
Background
Human immunodeficiency virus (HIV) is a lentivirus that 
targets CD4+ cells in vivo, including a subset of lympho­
cytes (CD4+ T cells) and a broad range of mononuclear 
phagocytes, including monocytes, dendritic cells, tissue 
macrophages and brain microglia. The destruction of 
CD4+ T  cells and immune dysfunction results in a 
progressive immunodeficiency called acquired immuno­
deficiency syndrome (AIDS), which in the absence of 
treatment leads to opportunistic infections and malig­
nancies [1]. Although immune system disorders have 
been focused on the most, HIV infection also has 
significant effects on the central nervous system (CNS), 
as the virus both infects and affects the brain [2]. The 
associated neuropsychopathology or CNS dysfunction 
then leads to a group of cognitive and behavioral changes 
now termed HIV-1-associated neurocognitive disorders 
(HAND) or neuroAIDS. NeuroAIDS encompasses a broad 
range of neurological abnormalities, including asympto­
matic neurocognitive impairment, HIV-associated mild 

cognitive motor disorder and the most severe disease, 
HIV-1-associated dementia (HAD) [3].

The advent of combined antiretroviral therapy (cART; 
previously referred to as highly active antiretroviral 
therapy, HAART), however, has significantly changed the 
dynamics of HIV neuropathogenesis [4]. Severe dementia 
now affects less than 7% of infected people during the 
latter stages of disease. Because of the increasing longe­
vity of HIV-1-infected individuals, the incidence of HAD, 
as well as the other cognitive and motor abnormalities 
associated with HIV-1 infection, has declined, although 
the overall prevalence of neuroAIDS has increased [1,3,5-7]. 
The most severe cognitive, motor and behavioral impair­
ments are now supplanted by milder, less profound 
cognitive impairment that can nevertheless cause signifi­
cant problems in individuals’ daily lives [8]. HIV-related 
CNS disease is no longer a result of continuous 
productive viral infection and activation of brain macro­
phages and microglia, but rather a result of more limited 
infection and neuroinflammation [9]. Although wide­
spread use of cART in places where resources are 
sufficient has increased life expectancy for virus-infected 
individuals, with a concomitant decrease in disease 
morbidities [10,11], neurological complications continue 
to persist. This may be attributed to viral mutation and 
cART resistance, failure of drugs to access viral sanc­
tuaries, toxicities of cART and poor compliance to 
complex cART regimens [12-15]. Abuse of illegal drugs 
[16] and lack of cART availability [17] may also influence 
neurological disease manifestations. Many aspects of 
neuroAIDS pathogenesis are well covered in recent 
reviews [18,19].

Early in the course of infection, HIV enters the CNS 
and remains detectable throughout the course of 
infection. Although HIV does not infect neurons, it 
attacks the monocytic lineage in the brain: macrophages 
and microglia [20-23]. The neurotoxicity arising from 
HIV infection therefore results from an indirect mecha­
nism, possibly involving toxic viral proteins or inflam­
matory mediators produced by activated macrophages 
and microglia [24-28], as well as the adaptive immune 
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response to the virus in the brain [29,30]. Although 
studies on the brain can be problematic in humans, an 
excellent animal model, simian immunodeficiency virus 
(SIV) infection of nonhuman primates, recapitulates well 
many aspects of HIV pathogenesis, including neuroAIDS 
[31-35].

A critical gap in the field of neuroAIDS research is the 
identification of reliable molecular markers; these could 
provide valuable insights into the mechanisms of neuro­
pathogenesis and response to therapies, and they could 
aid in the prediction of development of disease. 
Biomarkers are biological parameters that are objectively 
measured and quantifiable and that indicate changes in 
physiological states due to pathogenic processes or 
therapeutic intervention. In addition to being invaluable 
clinically, they have an increasingly prominent role in 
drug development and medical research [36,37].

