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RNA m6A methylation is a post-transcriptional modification that occurs
at the nitrogen-6 position of adenine. This dynamically reversible
modification is installed, removed and recognized by methyltransferases,
demethylases and readers, respectively. This modification has been found
in most eukaryotic mRNA, tRNA, rRNA and other non-coding RNA.
Recent studies have revealed important regulatory functions of the m6A
including effects on gene expression regulation, organism development
and cancer development. In this review, we summarize the discovery and
features of m6A, and briefly introduce the mammalian m6A writers, erasers
and readers. Finally, we discuss progress in identifying additional functions
of m6A and the outstanding questions about the regulatory effect of this
widespread modification.
1. Introduction
There has been extensive study of gene expression regulation. Chemical modi-
fication in DNA and RNA can regulate gene expression, which has evolved to
ensure that the right genes are properly expressed for the conditions of a par-
ticular environment and at the necessary time. There has been awareness that
the epigenetic modification of DNA can regulate gene expression and chroma-
tin organization. This recently coined an additional regulatory layer termed
‘epitranscriptomics’ that depends on biochemical modifications to the RNA
[1]. One of the most common RNA modifications is m6A methylation, or
N6-methyladenosine, which refers to methylation of the adenosine base at the
nitrogen-6 position. This methylation is a dynamically reversible modification
that is installed, removed and recognized by methyltransferases, demethylases
and readers, respectively [2]. This modification has been found in many eukar-
yotes, from plant to mammals, and even in viruses [3–6]. The m6A methylation
is widely distributed in various RNA, with an average of three m6A sites per
mRNA [7]. The m6A modification was first identified in the 1970s, but research
on its potential function was initially limited owing to a lack of technologies for
global detection of the m6A modification. In 2011, the obesity-associated protein
(FTO) was found to effectively remove m6A modification on RNA [8],
suggesting that m6A modification might serve a regulatory role. The develop-
ment of next generation sequencing methods has facilitated further functional
study of m6A modification.

In this review, we summarize the discovery and the main features of m6A
modification, and briefly introduce the mammalian m6A writers, erasers and
readers that interact with m6A sites to mediate the fate of mRNA (figure 1).
We next describe the emerging knowledge of the functions of m6A in post-
transcriptional gene expression regulation, animal development and cancer
development. Finally, we discuss the emerging challenge and outstanding
questions of this field, which should advance our understanding of m6A.
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Figure 1. The patterns and functions of m6A methylation. The m6A methylation, occurs at the sixth N atom of RNA adenine, is installed by methyltransferase and
erased by demethylase in the nucleus. The m6A readers that preferentially recognize m6A-containing RNA can impact the fate of the methylated RNA and give
diverse regulatory function. In the nucleus, combination of m6A with hnRNP proteins or YTHDC1 can affect splicing of pre-mRNAs and combination with YTHDC1
mediates the export of methylated mRNA. In addition, combination with hnRNPA2B1 facilitates the processing of methylated pri-miRNA. In cytoplasm, YTHDF1,
YTHDC2 and eIF3 bind to the methylated mRNAs to promote translation. YTHDF2, YTHDC1 and YTHDC2 bind to the methylated mRNAs to accelerate decay. Fur-
thermore YTHDF3 combining with the YTHDF1 can promote targeted mRNA translation and combining with YTHDF2 can accelerate degradation. More m6A readers
and other functions need to identify in m6A-modified mRNA.
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2. Discovery and features of m6A
In the 1970s, several groups characterizingmRNA5ʹ structures
in mammalian cells serendipitously discovered that polyade-
nylate RNA was rich in m6A modifications [9,10]. However,
concerns about contamination from small amounts of known
m6A sources, such as rRNA and small nucleolar RNAs
[11–13], prevented confirmation of m6A as a ubiquitous modi-
fication inmRNA that is related to biogenesis [14]. In 2012, two
groups of researchers firstly identified m6A peaks correspond-
ing to 5678 mRNA transcripts and 6990 mRNA transcripts in
mouse and human cells, and observed strong conservation of
these m6A peaks in humans and mice [4,5]. The applied
method was MeRIP-Seq or m6A-seq, which relies on the use
of highly specific m6A antibodies to immunoprecipitate
methylated mRNAs and then uses next generation sequencing
to map methylated transcripts [4,5]. However this method
lacks high sensitivity and resolution. The development
of m6A-miCLIP and PA-m6A-seq methods have allowed
more subtlemapping ofm6Amodification [15,16]. The technol-
ogies for detection and analysis of m6A sites continue to
advance, providing more insight into the importance of this
modification and its function in gene regulation.

