)T(n1, n2, n3, ..., n295240)T 
= (x1, x2, x3, ..., x295240)(n1, n2, n3, ..., n295240)T 
= (w1, w2, w3, ..., wl)T = w

In the equations above, ni represents the number of the i-th 
triangle in the list of triangle types. w stands for a vector 
representing a pocket (Fig. 1). To represent a pocket with a 
reduced vector based on the MDS result, we used the num-
ber of dimensions that satisfy a certain extent of cumulative 
contribution ratio calculated using only positive eigenvalues 
(Supplementary Fig. S1). For this study, we set the criteria of 
the cumulative contribution ratio as 0.98. We define similar-
ity between two pockets i and j as a cosine distance between 
wi and wj. Therefore, the similarity can be found easily by 
calculating the inner product between normalized wi and 
normalized wj. This procedure can be regarded as calculation 
of the weighted arithmetic mean over X weighted by n.

Datasets
To optimize the weighting factor r in eq. (1) and also to 

analyze the performance of the methods described above, 
we used the two datasets used in our previous study [8]. One 
is Ito138. This difficult dataset comprises 138 known 
ligand-binding pockets. The dataset comprises pocket pairs 
that share the same types of small molecules in proteins with 
different global structures. The other is APocS3 used in the 
study of APoc [5]. While this easy dataset originally com-
prised 38,066 pairs each in Subject and Control dataset, 
nevertheless, we noted that some of binding pocket are 

in the previous study. However, vertex labels were the same 
as those used previously: 20 labels with one letter amino 
acid of 20 types. In all, we have the 295,240 triangle types 
for the 6 labels (and the 171,700 triangle types for the 5 
labels [8]).

Definition of similarity between two triangle types
In our new method, for two triangle types of p and q, we 

defined the similarity spq consisting of two terms. They respec-
tively denote physicochemical and geometrical similarity, as

spq ≡ max[
r(mAD+mBE+mCF) + (1–r)(–1) 

( f (AB, DE)+ f(BC, EF)+ f(CA, FD)) 
: 6 way superposition

] . (1)

Therein, mXY represents a physicochemical similarity 
between two amino acids X and Y, defined with an amino 
acid substitution matrix. For this study, we used the PAM50 
matrix [10], which is not rounded after a decimal point, 
because we assumed that residues consisting of a ligand- 
binding pocket are conservative for substituting amino acids. 
Also, the not-rounded PAM50 matrix yielded slightly better 
performance than the rounded (data not shown). In addition, 
A, B, and C respectively denote the vertices of the triangle 
type p; D, E, and F respectively denote those of triangle type 
q. r is a weighting factor, ranging from 0 to 1, for physico-
chemical and geometrical similarity terms in this equation. 
AB, BC, and CA denote the edges of the triangle type p; DE, 
EF, and FD denote those of triangle type q. Function f, 
which represents the geometrical dissimilarity between two 
edges X and Y, is defined as

f (edgeX, edgeY) ≡ |value of the class for edgeX 
– value of the class for edgeY| .

In this definition, the value of a class is given according to 
the assigned numerals for a class. For example, function f 
gives 4 when edge X belongs to class I and edge Y belongs to 
class V. Then, f is summed up for three edges and multiplied 
by –1 for converting dissimilarity to similarity (see eq. (1)). 
We regarded the maximum value of spq for all possible ways 
of superposition of triangle types considering rotation and 
reflection as similarity spq for two triangle types p and q.

Multidimensional Scaling (MDS)
To execute MDS, we calculated the similarities for all 

possible pairs of 295,240 triangle types based on the formu-
lation described above. We were able to obtain a similarity 
matrix S between triangle types as a square matrix of order 
295,240. We assumed a model by which the similarity be-
tween triangle types corresponds to the inner product, and 
used MDS to obtain the coordinates of each triangle type in 
a high-dimensional space (it is also called kernel PCA, if 
the similarity function is guaranteed to have positive (semi-)
definite property) [11]. The procedures used for this study are 
summarized briefly as follows. First centering is performed 
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also designated as fall-out, is given as FP/(FP+TN). Then, 
the receiver operating characteristic (ROC) curve is used to 
present these results. Actually, ROC is a curve based on TPR 
against FPR at various thresholds. The area under the ROC 
curve (AUC) is used for performance evaluation of the 
methods.

