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Abstract

Background: High-throughput sequencing (HTS) has revolutionized the way in which epigenetic research is
conducted. When coupled with fully-sequenced genomes, millions of small RNA (sRNA) reads are mapped to regions
of interest and the results scrutinized for clues about epigenetic mechanisms. However, this approach requires careful
consideration in regards to experimental design, especially when one investigates repetitive parts of genomes such as
transposable elements (TEs), or when such genomes are large, as is often the case in plants.

Results: Here, in an attempt to shed light on complications of mapping sRNAs to TEs, we focus on the 2,300 Mb maize
genome, 85% of which is derived from TEs, and scrutinize methodological strategies that are commonly employed in
TE studies. These include choices for the reference dataset, the normalization of multiply mapping sRNAs, and the
selection among sRNA metrics. We further examine how these choices influence the relationship between sRNAs and
the critical feature of TE age, and contrast their effect on low copy genomic regions and other popular HTS data.

Conclusions: Based on our analyses, we share a series of take-home messages that may help with the design,
implementation, and interpretation of high-throughput TE epigenetic studies specifically, but our conclusions
may also apply to any work that involves analysis of HTS data.

Keywords: Transposable elements, Small RNAs, High-throughput sequencing, siRNAs, Genome mapping,
Annotation, Bioinformatics, RNA-seq

Background
Across eukaryotes, epigenetic pathways contribute to
diverse functions, including gene regulation and trans-
posable element (TE) silencing [1]. Small RNAs (sRNAs)
are a key component of these pathways. Numerous stud-
ies have investigated the biogenesis and functional roles
of sRNAs, with most focusing on the molecular mecha-
nisms that underlie these processes (for recent reviews
see [2–4]). Some of these studies have utilized high-
throughput sequencing (HTS) technologies, which
generate vast numbers of sRNA reads. This capacity of
HTS has facilitated the identification of novel sRNA
classes, the quantification and comparison of sRNA
expression profiles across tissues, and the discovery of
genomic loci that map large volumes of sRNAs. These

tasks have been supported by numerous computational
tools, most of which have been tailored to study micro
RNAs (miRNAs) [5–11], with fewer offering comprehen-
sive identification, quantification and visual-based sup-
port for all sRNA types [12–17].
Even with these tools, significant challenges remain in

the handling and interpretation of HTS sRNA data. An
important one stems from the fact that some sRNAs
map to unique locations (U_sRNAs) of a reference gen-
ome, while others align equally well to multiple locations
(M_sRNAs). The handling of M_sRNAs is a major
concern, as it impacts downstream analyses [15], and is
as yet practically unresolved with different studies
(reviewed in [18]) using different approaches and sRNA
analysis tools. For example, the NiBLS method allows
multiple mapping without any kind of normalization for
the number of mapping locations [19], the SiLoCo tool
of the UEA sRNA Toolkit weights each read by its
repetitiveness in the genome [20], the segmentSeq
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package of Bioconductor allocates each M_sRNA only
once to a predefined locus even if it maps to more than
one place within this locus or indeed across the genome
[13], Novoalign (www.novocraft.com) excludes M_sRNAs,
and bowtie [21] and bwa [22] randomly place each
M_sRNA to a single locus under their default settings. Fi-
nally, a recently updated version of ShortStack allocates
M_sRNAs to single loci based on the densities of
U_sRNAs [12, 18].
The importance of M_sRNAs and their handling may

be dependent on the component of the genome under
investigation; for instance, due to their repetitive nature,
TEs are likely to map many M_sRNAs, which unavoidably
complicates TE-related studies. This effect may be espe-
cially prominent in plants because of their large genomes
(the average size of a diploid angiosperm is ~6,400 Mb)
and the fact that most plant DNA has originated from TEs
[23]. This point is exemplified by contrasting data from
the unusually small genome of Arabidopsis thaliana (only
125 Mb of which ~24% is TE-derived) and the larger – but
still small, relative to the angiosperm average – genome of
maize (2,300 MB, ~85%). sRNA mapping studies have
shown that <25% of A. thaliana TEs are mapped solely by
M_sRNAs [24], but this increases to >72% for maize TEs
[25]. Hence, careful consideration of M_sRNAs is crucial
for understanding epigenetic processes in genomes like
that of maize. The challenges of mapping sRNAs to TEs
are exacerbated by the fact that accurate TE identification
is a notoriously difficult task [26, 27]. To simplify the
problem, previous studies have often used TE exem-
plars [28–30], each of which is a consensus of many TE
sequences representing a single TE family or subfamily.

The use of exemplars may be pragmatic, but it likely re-
duces the analysis resolution compared to examining
whole populations of annotated TEs.
Here we attempt to address the complex, but under-

studied, issue of analyzing sRNAs in the context of TEs,
because the impact of their treatment on analyses is
presently unclear. To better assess different approaches,
we focus on the maize genome and the most abundant
Copia and Gypsy Long Terminal Repeat (LTR) retro-
transposon families. We perform standard sRNA map-
ping using HTS data from three different tissues, but
vary several features of the analyses, such as i) the refer-
ence dataset, which ranges from whole genome TE
annotations to TE exemplars, ii) the treatment of
M_sRNAs, which ranges from various normalization
options to their complete exclusion, and iii) the sRNA
metrics, i.e. consideration of distinct sequences or their
abundances. Figure 1 depicts the methodological matrix
of our work, along with many of the terms that we use
throughout the study. We then comment on the effect
of some of these choices on the relationship of mapping
with other TE features such as TE age, with low copy
regions of the maize genome, or when using HTS RNA-
seq data. We conclude by sharing our insights as take-
home messages to guide researchers in epigenetic analyses
of TEs, especially in large and complex genomes.

Methods
TE reference datasets
We compiled two reference datasets for the Copia and
Gypsy families in maize: annotated TE populations and
TE exemplars.