Despite substantive research efforts, the mechanisms 
underlying cognitive impairment resulting from HIV 
infection are far from understood. However, the advent 
of high-throughput strategies such as genomics, trans­
criptomics, proteomics and metabolomics has revolu­
tionized biological investigations and brought great 
insights. This especially holds true for mass spectrometry 
(MS)-based proteomics and metabolomics, which have 
generated immense interest and which offer different but 
complementary insights into the full complexity of the 
disease phenotype. In addition to allowing the unbiased 
identification of molecular markers for disease states, 
these approaches also enable a greater understanding of 
the processes underlying them.

Neuroproteomics and biofluids profiling
Cerebrospinal fluid biomarkers for neuroAIDS
Neuroproteomics reveals complex protein expression, 
function, interactions and localization in cells of the 
nervous system. Although ideally one would analyze the 
brain itself, obtaining brain biopsy specimens is not 
usually practical. Profiling of biofluids is therefore ideal, 
and the relative ease of obtaining data from the same 
animals or people over time also means that longitudinal 
molecular analyses of changes during the course of 
neurological diseases can be conducted. Of the biofluids, 
the cerebrospinal fluid (CSF) is close to the site of 
neuropathology and can reflect the biochemical milieu of 
the CNS. There is a growing consensus that the CSF is 
the best material for biomarker discovery and for under­
standing the ongoing pathological processes associated 
with neurodegeneration [38,39]. The protein component 
of CSF consists of brain-derived proteins as well as many 
proteins that are also abundant in plasma [40]. The 
complexity and great dynamic range of protein concen­
trations as well as protein heterogeneity in the CSF create 
significant challenges to the existing proteomic 

technologies [41]. To address these challenges (which are 
not unique for CSF and also apply to blood-based tests 
on plasma and serum), advances have been made on two 
fronts: enrichment of potential proteins of interest 
expressed at lower levels by immunodepletion of 
abundant proteins [42], and an improved ability to 
separate the great number of peptides resulting from 
protein digestion using multi-dimensional chromato­
graphy before MS [43].

One recent study used immunodepletion followed by 
two-dimensional difference gel electrophoresis (2D‑DIGE) 
to identify differentially expressed features and then MS 
to identify the proteins that differentiated individuals 
with HAD from HIV-infected individuals without CNS 
disease [44]. This method required a certain amount of 
protein, because of which only 6 of the 38 available 
samples (16%) could be assessed. Nevertheless, this study 
was successful in identifying six putative biomarkers: 
vitamin D binding protein, clusterin, gelsolin, comple­
ment C3, procollagen C-endopeptidase enhancer 1 and 
cystatin C. Of these, vitamin D binding protein was 
upregulated and the other five proteins were down­
regulated in the CSF of HAD patients.

A separate study from our lab [45] used a more stream­
lined approach to identify differentially expressed 
proteins in the CSF of SIV-infected monkeys, comparing 
the CSF from the same animals before infection and 
during CNS disease. This technique bypassed immuno­
depletion or other manipulations and used small amounts 
of protein isolated by organic extraction followed by 
limited pre-fractionation using a liquid chromatography 
tandem MS (LC-MS/MS) approach. Among the proteins 
differentially expressed in the SIV-infected monkeys, 
complement C3 was identified but found to be up­
regulated in the CSF of infected monkeys. The difference 
between the two studies [44,45] can be attributed to 
numerous factors, including looking at a human disease 
or a monkey model, the different sites of CSF removal, 
the study designs and other aspects of experimentation.

We also investigated [45] whether the increase in C3 
reflected synthesis in the brain or leakage across the 
blood-brain barrier. Quantitative real-time PCR revealed 
that the mRNA level of C3 was indeed increased in the 
brains of diseased animals. This increase corroborates 
other studies in which an increase in C3 in astrocytes, 
microglia and, to a lesser extent, neurons was found in 
SIV encephalitis (SIVE) [46]. Furthermore, increased C3 
has been found in other human CNS disorders, including 
Alzheimer’s disease and multiple sclerosis [47]. The 
enhanced complement synthesis may reflect immune 
activation in the brain, leading to the formation of 
molecules such as the anaphylatoxins C3a and C5a, 
which act as chemoattractants and activators of macro­
phages and microglia and may act through these cells or 
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other mechanisms to protect [48-50] or damage [51-54] 
the brain. Thus, in the case of SIVE, increased C3 probably 
contributes to SIV-induced damage to the brain.