Additionally, we used the third dataset, which we call 
APocS3_LIGSITE, to compare our new method with APoc. 
This dataset included pairs of predicted pockets generated 
by LIGSITE [13] based on pocket pairs in APocS3. In 
 comparison with APocS3, pocket pairs were reduced to 
34,511/17,408 pairs of the Subject/Control dataset because 
binding residues of some pockets could not be predicted 
correctly.

Results and Discussion
We investigated the effects of modifications in the follow-

ing three points, i.e., the new similarity definition, the expan-
sion of edge classes, and the revision of intervals of edge 
classes. Then we compared our new method with an existing 
fast sequence order-independent structural alignment method: 
APoc.

inadequate because of small number of binding residues, 
based on the default setting of APoc which is that “minimal 
number of pocket residue is 10”. We omitted pocket pairs 
which could not be handled by APoc with default setting, and 
then confirmed that we reproduced the same ROC curves 
(Fig. 3B in [5]). For that reason, we used 37,956/26,527 pairs 
for Subject/Control dataset in this study. Coordinate files 
of binding pockets were obtained from the APoc website 
(http://cssb.biology.gatech.edu/APoc). We conducted all-
against-all 9,453 (= (1

2
38)) comparisons for the Ito138 data-

set. For APocS3, we performed comparisons of the 64,483 
ligand-binding pocket pairs for the Subject and Control data-
sets. We regarded ligand-binding pocket pairs that share the 
same (for Ito138 & APocS3) and also similar (for APocS3) 
ligands as relevant pairs (Subject); otherwise we regarded 
pocket pairs as non-relevant pairs (Control). For a pocket 
pair with the same ligand, i.e., a relevant pair with a higher 
similarity score than a threshold value, it was regarded as a 
true positive (TP). Otherwise, it was regarded as a false neg-
ative (FN). If a pair with ligands that are not the same, i.e., 
non-relevant pair has a lower similarity score than the 
threshold value, then it was regarded as a true negative (TN). 
Otherwise, it was regarded as a false positive (FP). Here, a 
true positive rate (TPR), also designated as recall or sensitiv-
ity, is defined as TP/(TP+FN). A false positive rate (FPR), 

Figure 1 Schematic diagram of a vector representation of a ligand-binding pocket. Structural and amino acid information of a ligand-binding 
pocket are converted into a vector based on the MDS result.
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the main reason behind the superiority of the new definition. 
Figure 2c presents actual similarity values for all-against-all 
9,453 pairs as a heat map to compare the new similari-
ty-based method (shown at the lower left) with our previous 
method (shown at the upper right). Each square in the graph 
corresponds to one similarity of a pair of pockets. Relative 
reddish/blueish in the color scale in a method is important. 
We found that the new method assigns lower similarity to 
pockets, especially to those which bind to HEM or SF4 with 
pockets which bind to the other ligands.

Next, we evaluated the effectiveness using APocS3. We 
tested weighting factor r in the manner described above. 
Plots of the weighting factor vs. AUC are presented in Fig-
ure 3a as ‘5 edge’. According to this result, the best AUC is 
given by 0.10. Therefore, we used it to evaluate the effective-

Effects of the new similarity definition between pockets
First, we evaluated the effectiveness of changing the sim-

ilarity definition between two ligand-binding pockets. For 
evaluation, a new method was used with the number of edge 
classes set as five classes. The method of classifying them is 
the same as that of our previous method. We tested the 
weighting factor in every 0.05 sampling from 0.05 to 0.95 to 
define the optimized value of r using the Ito138 dataset. 
Plots of the weighting factor vs. AUC are presented in Fig-
ure 2a as ‘5 edge’. According to this result, the best AUC is 
obtained with r=0.15. Therefore, we used this value to eval-
uate the effectiveness of the new similarity definition. Figure 
2b presents ROC curves, i.e., plots of TPR vs. FPR for this 
evaluation and shows that the new similarity definition out-
performs the previous dissimilarity definition. We identified 