Fig. 1 A matrix of the terms, data and analyses used in this study. The coloured boxes contain information specific for the maize genome (blue)
or the TE exemplar database (green). The numbers in brackets for the Copia families represent their complete full-length populations retrieved
from MASiVEdb
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Annotated TE populations
For Copia TEs, the Sirevirus families Ji, Opie and
Giepum encompass the three most abundant families. Ji
and Opie each constitute ~10% of the genome, and
Giepum represents another ~1.2% [31, 32]. We used a
strictly curated set of 3,285 Ji, 2,926 Opie and 102
Giepum full-length elements that were recently analyzed
for their epigenetic patterns [25] (Fig. 1). For Gypsy TEs,
we devised a pipeline to identify full-length elements of
the three most abundant families, namely Huck (10.1%
of the genome), Cinful-zeon (8.2%) and Flip (4.2%) [31].
We first retrieved the repeat annotation file from the
maize TE consortium (‘ZmB73_5a_MTEC + LTR_re-
peats.gff ’, ftp.gramene.org). This file, however, does not
specify whether an annotated region represents full-
length or fragmented TEs. Hence, we plotted the
frequency distribution of the lengths of the annotated
regions to identify peaks for each family that would cor-
respond to the size of full-length elements as calculated
by Baucom et al. [31] (Additional file 1: Figure S1A).
This approach identified a single peak for Huck that
nearly overlapped with the Baucom full-length average
(13.4 kb), two peaks for Cinful-zeon that flanked the
Baucom average (8.2 kb), and two peaks for Flip – one
nearly overlapping with the Baucom average (14.8 kb)
and one residing in close proximity (Additional file 1:
Figure S1A). Based on these results, we selected regions
between 13.3–14.1 kb for Huck, 7.1–7.5 kb and 9.2–9.7 kb
for Cinful-Zeon, and 14.8–15.6 kb for Flip as candidates
for full-length elements, retrieving 2,614, 6,965 and 607
sequences respectively. We then ran LTRharvest [33] with
parameters xdrop 25, mindistltr 2000, maxdistltr 20000,
ins −3, del −3, similar 50, motif TGCA, motifmis 1,
minlenltr 100, and maxlenltr 5000 in order to identify the

borders between the LTRs and the INT domain, and to
also calculate the canonical LTR length of each family.
Based on our approach, we selected LTR lengths between
1–1.8 kb for Huck, 450–750 nt for Cinful-zeon, and
4.1–4.5 kb for Flip (Additional file 1: Figure S1B),
finally yielding 2,460, 6,276 and 483 full-length ele-
ments for each family respectively (Fig. 1).
The insertion age of each TE was calculated by first

aligning the LTRs using MAFFT with default parameters
[34] and then applying the LTR retrotransposon age for-
mula with a substitution rate of 1.3 × 10–8 mutations
per site per year [35].

TE exemplars
All maize TE exemplars were downloaded from maizeted-
b.org. The number of exemplars for the six Copia and
Gypsy families ranged from one to 41 consensus sequences
(Fig. 1). Note that we removed one Ji (RLC_ji_AC186528-
1508) and two Giepum (RLC_giepum_AC197531-5634;
RLC_giepum_AC211155-11010) exemplars from our ana-
lysis, based on evidence from [32] that they are not true
representatives of these families.

Mapping sRNA and mRNA libraries
We used published sRNA data from leaf (GSM1342517),
tassel (GSM448857), and ear (GSM306487) tissue
(Fig. 2), and mRNA data from three technical replicates
(SRR531869, SRR531870, SRR531871) from leaf tissue.
Adapters and low quality nucleotides were removed
using Trimmomatic and the FASTX toolkit respectively,
until every read had three or more consecutive nucleo-
tides with a Phred quality score of >20 at the 3’-end.
The libraries were filtered for miRNAs (www.mirba-
se.org), tRNAs (gtrnadb.ucsc.edu), and rRNAs and

Fig. 2 sRNA metrics on TE exemplars and annotated TE populations. a Total number of sRNA species that mapped to each family. b Proportion
of U_sRNA and M_sRNA species for all families combined
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snoRNAs (rfam.sanger.ac.uk). sRNA reads of 21 nt,
22 nt and 24 nt length and mRNA reads longer than
25 nt were mapped to the maize B73 genome
(RefGen_V2) and the maize TE database using bwa with
zero mismatches (‘bwa aln –n 0’). Because bwa places
multiply mapping reads randomly onto one mapping lo-
cation under the default setting, we selected ‘bwa samse
–n 100000000’ to ensure that all alignments were
reported [22]. Following previous work [25], each
distinct sRNA or mRNA sequence (of any length) was
termed ‘species’, and the number of its reads was its
‘expression’. Each species was tagged as either uniquely
mapped (U_sRNA; U_mRNA) or multiply mapped
(M_sRNA; M_mRNAs) separately for the genome and
the exemplar database (Fig. 1).
M_sRNAs and M_mRNAs were either normalized by

their number of mapping locations or not normalized
(Fig. 1), depending on the analysis. Finally, we calculated
the total number of sRNA species that mapped to a TE
‘locus’ (i.e. the full-length sequence, LTRs or the internal
(INT) domain), but also the number of sRNA species
and sRNA expression (weighted or un-weighted) per
nucleotide of each locus (Fig. 1). The per nucleotide
measures allow comparisons of averages among TEs and
also analysis along the length of the TE sequence.

Results
Reference datasets: TE exemplars vs. annotated TE
populations
How do inferences vary as a function of the reference
dataset? To investigate this, we compared sRNA map-
ping patterns between annotated populations and exem-
plars of six abundant families in maize. We focused on
21 nt, 22 nt and 24 nt sRNAs, because they are the
sRNA lengths known to participate in the epigenetic
silencing of TEs [36, 37].

sRNA mapping
We began by first examining the total number of sRNA
species that mapped to each family. An initial observa-
tion was that there is a much lower number of sRNAs
(3-fold decrease on average) that mapped to the exem-
plars compared to the annotated populations (Fig. 2a,
Additional file 2: Table S1). For example, 90,503 sRNA
species of the leaf library mapped to the exemplars of all
six families combined, compared to 310,548 that
mapped to the annotated elements.

U_sRNA and M_sRNA ratios
Previous research has suggested that U_sRNAs may
exert a stronger effect on TE silencing compared to
M_sRNAs, as evidenced by their more consistent correl-
ation with DNA methylation [38], and with their associ-
ation with lower levels of TE expression [24].