Two studies have used surface enhanced laser 
desorption ionization (SELDI) to examine the CSF. In 
one, nine proteins were identified uniquely in the CSF of 
individuals with HIV-associated cognitive impairment 
[55]. These included soluble superoxide dismutase 
(SOD1), for which western blot analysis verified its 
increase. SOD1 is an antioxidant and migration inhibi­
tory factor secreted by macrophages during inflammation 
and an inhibitor of the protein kinases that are up­
regulated in the CSF of individuals with cognitive 
impairment.

The other recent study also used SELDI to identify 
increases in chitinase 3-like 1 (CHI3L1, also known as 
HCgp39 and YKL-40) in the CSF as a biomarker of SIVE/
HIV encephalitis (HIVE) [56]. Microglia and macro­
phages were found to produce CHI3L1. It displaced 
extracellular matrix-bound basic fibroblast growth factor 
and inhibited the mitogenic activity of its receptor. This 
may contribute to neurodegeneration through lack of 
ability of this growth factor, and possibly other factors 
bound to the extracellular matrix, to support neurons. 
Independent studies corroborate its upregulation. Our 
previous microarray studies of SIVE found increased 
levels of CHI3L1 mRNA in the brain [57], and in our CSF 
proteomics study [45] this protein was elevated in SIVE.

Proteomics has also been used to identify modifications 
of proteins in the CSF, providing clues to the pathogenesis 
of neuroAIDS; in particular, nitrosative/oxidative stress 
has been examined [58]. Levels of proteins modified by 
nitric oxide, nitrate and 3-nitrotyrosine (3-NT) were 
assessed in the CSF of 46 patients with HIV infection 
classified according to their neurocognitive status and 
whether they had a history of intravenous drug abuse. 
Although the levels of nitrates and nitrites were increased 
in individuals with HAD and a history of drug abuse, this 
did not reach significance. However, CSF from these 
individuals had significantly elevated levels of 3-NT-
modified proteins [58]. Subsequent analysis by immuno­
precipitation and LC-MS/MS identified lipocalin-type 
prostaglandin D synthase (L-PDGS), an enzyme involved 
in the prostaglandin biosynthesis pathway, to be one of 
the major 3-NT-modified proteins in the CSF of HAD 
individuals with a history of drug abuse. Prostaglandins, 
which regulate many physiological functions, have been 
suggested to be involved in the pathogenesis of HAD 
[59]. Further analysis by immunoassay revealed a signifi­
cant reduction in the enzymatic activity of L-PDGS, a 
reduction that was due to 3-NT modification. This 
correlation with HAD may be functionally important, 
suggesting that L-PDGS is a potential biomarker for 
neuroAIDS in this population.

Plasma biomarkers for neuroAIDS
Although CSF is ideal for neuroproteomics, its relative 
unavailability and the limited amount of protein it 
contains makes such studies difficult . By contrast, blood 
plasma is a much more accessible biofluid and can 
contain markers relevant for prediction, diagnosis and/or 
further investigation into the cause and effects of 
neurological disorders. Despite the ease of obtaining 
plasma, a major challenge associated with its analysis is 
that it has a highly complex proteome, similar to that of 
CSF. The relatively high expression of abundant proteins 
such as serum albumin and immunoglobulins, which 
together constitute more than 85% of the total protein 
content, masks the less abundant proteins, which could 
be biomarkers.

Another necessary and informative step in protein 
biomarker discovery is to detect quantitative alterations 
of a protein in different disease and control conditions. 
Development of new quantitative proteomics approaches 
has greatly enhanced proteomics technologies. One of 
these, already mentioned above, relies on identifying the 
different levels of intact proteins separated by electro­
phoresis followed by protein identification by MS. An 
alternative strategy is to identify all proteins in a sample 
by MS and use data from the MS for quantification. 
Label-free methods such as used in [45] are possible, but 
chemical reactions to introduce isotopic tags at specific 
functional groups on amino acids have also been found 
to provide excellent methods of quantification. One such 
method is known as isobaric tag for relative and absolute 
quantitation (iTRAQ) [60]. In an iTRAQ experiment, 
different samples from control and experimental groups 
are labeled with different tags and up to eight conditions 
can be assessed simultaneously.