Figure 2 Benchmark results with Ito138. (a) Results of our new methods, including ‘5 edge’, ‘6 edge (with interval set) α’, and ‘6 edge (with 
interval set) β’, with various values (0.05–0.95 with the sampling interval of 0.05) of the weighting factor r are shown. The X axis indicates r, and 
the Y axis indicates AUC values. (b) ROC curves of our new methods and our previous dissimilarity-based method (r=0.35) are shown. The X axis 
shows FPR. The Y axis shows TPR. (c) Heat maps to compare the new (5 edge class) similarity-based method (lower left) with the dissimilarity- 
based method (upper right) are shown. The color of each square in the map represents a similarity value for a pocket pair. Ligand abbreviations 
placed by axes correspond to the ligand to which a pocket binds. (d) Heat maps to compare the ‘6 edge α’ method (lower left) with the ‘5 edge class’ 
method (upper right) are shown.
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Effects of increasing the number of edge classes
Next, we increased the number of edge classes from 5 to 

6, according to the expansion of Cα–Cα distances of residue 
pairs, ranging from 1.0 Å to 15.8 Å, used as the triangle 
edge. Edges were classified into 6 classes at intervals of 
2.2 Å (interval set α). First the effects of this modification 
were evaluated using Ito138. Figures 2a, b show that 6 edge 
classes outperform 5 edge classes, which suggests that addi-
tion of edge classes engenders better ability to recognize 
similar binding pockets. In Figure 2d, as heat maps, we com-
pared individual result obtained using the ‘6 edge α’ method 
(shown in the lower left) with it using the ‘5 edge class’ 
method (shown in the upper right). In this case we also found 
that discrimination of HEM binding pockets from SF4 bind-
ing pockets is improved in the ‘6 edge α’ method compared 
with the ‘5 edge class’ method. Squares which correspond 
to HEM binding pockets vs SF4 binding pockets are less 
 reddish/orangish in ‘6 edge alpha class’ than ‘5 edge class’, 
and boxes which correspond to HEM binding pockets vs 
HEM binding pockets are more reddish. Similarly, the dis-
criminate power of GDP binding pockets from other pockets 
by the ‘6 edge α’ method is slightly better than that of the ‘5 
edge class’ method. We suppose that discrimination of HEM 
binding pockets and SF4 binding pockets became better 
because the maximum value of edge length changed to 
15.8 Å. The HEM binding pocket is commonly large. The 
distance between some binding residues which face each 
other through HEM is about 15 Å.

We also evaluated the effectiveness of our new method 
using an easy dataset: APocS3. Figures 3a, b show that the 
‘6 edge α’ method also outperforms 5 edge method. Similar 
but slightly different results were found with the results 
described above obtained with Ito138. Regarding AUC values 
along with the weighting factor r (Fig. 3a), the ‘6 edge α’ 

ness. Figure 3b presents ROC curves for this evaluation. It 
shows that the new similarity definition also outperforms 
previous dissimilarity definition. We considered that the 
parameter which gives the best AUC changed from 0.15 to 
0.10 because the APocS3 dataset is more conserved for 
pocket shape than Ito138. Therefore, the geometrical simi-
larity term in eq. (1) is more weighted to distinguish a sub-
ject pair from a control pair.

Furthermore, to investigate the effects of similarity defi-
nitions, we compared the results obtained by combining 
 previous/new definitions and different number of dimensions 
used in vector representation: i) the previous dissimilarity 
definition and new 139/137 dimensions, ii) the new similar-
ity definition and previous 11 dimensions, and iii) the new 
similarity definition and the same criteria used in our previ-
ous study [8] for deciding the number of dimensions. Here, 
the criteria used in the previous study is “only use positive 
eigenvalues which are greater than the absolute value of 
negative minimum eigenvalue”. These results are shown in 
Supplementary Table S1. When the same criteria used in the 
previous study was employed, the results with similarity are 
superior to ones with dissimilarity. Indeed, the results with 
similarity are superior to ones with dissimilarity except “11 
dimensions (fixed)” in APocS3. We concluded that the 
improvements described above largely depends on the new 
similarity measure. We speculated that these improvements 
came from the difference of the matrix used for deriving the 
dissimilarity/similarity matrix. The Miyata’s matrix which 
was used previously is just created from physicochemical 
characteristics in amino acids. On the contrary, the PAM50 
matrix which was used for new measure reflects the evolu-
tions of proteins and the concept based on our assumption 
that residues of pockets are less mutative.