Accordingly, several studies have used only U_sRNAs as
the basis for inference, derived either from mapping to
genomes or to exemplars [29, 30, 39–41]. Our analysis
showed that there is a massive difference in the U:M
sRNA ratio as a function of the reference dataset: a
much higher proportion of sRNAs map uniquely to ex-
emplars (43% of all sRNAs for all libraries and families
combined) compared to annotated TE populations
(2.6%) (Fig. 2b, Additional file 2: Table S2). In fact, the
vast majority of U_sRNAs that map to exemplars
become M_sRNAs when mapped to the genome.

sRNA patterns along TE sequences
We next examined the mapping characteristics along the
length of both exemplar and annotated TEs. We focused
on the three Copia families, because of the preexisting
annotation of their sequences, including information
about complex palindrome motifs in the regulatory
region of the LTRs that are sRNA mapping hotspots
[25, 42]. We found that both datasets produced highly
similar patterns, based on the ear sRNA library, with
one intriguing exception: the exemplars were not
mapped by sRNAs in the palindrome-rich regions
(Fig. 3a). Closer investigation of the exemplar se-
quences revealed that they contain long runs of
masked (N) nucleotides in these regions (Fig. 3b) of
high sequence variability [25], even though they may
be of special biological importance due to their ele-
vated sRNA mapping and rapid evolution [25]. In
fact, 74 exemplars from 37 families within maizeted-
b.org contain stretches of >100 N nucleotides (Huck,
Cinful-zeon and Flip were not among them), making
the occurrence of masked regions a fairly common
feature of this dataset. The extent of this problem is
not known for other plant species that have generated
exemplar datasets such as foxtail millet [43] and
strawberry [44]; yet, it now needs to be assessed, es-
pecially in the light of how helpful these datasets can
be in combination with genomic, sRNA and RNA-seq
HTS data in the analysis of the repetitive fraction of
genomes [45, 46].

‘Contamination’ of annotated TE populations
Our annotated TE dataset of the three Copia families is
a curated subset of the complete population of maize
Sireviruses available from MASiVEdb (bat.infspire.org/
databases/masivedb/) [47], which comprises 6,283 Ji,
6,881 Opie and 221 Giepum full-length elements (Fig. 1)
that have been identified as bona fide Sireviruses [48].
However, unlike our reference dataset, a number of
these TEs harbor ‘contaminating’ insertions of other
elements. Screening for foreign TE fragments within the
two datasets using non-Sirevirus maize TE exemplars as
queries (BLASTN, max E-value 1×10−20), we detected
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only two elements of the reference dataset with foreign
TEs, compared to 1,158 elements of MASiVEdb that
contained fragments (of 189 nt median length) from 451
non-Sirevirus families.
To examine how this might affect data interpretation,

we compared the mapping characteristics of the refer-
ence dataset to those of the complete MASiVEdb popu-
lation. The number of sRNA species that mapped to
each TE family increased substantially for MASiVEdb.
Collectively, 626,836 sRNAs from the three sRNA librar-
ies mapped to the 13,385 TEs of MASiVEdb, but only a
third (206,589) of that total mapped to our reference
dataset (Additional file 1: Figure S2, Additional file 2:
Table S1). Although it is difficult to assess the overall
contribution of foreign TEs, given that even very small
fragments may map several sRNAs, an indication may
be provided by the level of sRNA ‘cross-talk’ within each
dataset, that is the extent to which sRNAs map to mul-
tiple families. Our conjecture is that higher levels of
cross-talk in MASiVEdb will reflect the presence of frag-
ments of one family within elements of another family,
thereby artificially increasing their pool of ‘common’
sRNAs. Our analysis showed that indeed this was the
case. For example, of the 800,421 sRNA species of all li-
braries combined that mapped to Ji and Opie from

MASiVEdb (Additional file 2: Table S1), 188,926 mapped
to elements of both families. This means that the num-
ber of non-redundant sRNAs between Ji and Opie is
611,495 and that the level of cross-talk is 30.8% (188,926
of 611,495). In contrast, the level of cross-talk is only
3.1% using the reference dataset (6,033 of 194,582 non-
redundant sRNAs, Additional file 2: Table S1). Likewise,
cross-talk also increased with the Gypsy families using
MASiVEdb, for example from 0.2 to 5.3% between Ji
and Huck, and from 0.2 to 10% between Opie and
Cinful-zeon.

Normalization: complexities regarding the use of
M_sRNAs
Exclusion of M_sRNAs in TE studies
The handling of sRNAs with multiple mapping locations
is an issue that has long troubled scientists. Often, in an
effort to avoid methodological complications, M_sRNAs
are excluded from analyses [29, 30, 39–41]. However,
even though U_sRNAs correlate more consistently with
TE silencing than M_sRNAs [24], a significant propor-
tion of RNA-directed DNA methylation (RdDM) is
thought to be mediated by M_sRNAs [38]. Moreover,
our data in Fig. 2b suggest that there may not be enough
U_sRNAs (at least for genome-wide TE annotations) to

Fig. 3 sRNA mapping along the sequences of Ji, Opie and Giepum exemplars and annotated populations. a Un-weighted sRNA data from ear
tissue were mapped separately to the LTRs and the internal (INT) domain. Each region was first split in 100 equally sized windows, and mapping
was calculated as the number of sRNA species per nucleotide of the sense (positive y-axis) and antisense (negative y-axis) strands, and visualized
with a boxplot for each window. The position of the palindromes (LTRs) and the gag, pol and envelope (env) genes (INT domain) are shown at
the bottom of each panel. b An example of the LTR sequence of an Opie exemplar with N nucleotides masking the unresolved palindrome-rich region
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make meaningful inferences about TEs in hosts with
large genomes.
To examine potential U_sRNA differences among

plant species with varying genome sizes, we calculated
the median density of 24 nt U_sRNAs per nucleotide of
maize TEs (for all libraries and families combined) and
compared it to those of Arabidopsis thaliana and lyrata
TEs previously reported by Hollister et al. [24]. While
the median densities were only twofold different
between thaliana and lyrata (0.11 vs. 0.06), these two
species had a 69-fold and 37-fold difference with maize
respectively (0.0016 24 nt U_sRNAs per nucleotide of
maize TEs). Comparative data were not available for
21–22 nt U_sRNAs from [24], but given that only
3,522 21-22 nt U_sRNAs from all libraries mapped to
the 15,532 full-length elements of the Copia and
Gypsy datasets combined, it is clear that most ele-
ments did not map U_sRNAs in maize.