Using such a platform, afamin, a member of the 
albumin superfamily [61], was recently found by our 
group to be significantly downregulated after SIV infec­
tion only when CNS disease was developing [62]. 
Another study using 2D-DIGE-based MS [63] also found 
afamin to be downregulated (by 2.25-fold [63] compared 
with 2.77-fold [62]) when comparing HIV-infected 
individuals with dementia and those without CNS 
disease. Afamin has been shown to be a specific binding 
protein for vitamin E [64]. The central role of vitamin E, 
which comprises eight related tocopherols and toco­
trienols, is to maintain physiological cellular and tissue 
function through the antioxidant properties of these 
compounds. Further analysis of α-tocopherol (αTocH) 
levels in the plasma samples of monkeys with SIVE 
revealed decreases, but to varying extents [62]. However, 
an identical result was found in animals that did not 
develop CNS disease. Thus, the decrease in αTocH 
correlated with infection itself and not the development 
of CNS disease, in contrast to afamin, which was 
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decreased only in the animals that developed CNS 
disease.

Another potential biomarker was identified from our 
earlier gene expression analysis on SIVE rhesus brains 
[57]. Osteopontin (OPN; also known as secreted 
phosphoprotein 1, SPP1) is an extracellular protein 
important in regulating differentiation, immune cell 
activation and cell attachment and migration [65]. 
Subsequent studies revealed that OPN increased reten­
tion of monocytes and their protection from apoptosis 
[66], suggesting an underlying mechanism of macrophage 
accumulation during HIV/SIV infection. An enzyme-
linked immunosorbent assay (ELISA) revealed an 
increase of OPN in the CSF of HIV-infected individuals 
[66,67]. However, there was no difference in OPN CSF 
levels between HIV-infected individuals with neuro­
cognitive disorders and those without such disorders. In 
plasma, however, ELISA analyses revealed a sequential 
increase in OPN across different diagnostic categories of 
HIV-associated neurocognitive disorders. We also found 
that expression of one of the receptors for OPN, a splice 
variant form of CD44 (CD44v6), is increased at early 
time points on monocytes in monkeys that will develop 
SIVE [68]. From a therapeutic standpoint, lowering OPN 
levels or its signaling is one possible strategy to 
ameliorate neuroAIDS.

Organelle proteomics
Although profiling of biofluids such as CSF and plasma 
have been useful, the ability to analyze the brain itself is 
key. A recent study using classical biochemical fractiona­
tion isolated synaptosomes (a subcellular fraction of 
nerve terminals and the synaptic region) from 19 human 
post-mortem specimens from uninfected and HIV-
infected individuals classified by viral RNA load and 
immunoproteasome (IPS) concentrations as low HIV/
low IPS and high HIV/high IPS, of which the latter group 
had four individuals with HIVE [69]. Using two-
dimensional polyacrylamide gel electrophoresis (2D-
PAGE) and matrix-assisted laser desorption ionization 
time-of-flight MS, the authors [69] identified potentially 
functionally important alterations in synaptic proteins, 
such as synapsin 1b (SYN1), which was downregulated in 
individuals with high HIV loads. SYN1 is a phospho­
protein protein present primarily in the presynaptic 
terminals that regulates synaptic vesicle pools bound to 
cytoskeletal proteins and modulates neurotransmitter 
release in response to a stimulus [70]. The decrease in its 
expression with HIV-1 infection suggests that there is 
abnormal regulation of the reserve pool of vesicles and 
thus abnormal neurotransmission. In addition, two 
proteins belonging to the 14-3-3 family (14-3-3ζ and 
14‑3-3ε), which are crucial for regulation of neuronal 
processes, including synaptic plasticity, were increased in 

individuals with high HIV loads. These isoforms have 
been previously reported to be increased in the CSF of 
patients with HIV/AIDS, primarily those with HAD 
[71,72]. The CSF of SIV-infected monkeys also showed 
higher expression of 14-3-3 proteins in animals with CNS 
disease [73].