Figure 3 Benchmark results with APocS3. (a) AUC values of our new methods, including ‘5 edge’, ‘6 edge α’, and ‘6 edge β’, with various 
values (0.05–0.95 with the sampling interval of 0.05) of the weighting factor r are shown. (b) ROC curves of our new methods, our previous dis-
similarity-based method (r=0.35), and APoc are shown.
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ing set 3, which showed the highest AUC among the first 
four sets (1~4), used in PoSSuM for labeling residues in a 
pocket [6]. We found that the ‘6 edge β’ method achieved the 
highest AUC among the methods. Note that, in this experi-
ment, we used 26,407 pairs out of 26,527 ones of the Control 
dataset, due to lack of triangles, based on the definition of 
the encoding set 3, in some pockets (some amino acids are 
assigned no vertex labels). Thus, it is noteworthy that our 
new method can handle all pairs because all 20 types of 
amino acids are assigned vertex labels.

Performance comparison with APocS3_LIGSITE
Finally, we compared the ‘6 edge β’ method with APoc 

using the APocS3_LIGSITE dataset. Figure 5 shows that, in 
the low-FPR region, APoc showed higher performance. 
However, in the region higher than 17% FPR, the ‘6 edge 
β’ method showed higher performance than that of APoc. 
Additionally, in the perspective of AUC, the ‘6 edge β’ 
method showed higher performance than that of APoc.

Expedient examples of our method
We present examples that demonstrate the usefulness of 

our new method by comparison to APoc. First, we show an 
example from Ito138 dataset. The interferon-inducible p47 
resistance GTPases from mouse (PDBID: 1TQ4 [15]) and 
the alpha1,3-fucosyltransferase with GDP from H. pylori 
(2NZX [16]) have the same ligand: GDP, though the two 
proteins possess different global structures; P-loop con-
taining nucleoside triphosphate hydrolases fold (1TQ4) 
and UDP-Glycosyltransferase/glycogen phosphorylase fold 
(2NZX). Our new method gave 0.864 as the similarity score 
for this pocket pair (the higher the similarity score, the more 
likely the pair is composed of pockets to which the same/
similar ligand bind). It is noteworthy that APoc gave 0.772 
as the p-value for this pair (the lower the p-value, the more 

method is better than the 5 edge method, except for the range 
of r=0.05, and 0.50 and more. With the new similarity defi-
nition, both methods showed maximum AUC values at 
r=0.10.

Effects of the intervals of class of edge labels
Next, we examined the procedure used to decide the inter-

vals and modified the intervals of 6 edge classes from 2.2 Å 
each to 1.0, 4.0, 6.36, 8.72, 11.08, 13.44, and 15.8 Å (inter-
val set β). The setting of every 2.2 Å interval is the same as 
that of our original method [6]. The first interval was set to 
4.8 Å, the distance originated from the FuzCav method [14]. 
However, we investigated the frequency of the edge length 
of triangles taken from all pockets in the Ito138 dataset (Fig. 
4). In the figure, the green line shows the frequencies of all 
edge lengths. The red line shows the frequency of edge 
lengths which comprise two adjacent residues in a chain. 
According to this figure, almost all edges shorter than about 
4.0 Å comprise adjacent residues. Thus, we considered it 
natural to set the first interval as 4.0 Å based on the differ-
ence of chemical characteristics between adjacent residues, 
or lack thereof. First the effectiveness of this modification 
was evaluated using Ito138. Figures 2a, b show that this 
modification was not so influential, in terms of AUC values, 
to our new method on Ito138, probably because Ito138 
comprises pockets that are too diverse to be affected by this 
improvement. On the other hand, Figures 3a, b show that the 
‘6 edge β’ method is better than that of the ‘6 edge α’ method 
on APocS3. Moreover, comparing with APoc, in the low-
FPR region, APoc showed higher performance. However, in 
the region higher than 3.7% FPR, the ‘6 edge β’ method 
showed higher performance than that of APoc. The result 
that APoc is superior in low FPR region is also shown in our 
original method PoSSuM, which is also alignment-free 
method (Supplementary Fig. S2). Here, we used the encod-

Figure 4 Distribution of the edge length (Cα–Cαdistance) of tri-
angles taken from all pockets in Ito138.