Normalization of M_sRNAs across genomic regions and
between datasets
Besides excluding M_sRNAs from analyses or sometimes
even allocating them randomly to single loci [49–51],
the most common approaches for handling M_sRNAs is
either to count all mapping locations so that each loca-
tion has a value of 1.0, or to weight for multiple map-
ping so that each location is assigned a value of 1/x,
where x is the total number of locations for a given
M_sRNA. This normalization can be applied to both
‘sRNA species’ and ‘sRNA expression’. Nonetheless, it is
unclear if and how these normalization strategies affect
downstream research. One parameter that may provide
valuable insights is the number of mapping locations for
M_sRNAs that target various parts of a genome or

different reference datasets. The reasoning is that the
smaller the x, the weaker the differences between strat-
egies will be and vice versa. We therefore compared the
mapping locations of M_sRNAs that target our Copia
and Gypsy families i) across the genome, ii) within their
annotated full-length populations, and iii) across the TE
exemplar database (Fig. 1), so as to keep in line with the
various strategies of previous studies.
Focusing first on the entire maize genome, we find

that M_sRNAs have an exceptionally high number of
mapping locations. For example, the median number of
locations for all families combined was up to 513 among
the three libraries, while the average often exceeded
1,500 (Table 1). Second, there was a marked decrease in
the number of locations within the annotated full-length
populations (Table 1). We found that, on average, only a
fifth of the genomic locations correspond to full-length
elements, indicating that most M_sRNAs map to other
types of sequences related to the six families, presumably
unidentified full-length elements, degraded copies or
solo LTRs. Third, the decrease was even more dramatic
within the TE exemplar dataset, where the M_sRNAs of
the six families only had three to five mapping locations
each (Table 1).
The above findings were derived from the most abun-

dant TE families in maize and hence represent the most
repetitive parts of a large genome. To contrast them
with lower copy regions, we calculated the genomic lo-
cations of two additional sets of M_sRNAs: M_sRNAs
that mapped to exons of the maize Filtered Gene Set
and all other M_sRNAs that did not map to either exons
or the six TE families (Fig. 1). We assume that a sub-
stantial proportion of the last category corresponds to
less abundant TE families. Our analysis showed that the

Table 1 Number of locations for M_sRNAs that mapped to different parts of the maize genome

library sRNA length # of locations for sRNAs of the six familiesa # of genomic loci
for exon sRNAsa

# of genomic loci
for other sRNAsagenome annotated

TE population
TE exemplars

leaf 21 283 – 1397 66 – 298 3 – 5 4 – 12 5 – 37

22 262 – 1261 70 – 284 3 – 5 4 – 11 5 – 42

24 82 – 613 11 – 121 3 – 4 4 – 12 4 – 21

all 127 – 854 18 – 179 3 – 4 4 – 11 4 – 26

tassel 21 425 – 2033 114 – 419 3 – 5 4 – 18 6 – 57

22 380 – 1615 118 – 369 3 – 5 4 – 15 7 – 60

24 199 – 1017 26 – 194 3 – 4 5 – 17 4 – 25

all 277 – 1353 60 – 281 3 – 5 5 – 17 4 – 34

ear 21 513 – 2130 86 – 411 4 – 5 4 – 14 6 – 55

22 454 – 1748 83 – 359 4 – 5 4 – 15 7 – 56

24 147 – 897 19 – 170 3 – 5 4 – 17 5 – 26

all 219 – 1231 31 – 241 3 – 5 4 – 16 5 – 32
aThe median (left) and average (right) number of mapping locations are shown for each category
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mapping locations of both categories did not exceed a
handful of sites (Table 1); nonetheless, the average num-
ber of locations of the ‘other’ M_sRNAs was three-fold
higher than the exon-mapping M_sRNAs, implying that
a large proportion of the former type may indeed map
to low copy TEs.

Impact of normalization on data inference
To gain further insights into how sRNA metrics can
change as a function of methodology, we compared the
two extremes of a theoretical ‘normalization spectrum’,
i.e. un-weighted vs. genome-weighted sRNA data, in
their relationship with a classic TE variable, the TE in-
sertion age. The age of each element was first calculated
based on the sequence divergence of the LTR pair and
profiled at the family level (Fig. 4a). Use of un-weighted
data generated strong negative correlations between age
and both sRNA species and sRNA expression for all
combinations of tissue, family and sRNA length (average
Spearman r = −0.67, P < 10−20; Fig. 4b, Additional file 1:
Figure S3). Critically, use of genome-weighted data
retained this pattern only for 21–22 nt sRNAs (average

Spearman r = −0.35, P < 10−20 in most cases), while for
24 nt sRNAs there was discordance both between sRNA
metrics and among families. We detected a positive cor-
relation for Ji, Opie and Huck using sRNA species, which
was often reversed or not statistically supported using
sRNA expression (Fig. 4b, Additional file 1: Figure S3).
In contrast, there was a negative correlation for Cinful-
zeon, Flip and Giepum across most tissues and for both
sRNA metrics.

U_sRNA-guided mapping of M_sRNAs
An alternative approach for mapping M_sRNAs assigns
reads to single loci using as guide the local densities of
U_sRNAs [18]. This method, which is at the core of the
ShortStack tool [12], aims to find the true generating
locus of each read. Historically, this concept was initially
tested with mRNA data where it significantly improved
placement of M_mRNAs [52]. For sRNAs, recent ana-
lysis of simulated libraries by [18] showed that the
U_sRNA-guided mode outperforms other methodologies
in selecting the correct locus from which an M_sRNA
may have originated.

Fig. 4 Relationship between TE age and sRNA mapping using un-weighted and genome-weighted approaches. a Age distribution in million years
(my) of TE families. b Mapping of sRNA species (left panels) or expression (right panels) from ear tissue was calculated per nucleotide of full-length
elements for each family. Age is cutoff at 3my to allow sufficient visualization of the x-axis. The Spearman r coefficient is shown for each plot,
calculated for all elements and not only for those <3my. P values were <0.01, except those indicated by an asterisk
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However, our data suggest that two properties of TEs
may pose a real challenge to this process. First, there is a
very small number of U_sRNAs that align to our TEs.
For example, only 2,166 of 147,034 sRNA species of the
ear library that collectively mapped to Copia and Gypsy
elements are U_sRNAs (Fig. 2b, Additional file 2: Table
S2); furthermore, the vast majority of these U_sRNAs
mapped to different TEs (Fig. 5). As a result, and given
that the length of our TEs ranges between 7–15 kb and
that ShortStack examines 250 nt windows [18], it is ex-
pected that most windows will not have a U_sRNA score
and hence vast amounts of M_sRNAs will be discarded.
The second issue concerns the numerous genomic loca-
tions for M_sRNAs mapping to TEs (Table 1). These are
far above the 50-target cutoff that [18] suggest leads to a
high rate of misplacement. Finally, ShortStack can also
guide M_sRNA allocation by calculating the densities of
both U_sRNAs and weighted M_sRNAs; however, this
option did not perform as well as the U_sRNA-only op-
tion at the genome level in Arabidopsis, rice and maize
[18] and, hence, it is likely that its performance will be
further compromised in TE-focused analyses.