In addition, changes in proteasomal proteins were 
found [69]. One proteasomal subunit protein, LMP7, was 
increased in individuals with high HIV loads, increasing 
the evidence that disruption of this process is linked to 
HIV-associated neurodegeneration. To determine 
whether the altered synaptosomal proteins in HIV/AIDS 
are histologically related to immunoproteasomal 
subunits, confocal microscopy was performed, showing 
co-expression of LMP7 and 14-3-3ζ in punctate neuronal 
and neuropil markings in brains with high HIV loads 
[69]. Taken together, these findings [69-72] reflect 
changes in the synaptodendritic arbor, which have been 
documented during high HIV loads in the brain [74], and 
give important insights into how HIV can affect neurons 
in the brain while not infecting them.

The scope of metabolomics
The use of proteomics to study neuroAIDS has been well 
documented. Another high-throughput methodology, 
metabolomics, quantifies all low molecular weight 
endogenous metabolites in specified cellular, tissue or 
biofluid compartments and has seen increasing develop­
ment and use. The measurement of metabolites is 
fundamental to every aspect of biology, from basic bio­
chemistry to standard tests in clinical medicine. 
Although high-density data gathering metabolomics 
technologies are still under development, this 
methodology may soon become superior to other post-
genomic technologies for pattern-recognition analyses of 
biological samples. A recent review [75] describes the 
translation of important metabolomics findings on 
neurological disorders to the clinic. Although early on 
this field centered around toxicological profiling and 
inborn errors of metabolism, recent applications have 
been extended to biomarker discovery, including for 
neurodegenerative disorders (reviewed in [76]).

Earlier targeted studies had identified changes in 
specific metabolite levels in CSF. For example, quinolinic 
acid, part of the kynurenine pathway, was shown to 
increase in CSF during HIV and SIV infection [77,78]. 
Similarly, the nitric oxide metabolites nitrate and nitrite 
were increased in a similar manner in the CSF [26,79,80]. 
Although these studies used a directed approach, our 
group has used a global MS-based metabolomics 
approach to identify differentially regulated metabolites 
in the CSF of monkeys before and after infection with 
SIV [81]. We found various metabolites to be up­
regulated, including carnitine, acyl-carnitines, fatty acids 
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(linoleic, palmitic and stearic acids) and phospholipid 
molecules [81]. In conjunction with gene array analysis, 
the increase in free fatty acids and lysophospholipids was 
found to correlate with increased expression of specific 
phospholipases, PLA1A and PLA2G4C; PLA2G4C can 
release numerous identified fatty acids. Further, in situ 
hybridization experiments revealed increased expression 
of PLA2G4C in monkeys with SIVE. Identification of 
specific metabolites as well as mechanisms of their 
increase greatly add to the credibility and potential of 
MS-based metabolomics and demonstrates its power to 
identify potential markers for neuroAIDS.

Conclusions
The potential of post-genomic strategies has increased 
immensely in recent years. In the case of neuroAIDS, 
proteomics has revealed signs of immune system 
activation and protective responses. These have added to 
the clues provided by earlier gene array studies and, 
importantly, they provide molecules that can be assessed 
in biofluids in future studies. Proteomics has also 
identified post-translational modifications that affect 
protein function. Although proteins carry out most 
biological events in a cell, the chemical transformations 
catalyzed by enzymes lead to metabolites that themselves 
have important physiological roles. In addition to 
metabolic functions, such metabolic products mediate 
crucial interneuronal communications in the brain. 
Combining metabolomics with gene array studies in 
neuroAIDS has led to discovery of a pathogenic process: 
phospholipase activation involving an increase in specific 
lipids in the CNS. This helps to illustrate that although 
each of these approaches is crucial, long-term success 
will most certainly depend on integrating them. Additional 
developments and work in proteomics and metabolomics 
will enable a better understanding of the physiological 
alterations leading to disease, as well as providing 
additional biomarkers for diagnosis and therapeutic 
intervention.
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