Figure 5 Benchmark results with APocS3_LIGSITE. ROC curves 
of our new method and APoc are shown.
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selected from the datasets, our new method consumes only 
0.00000106 s (=1.06×10–6) for one pair comparison with 
137-dimensional vectors, although 0.007 s are needed to 
produce 137-dimensional vectors by counting up the num-
ber of triangles from pocket data (not including input file 
preparation). Figure 7 shows that the estimation of computa-
tional times. If 300,000 known plus 5.2 million unknown 
pockets are used as pocket data, our new method consumes 
200 days just using single thread whereas APoc needs almost 
30,000 years which is also just using single thread. We spec-
ulate that we can achieve 5.5 million pockets comparison 
using this new method in a few days when we employ a 
hundred multi-threads.

likely the pair is composed of pockets to which the same/
similar ligand bind), and gave 0.307 as the raw “Pocket 
 Similarity score (PS-score)” (the higher the PS-score, the 
more likely the pair is composed of pockets to which the 
same/similar ligand bind).

We present two more examples from the APocS3 dataset. 
The aldehyde dehydrogenase from rat (1AD3 [17]; ALDH-
like fold) and the 17-beta-hydroxysteroid dehydrogenase type 
4 from human (1ZBQ; NAD(P)-binding Rossmann fold) 
have the same ligand: NAD (Fig. 6(a)). As discussed in the 
Discussion and Conclusion sections in the paper about APoc, 
this is an example of dissimilar pockets with different ligand 
conformations. APoc assigned this pair of pockets a p-value 
of 0.418 (and gave 0.325 as the PS-score), even though our 
new method produced a similarity score of 0.872. We regard 
this fact as demonstrating the effect of usefulness of our 
alignment-free method, which can accommodate the pocket 
conformation change associated with the ligand conforma-
tion change. Furthermore, the asparagine synthetase from E. 
coli (12AS [18]) and the electron transfer flavoprotein from 
human (1EFV [19]) have the same ligand: AMP (Fig. 6(b)). 
Similarly, as discussed in the paper related to APoc, this is 
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0.337 as the PS-score) for this pocket pair, our new method 
showed a similarity score of 0.731. We regard this feature as 
demonstrating the usefulness of this alignment-free method, 
which can vaguely represent the circumstances related to a 
ligand.
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Figure 6 Superpositions of two expedient examples detected by our method. The superpositions are obtained by minimizing RMSD between 
the each ligands. (a) 1AD3 (cyan and green) and 1ZBQ (purple and red), which bind the same ligand: NAD. The Ca atoms of binding residues are 
depicted as spheres. Ligand RMSD is 3.05 Å (b) 12AS (cyan and green) and 1EFV (purple and red), which bind the same ligand: AMP. Ligand 
RMDS is 0.97 Å.

Figure 7 Estimated computation time of APoc and our new method. 
Both the X axis and the Y axis are shown in logarithmic scale.
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[14] Weill, N. & Rognan, D. Alignment-free ultra-high-throughput 
comparison of druggable protein-ligand binding sites. J. Chem. 
Inf. Model. 50, 123–135 (2010).

[15] Ghosh, A., Uthaiah, R., Howard, J., Herrmann, C. & Wolf, E. 
Crystal structure of IIGP1: a paradigm for interferon-inducible 
p47 resistance GTPases. Mol. Cell 15, 727–739 (2004).
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9973–9982. (2007).
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genase reveals novel interactions between NAD and the 
 Rossmann fold. Nat. Struct. Biol. 4, 317–326 (1997).
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synthetase reveals a close evolutionary relationship to class 
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Conclusion
Based on our previous method, for improving the ability 

to detect similar ligand-binding pockets, we expanded and 
revised similarity measures of pockets. We observed the 
effectiveness of those modifications with two different data-
sets, Ito138 and APocS3, in comparison with our previous 
method. We also found that the effectiveness of the modifi-
cations depend on the difficulty of the dataset. These results 
should be considered for future development of pocket com-
parison methods. The method proposed herein showed 
higher detection performance of similar binding pockets 
than an existing fast sequence order-independent structural 
alignment method: APoc. Because of its succinct representa-
tion, our new method is expected to be useful for large-scale 
comparison of binding pockets to infer ligands and functions 
of proteins.
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