sRNA metrics: unexpected differences between sRNA
species and sRNA expression
So far, our analysis has indicated that sRNA species and
sRNA expression generally produce similar results.
However, this is not always true. When we examined the
relationship between sRNAs and age separately for the
LTRs and the INT domain of TEs using un-weighted
data, we observed that the plots of the Opie family were
markedly different in one case. The expression levels of
24 nt sRNAs from leaf on the LTRs split the Opie ele-
ments in two distinct groups, whereby the ‘upper zone’
was mapped by approximately twice as many reads

compared to the ‘lower zone’ (Fig. 6a). Species of 24 nt
sRNAs did not generate the same pattern, nor did other
combinations of sRNA lengths and metrics in Opie
(Fig. 6a), or in other families or tissues (not shown).
Closer investigation revealed that this ‘zoning’ was

triggered by sRNAs that mapped to a narrow region on
the sense strand of the LTRs (Fig. 6b). This region was
mapped by ~115x more reads in the elements of the
upper zone compared to those of the lower zone (me-
dian coverage of 1,610 and 14 reads/nt respectively),
while there was only a three-fold difference (6.1 vs. 2.1
reads/nt) along the rest of the LTR. This implied that
highly expressed sRNA species mapping to this region of
the elements of the upper zone caused the Opie split.
We retrieved 836 24 nt sRNA species from all Opie
elements and, surprisingly, only one appeared to be
responsible for the zoning. This sRNA combined very
high expression (1,976 reads) and number of mapped
LTRs (3,228), ranking 1st and 7th respectively among the
836 sRNAs. In contrast, most other sRNAs of the same
region had expression levels of <10 reads.

Discussion
In this work, we attempted to address the complex issue
of mapping and analyzing sRNAs in the context of TEs,
which comprise the majority of animal and, especially,
plant genomes.

Reference datasets
Our first objective was to compare mapping characteris-
tics of TE exemplars vs. annotated TE populations, using
the large and TE-rich maize genome as a case study. TE
exemplars have been widely popular thus far, because of
the absence of sufficient sequence information for many
species or, perhaps, because research would not truly
benefit from the burdensome analysis of annotated TE
populations. However, our results indicate that the usage
of exemplars comes with several limitations. We showed
that a substantial fraction of sRNA information is lost
when using exemplars (Fig. 2a, Additional file 2: Table
S1). In addition, U_sRNAs are falsely overrepresented in
exemplar datasets (Fig. 2b, Additional file 2: Table S2)
and hence their use over M_sRNAs (e.g., [29, 30])
should be carefully considered. Finally, and perhaps
most importantly, exemplars may entirely omit mapping
to specific regions of TEs – most likely, those regions
that evolve rapidly within a TE family (Fig. 3).
Yet, our analysis implies that a fraction of annotated

TE populations may contain foreign TE fragments, or
TE ‘contamination’. It is likely that some types of epigen-
etic analyses, for example (and as shown earlier)
research on sRNA ‘cross-talk’ between TE families impli-
cated in spreading silencing through homology-based
defense mechanisms [36, 37], might be negatively

Fig. 5 Proportion of the number of U_sRNA species that mapped
per TE
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affected by this type of ‘contamination’. Hence, it is
advisable that careful filtering for foreign DNA is consid-
ered prior to mapping sRNA data.

Normalization
Our next objective was to examine if and how differ-
ent strategies for treating M_sRNAs might affect bio-
logical inference. First, we showed that the inclusion
of M_sRNA reads is necessary in TE studies, because
U_sRNAs alone may convey little information at the
genome level for maize and other species that do not
have unusually small genomes.
We then explored the extent of multiple mapping

for sRNAs across different genomic regions or data-
sets in maize. We found that there can be up to a
hundred-fold variation in the number of locations for
M_sRNAs on maize TEs depending on the reference
dataset (Table 1), especially for high-copy TEs. Fur-
thermore, it is likely that this holds true for the ma-
jority of plants, as most species have genomes larger
than maize with concomitant TE content [23].

Next, we analyzed the relationship between sRNA
mapping and TE age using un-weighted vs. genome-
weighted data. Among the few studies that have investi-
gated this relationship, most have shown that older TEs
map lower levels of sRNAs than younger TEs [24, 25, 53]
– a finding which agrees with the expectation that old TEs
are deeply silenced and maintained in this state inde-
pendently of sRNAs [36, 54]. However, one recent
study found the opposite trend [55], making this a
controversial topic. We found clear evidence for an
inconsistent relationship between 24 nt sRNAs and
age as a function of methodology (Fig. 4b, Additional
File 1: Figure S3), suggesting that the choice of treat-
ment of HTS data can indeed affect biological infer-
ence. In contrast, the conclusions based on the other
sRNA lengths were unchanged, always generating a
negative correlation between sRNA mapping and age
(Fig. 4b, Additional File 1: Figure S3). At first sight,
this consistency may appear counterintuitive because
(as mentioned earlier) weighting-by-location is ex-
pected to have a stronger impact on high-copy than
low-copy sequences. Yet, 21–22 nt sRNA profiles did

Fig. 6 Opie population split based on sRNA expression data from leaf tissue. a Relationship between TE age and number of sRNA species (left) or
expression (right) calculated per nucleotide of the Opie LTRs and INT domain. Age is cutoff at 3my to allow sufficient visualization of the x-axis.
The Spearman r coefficient is shown for each plot, calculated for all elements and not only for those <3my. b Mapping patterns (calculated as in
Fig. 3a) of 24 nt expression data along the LTRs of the two distinct Opie subpopulations. sRNA data in A and B were not weighted by their
number of genomic loci
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not change as a function of age within each family,
whereby the numerous young and highly similar ele-
ments were mapped by more sRNAs than their few,
old and divergent relatives in both normalization ap-
proaches. We argue that these findings offer strong
support for decreasing levels of 21–22 nt sRNAs as
TEs become older, while further research is required
to resolve the relationship between 24 nt sRNAs and
TE age.
We lastly investigated whether approaches that as-

sign M_sRNAs to single loci based on U_sRNAs
density are applicable to TE studies. We concluded
that, although promising, this might not be the case
yet. Nonetheless, our analysis prompts another point
that is well worth discussing. We believe that a dis-
tinction is missing – and should be made – between
approaches for finding sRNA-generating loci vs.
sRNA-targeting loci. For example, ShortStack appears
to work beautifully for allocating M_sRNAs to their
single locus of origin, which may be valuable in
miRNA studies or when organisms have small
genomes as in the case of Arabidopsis thaliana [18].
However, studies that investigate sRNA targeting pat-
terns may benefit more by methods that allow
multiple mapping (weighted or un-weighted). This
may be important for TEs, where it is possible that a
given sRNA mediates silencing of more than one
locus. Although not empirically proven yet, this con-
jecture is supported by evidence for the importance
of M_sRNAs in RdDM [38], the homology-based
trans silencing pathway among TEs [37], and the
cytoplasmic step of Argonaute loading that dissociates
sRNAs from their generating loci [56].

Normalization and inference for RNA-seq HTS data
We expanded our analysis by investigating mRNA
expression data – the most common type of RNA-seq
HTS data. Although the proportion of multiply map-
ping reads against the genome in these libraries is
only ~10% and substantially lower to the 40–90% of
sRNA libraries [18], it is likely that a much higher
proportion of TE-mapping reads will be categorized
as M_mRNAs. As a result, similar methodological
complications to TE epigenetic studies may apply to
studies examining TE expression [57]. We therefore
retrieved mRNA HTS data from three biological leaf
replicates and examined (as we did with sRNAs) i)
their general mapping characteristics, ii) the expres-
sion patterns of TE families, and iii) the relationship
between expression and TE age. First, we found that
the vast majority of TE-mapping reads were indeed
M_mRNAs (~90%, Additional file 2: Table S3); the
median number of locations for these M_mRNAs
across the genome or within the annotated full-length

elements (Additional file 2: Table S3) was approxi-
mately two-fold lower to those of the TE-mapping
M_sRNAs (Table 1). Second, the use of either un-
weighted or genome-weighted data generated the
same relative expression levels among families despite
their widely different sizes (Fig. 7a). Finally, both
normalization approaches produced strong negative
correlations between mRNA expression and age for
all possible combinations (average Spearman r = −0.61,
P < 10−20; Fig. 7b). These findings suggest that, at
least for the specific inquiries, the methodological
treatment of RNA-seq HTS data does not change bio-
logical inference.

sRNA metrics
Our final objective was to test for differences derived
from using the metrics of sRNA species or sRNA ex-
pression. We did identify an unexpected inconsistency
in relation to a narrow region in the Opie LTRs,
whereby the very high expression of a single sRNA
species was able to split the LTRs into two distinct
zones with and without the target sequence (Fig. 6).
Albeit very intriguing, the fact that only one sRNA
generated this spectacular pattern raises several meth-
odological concerns. First, it is likely that such very
high expression levels may be the outcome of biases
during library construction [15]. Second, our data
imply that the use of sRNA species is more robust
than sRNA expression, because it appears to be less
sensitive to errors that can occur, e.g., during PCR
amplification. Finally, and perhaps most importantly,
these findings denote the need for the confirmation
of such observations. This can be achieved by cross-
examining results from different normalization ap-
proaches. However, given the inconsistencies of
normalization approaches as discussed previously, the
most appropriate way is the inclusion in the experi-
mental design of technical and/or biological replicates.
In previous years, the lack of sRNA replicates could
be attributed to the high costs of sequencing. These
costs are now much lower and, hence, replicates
should be typically included in epigenetic studies to
help identify aberrancies.

Conclusions
The epigenetic interactions between TEs and host
defense mechanisms have been the focus of intensive
research for several years now. These studies often in-
clude the mapping and analysis of HTS sRNA (and
mRNA) data to TE sequences. However, the compli-
cations of mapping short reads to repeated and
difficult-to-annotate DNA sequences have not been
given enough attention, allowing scientists to follow
various, often conceptually opposite, methodologies in
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their work. Our goal here was to fill this gap. Even
though we did not empirically test or provide solu-
tions for some of these issues (e.g. to resolve the
24 nt sRNA vs. TE age relationship or to find the
generating locus of TE sRNAs), we aim to make our
peers at least aware of these complications and help
guide future studies. Towards this aim, we can pro-
vide the following take-home messages:

1) TE exemplars should be – at best – cautiously
used, and replaced with annotated TE populations
(additionally curated, if needed) whenever
possible.

2) The inclusion of multiply mapping sRNA and
mRNA reads is necessary, in TE studies, especially in
large and complex genomes.

3) Weighted and un-weighted mapping strategies
should be used in parallel to help validate biological
inferences.

4) Fully, or even partially, sequenced genomes should
be preferred over exemplars for weighting-by-
location of multiply mapping reads.

5) sRNA expression – a crucial metric for differential
expression analysis studies – is prone to errors
during HTS library preparation, and therefore, the
inclusion of replicates in sRNA studies should now
be standard.

Additional files

Additional file 1: Figure S1. Gypsy TEs length analysis. Figure S2.
Total number of sRNA species that mapped to different datasets of the
three Copia families. Figure S3. Relationship between TE age and sRNA
mapping for leaf, tassel and ear tissues. Figure S4. Mapping patterns of
three leaf replicate mRNA libraries to individual elements using un-
weighted data. (PDF 5159 kb)

Additional file 2: Table S1. Number of sRNA species mapping to
different TE reference datasets. Table S2. Mapping of U_sRNA and
M_sRNA species to exemplars and annotated TE populations for all

Fig. 7 Comparison of un-weighted and genome-weighted mRNA expression data mapping to TEs. a Family expression patterns.
b Relationship between TE age and mRNA mapping. Age is cutoff at 3 million years (my) to allow sufficient visualization of the x-axis.
The Spearman r coefficient is shown for each plot, calculated for all elements and not only for those <3my. P values were <0.01 in all
cases. Library SRR531869 was used for A and B, because mapping patterns of the three replicate libraries to individual elements of the
six families were highly correlated (Additional file 1: Figure S4)
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families combined. Table S3. Size and mapping characteristics of mRNA
libraries. (DOCX 102 kb)

Abbreviations
env: Envelope; HTS: High-throughput sequencing; INT domain: Internal
domain; LTR: Long terminal repeat; M_sRNA: Multiply mapped sRNA;
miRNA: micro RNA; sRNA: small RNA; TE: Transposable element;
U_sRNA: Uniquely mapped sRNA

Acknowledgements
Not applicable.

Funding
AB is supported by the European Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement [PIEF-GA-2012-329033]; BSG by National
Science Foundation grant [IOS-1542703] and a fellowship from the Albert and
Elaine Borchard Foundation; ND by Ministry of Health of the Czech Republic
grant nr. 16-34272A, project CEITEC 2020 (LQ1601) - computational resources
were provided by MetaCentrum (LM2010005) and CERIT-SC (CERIT Scientific
Cloud, Operational Program Research and Development for Innovations, Reg.
no. CZ.1.05/3.2.00/08.0144).

Availability of data and materials
Supplementary data are available online. The sequences and insertion age of
the TEs of all six families are available in bat.infspire.org/sireviruses/
RNAmap_tech–suppl_data/.

Authors’ contributions
AB conceived the study, conducted the research, and drafted the manuscript.
BSG drafted the manuscript. ND conducted the research, and drafted the
manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details
1School of Life Sciences, University of Sussex, Brighton, East Sussex BN1 9RH,
UK. 2Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA
92697, USA. 3Central European Institute of Technology, Masaryk University,
Brno 62500, Czech Republic.

Received: 26 November 2016 Accepted: 31 January 2017

References
1. Castel SE, Martienssen RA. RNA interference in the nucleus: roles for

small RNAs in transcription, epigenetics and beyond. Nat Rev Genet.
2013;14(2):100–12.

2. Axtell MJ. Classification and comparison of small RNAs from plants. Annu
Rev Plant Biol. 2013;64:137–59.

3. Borges F, Martienssen RA. The expanding world of small RNAs in plants.
Nat Rev Mol Cell Biol. 2015;16(12):727–41.

4. Matzke MA, Mosher RA. RNA-directed DNA methylation: an epigenetic
pathway of increasing complexity. Nat Rev Genet. 2014;15(6):394–408.

5. An JY, Lai J, Lehman ML, Nelson CC. miRDeep*: an integrated application
tool for miRNA identification from RNA sequencing data. Nucleic Acids Res.
2013;41(2):727–37.

6. Garmire LX, Subramaniam S. Evaluation of normalization methods in
mammalian microRNA-Seq data. RNA. 2012;18(6):1279–88.

7. Hackenberg M, Rodriguez-Ezpeleta N, Aransay AM. miRanalyzer: an update
on the detection and analysis of microRNAs in high-throughput sequencing
experiments. Nucleic Acids Res. 2011;39:W132–8.

8. Li Y, Zhang Z, Liu F, Vongsangnak W, Jing Q, Shen B. Performance comparison
and evaluation of software tools for microRNA deep-sequencing data analysis.
Nucleic Acids Res. 2012;40(10):4298–305.

9. Sablok G, Milev I, Minkov G, Minkov I, Varotto C, Baev V. isomiRex: Web-based
identification of microRNAs, isomiR variations and differential expression using
next-generation sequencing datasets. Febs Letters. 2013;587(16):2629–34.

10. Srivastava PK, Moturu TR, Pandey P, Baldwin IT, Pandey SP. A comparison of
performance of plant miRNA target prediction tools and the characterization
of features for genome-wide target prediction. Bmc Genomics. 2014;15.

11. Zhu EL, Zhao FQ, Xu G, Hou HB, Zhou LL, Li XK, Sun ZS, Wu JY. mirTools:
microRNA profiling and discovery based on high-throughput sequencing.
Nucleic Acids Res. 2010;38:W392–7.

12. Axtell MJ. ShortStack: Comprehensive annotation and quantification of small
RNA genes. RNA. 2013;19(6):740–51.

13. Hardcastle TJ, Kelly KA, Baulcombe DC. Identifying small interfering RNA loci
from high-throughput sequencing data. Bioinformatics. 2012;28(4):457–63.

14. Luo G-Z, Yang W, Ma Y-K, Wang X-J. ISRNA: an integrative online toolkit for
short reads from high-throughput sequencing data. Bioinformatics. 2014;
30(3):434–6.

15. McCormick KP, Willmann MR, Meyers BC. Experimental design,
preprocessing, normalization and differential expression analysis of small
RNA sequencing experiments. Silence. 2011;2(1):2–2.

16. Rueda A, Barturen G, Lebron R, Gomez-Martin C, Alganza A, Oliver JL,
Hackenberg M. sRNAtoolbox: an integrated collection of small RNA research
tools. Nucleic Acids Res. 2015;43(W1):W467–73.

17. Stocks MB, Moxon S, Mapleson D, Woolfenden HC, Mohorianu I, Folkes L,
Schwach F, Dalmay T, Moulton V. The UEA sRNA workbench: a suite of tools
for analysing and visualizing next generation sequencing microRNA and
small RNA datasets. Bioinformatics. 2012;28(15):2059–61.

18. Johnson NR, Yeoh JM, Coruh C, Axtell MJ. Improved Placement of
Multi-mapping Small RNAs. G3. 2016;6(7):2103–11.

19. MacLean D, Moulton V, Studholme DJ. Finding sRNA generative locales from
high-throughput sequencing data with NiBLS. BMC Bioinformatics. 2010;11.

20. Moxon S, Schwach F, Dalmay T, MacLean D, Studholme DJ, Moulton V. A
toolkit for analysing large-scale plant small RNA datasets. Bioinformatics.
2008;24(19):2252–3.

21. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol.
2009;10(3).

22. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-
Wheeler transform. Bioinformatics. 2010;26(5):589–95.

23. Tenaillon MI, Hollister JD, Gaut BS. A triptych of the evolution of plant
transposable elements. Trends Plant Sci. 2010;15(8):471–8.

24. Hollister JD, Smith LM, Guo Y-L, Ott F, Weigel D, Gaut BS. Transposable
elements and small RNAs contribute to gene expression divergence
between Arabidopsis thaliana and Arabidopsis lyrata. Proc Natl Acad Sci U S
A. 2011;108(6):2322–7.

25. Bousios A, Diez CM, Takuno S, Bystry V, Darzentas N, Gaut BS. A role for
palindromic structures in the cis-region of maize Sirevirus LTRs in
transposable element evolution and host epigenetic response. Genome Res.
2016;26(2):226–37.

26. Flutre T, Duprat E, Feuillet C, Quesneville H. Considering Transposable Element
Diversification in De Novo Annotation Approaches. Plos One. 2011;6(1).

27. Ragupathy R, You FM, Cloutier S. Arguments for standardizing transposable
element annotation in plant genomes. Trends Plant Sci. 2013;18(7):367–76.

28. Diez CM, Meca E, Tenaillon MI, Gaut BS. Three Groups of Transposable
Elements with Contrasting Copy Number Dynamics and Host Responses in
the Maize (Zea mays ssp mays) Genome. Plos Genet. 2014;10(4).

29. Gent JI, Ellis NA, Guo L, Harkess AE, Yao Y, Zhang X, Dawe RK. CHH islands:
de novo DNA methylation in near-gene chromatin regulation in maize.
Genome Res. 2013;23(4):628–37.

30. Regulski M, Lu Z, Kendall J, Donoghue MTA, Reinders J, Llaca V, Deschamps
S, Smith A, Levy D, McCombie WR, et al. The maize methylome influences
mRNA splice sites and reveals widespread paramutation-like switches
guided by small RNA. Genome Res. 2013;23(10):1651–62.

31. Baucom RS, Estill JC, Chaparro C, Upshaw N, Jogi A, Deragon JM, Westerman RP,
SanMiguel PJ, Bennetzen JL. Exceptional Diversity, Non-Random Distribution,
and Rapid Evolution of Retroelements in the B73 Maize Genome. Plos Genet.
2009;5(11).

32. Bousios A, Kourmpetis YAI, Pavlidis P, Minga E, Tsaftaris A, Darzentas N. The
turbulent life of Sirevirus retrotransposons and the evolution of the maize

Bousios et al. Mobile DNA  (2017) 8:3 Page 12 of 13



genome: more than ten thousand elements tell the story. Plant J. 2012;
69(3):475–88.

33. Ellinghaus D, Kurtz S, Willhoeft U. LTRharvest, an efficient and flexible
software for de novo detection of LTR retrotransposons. Bmc
Bioinformatics. 2008;9.

34. Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software
Version 7: Improvements in Performance and Usability. Mol Biol Evol.
2013;30(4):772–80.

35. Ma JX, Bennetzen JL. Rapid recent growth and divergence of rice nuclear
genomes. Proc Natl Acad Sci U S A. 2004;101(34):12404–10.

36. Bousios A, Gaut BS. Mechanistic and evolutionary questions about
epigenetic conflicts between transposable elements and their plant hosts.
Curr Opin Plant Biol. 2016;30:123–33.

37. Fultz D, Choudury SG, Slotkin RK. Silencing of active transposable elements
in plants. Curr Opin Plant Biol. 2015;27:67–76.

38. Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker
JR. Highly integrated single-base resolution maps of the epigenome in
Arabidopsis. Cell. 2008;133(3):523–36.

39. Law JA, Du JM, Hale CJ, Feng SH, Krajewski K, Palanca AMS, Strahl BD, Patel
DJ, Jacobsen SE. Polymerase IV occupancy at RNA-directed DNA
methylation sites requires SHH1. Nature. 2013;498(7454):385.

40. Panda K, Ji LX, Neumann DA, Daron J, Schmitz RJ, Slotkin RK. Full-length
autonomous transposable elements are preferentially targeted by
expression-dependent forms of RNA-directed DNA methylation. Genome
Biol. 2016;17.

41. Zhai JX, Bischof S, Wang HF, Feng SH, Lee TF, Teng C, Chen XY, Park SY, Liu
LS, Gallego-Bartolome J, et al. A One Precursor One siRNA Model for
Pol IV-Dependent siRNA Biogenesis. Cell. 2015;163(2):445–55.

42. Bousios A, Darzentas N, Tsaftaris A, Pearce SR. Highly conserved motifs in
non-coding regions of Sirevirus retrotransposons: the key for their pattern
of distribution within and across plants? BMC Genomics. 2010;11.

43. Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC,
Estep M, Feng L, Vaughn JN, Grimwood J, et al. Reference genome
sequence of the model plant Setaria. Nat Biotechnol. 2012;30(6):555.

44. Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL,
Jaiswal P, Mockaitis K, Liston A, Mane SP, et al. The genome of woodland
strawberry (Fragaria vesca). Nat Genet. 2011;43(2):109–16.

45. Diez CM, Vitte C, Ross-Ibarra J, Gaut BS, Tenaillon MI. Using Nextgen
Sequencing to Investigate Genome Size Variation and Transposable
Element Content. In: Grandbastien MA, Casacuberta JM, editors. Plant
Transposable Elements Topics in Current Genetics. 2012. p. 41–58.

46. Tenaillon MI, Hufford MB, Gaut BS, Ross-Ibarra J. Genome Size and
Transposable Element Content as Determined by High-Throughput
Sequencing in Maize and Zea luxurians. Genome Biol Evol. 2011;3:219–29.

47. Bousios A, Minga E, Kalitsou N, Pantermali M, Tsaballa A, Darzentas N.
MASiVEdb: the Sirevirus Plant Retrotransposon Database. BMC Genomics.
2012;13.

48. Darzentas N, Bousios A, Apostolidou V, Tsaftaris AS. MASiVE: Mapping and
Analysis of SireVirus Elements in plant genome sequences. Bioinformatics.
2010;26(19):2452–4.

49. He G, Chen B, Wang X, Li X, Li J, He H, Yang M, Lu L, Qi Y, Wang X, et al.
Conservation and divergence of transcriptomic and epigenomic variation in
maize hybrids. Genome Biology. 2013;14(6).

50. McCue AD, Nuthikattu S, Slotkin RK. Genome-wide identification of genes
regulated in trans by transposable element small interfering RNAs. RNA Biol.
2013;10(8):1379–95.

51. Wang X, Elling AA, Li X, Li N, Peng Z, He G, Sun H, Qi Y, Liu XS, Deng XW.
Genome-Wide and Organ-Specific Landscapes of Epigenetic Modifications
and Their Relationships to mRNA and Small RNA Transcriptomes in Maize.
Plant Cell. 2009;21(4):1053–69.

52. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and
quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;
5(7):621–8.

53. Gong L, Masonbrink RE, Grover CE, Renny-Byfield S, Wendel JF. A Cluster of
Recently Inserted Transposable Elements Associated with siRNAs in
Gossypium raimondii. Plant Genome. 2015;8(2).

54. Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA
methylation patterns in plants and animals. Nat Rev Genet. 2010;11(3):204–20.

55. Maumus F, Quesneville H. Ancestral repeats have shaped epigenome and
genome composition for millions of years in Arabidopsis thaliana. Nat
Commun. 2014;5.

56. Ye RQ, Wang W, Iki T, Liu C, Wu Y, Ishikawa M, Zhou XP, Qi YJ. Cytoplasmic
Assembly and Selective Nuclear Import of Arabidopsis ARGONAUTE4/siRNA
Complexes. Mol Cell. 2012;46(6):859–70.

57. Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing:
computational challenges and solutions. Nat Rev Genet. 2012;13(1):36–46.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Bousios et al. Mobile DNA  (2017) 8:3 Page 13 of 13


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	TE reference datasets
	Annotated TE populations
	TE exemplars
	Mapping sRNA and mRNA libraries


	Results
	Reference datasets: TE exemplars vs. annotated TE populations
	sRNA mapping
	U_sRNA and M_sRNA ratios
	sRNA patterns along TE sequences
	‘Contamination’ of annotated TE populations

	Normalization: complexities regarding the use of M_sRNAs
	Exclusion of M_sRNAs in TE studies
	Normalization of M_sRNAs across genomic regions and between datasets
	Impact of normalization on data inference
	U_sRNA-guided mapping of M_sRNAs

	sRNA metrics: unexpected differences between sRNA species and sRNA expression

	Discussion
	Reference datasets
	Normalization
	Normalization and inference for RNA-seq HTS data

	sRNA metrics

	Conclusions
	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