Twomechanisms for regulating m6A deposition have been
described to date. First, histone H3 trimethylation at Lys36
(H3K36me3) can globally regulate m6A deposition. Approxi-
mately 70% of m6A peaks are enriched near H3K36me3 sites.
The depletion of H3K36me3 led to a reduction of the m6A
level, because H3K36me3 is coupled with METTL14, which
recruits the m6A methyltransferase complex to newly syn-
thesized RNAs and with RNA polymerase II mediates
the co-transcriptional deposition of m6A [17]. Second, tran-
scription factors can mediate the dynamic level of m6A
methylation. For example, Zfp217 can reduce the level of
m6A by activating the demethylase FTO and SMAD2/D3 can
recruit the m6A methyltransferase complex to newly
synthesized RNA to facilitate m6A deposition [18,19].

There are several features of m6Amodification: (i) mapping
of m6A sites revealed that they preferentially map near stop
codons, in the 30 untranslated regions (UTRs), followed by the
coding sequences (CDS) and the 50 UTR regions [4,5]; (ii) the
m6A motif was originally identified as (G/A) (m6A) C [20,21].
Recently, this motif has been more fully described as G [G/A]
(m6A) CU, with almost 90% of the m6A peaks containing
thesemotifs [4,5,22]; (iii) thismodification iswidely distributed
among species including human, mammals, yeast, Arabidopsis
and even viruses [3–6,23]; (iv) in addition to being found in
mRNA, the m6A modification has been observed in tRNA,
rRNA and other abundant non-coding RNA [24]. Signals for
m6Ahavealsobeen found in several classesof lncRNAs, includ-
ing the well-known XIST and MALAT1 [4,5,25,26]. The m6A
modification can also alter the expression of mature miRNA
by affecting the production of pri-miRNA [27]. Recent studies
have shown that intracellular m6A methylation can regulate
the translation, destabilization, export and biogenesis of cir-
cRNAs [28–31]; and (v) in mammals, m6A modification is



Table 1. Functions of m6A writers and erasers.

molecule effect on m6A modification other functions references

m6A

writers

METTL3 catalytic core of methyltransferase enhances translation [34,58,59]

METTL14 stabilize METTL3/14 complex and promote the binding

to RNA

[35,36]

WTAP promote the localization of METTL3/14 complex [45]

KIAA149(VIRMA) interactions with WTAP and installation of m6A

to the 30 UTR
[48]

RBM15/15B binding to U-rich regions to recruit the

methyltransferase complex

[25]

METTL16 promote methylation of U6 snRNA, ncRNAs and

pre-mRNAs

facilitate splicing of specific mRNA [49–52]

HAKAI necessary for the m6A methylation in Arabidopsis [53,54]

ZC3H13 promote the WTAP localization and m6A deposition [55,56]

ZCCHC4 methylate human 28S rRNA [57]

m6A

erasers

FTO remove m6A and m6Am regulate pre-mRNA alternative splicing [8,60,61]

ALKBH5 remove m6A regulate mRNA processing, metabolism

and export

[62–64]
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widely present in multiple tissues, with highest levels in liver,
kidney and brain [5]. Recent work has shown that m6A and
m6Am are highly specific to the brain, and some tissue-specific
m6Asignalsmaydistinguishdifferent humanandmouse tissue
types [32]. Overall, m6A modification is universal and exhibits
organizational preference.
3. Cellular system of m6A methylation
3.1. m6A writers
The m6A modification is performed by a methyltransferase
complex, or ‘writer’. This complex consists of two subunit
complexes: an m6A-METTL complex (MAC) and an m6A-
METTL-associated complex (MACOM), which can transfer
the methyl group from S-adenosylmethionine (SAM) to the
N6-amine of adenosine [33]. The m6A-METTL complex
includes methyltransferase 3 (METTL3) andmethyltransferase
14 (METTL14), which form a stable heterodimer. In 1997, a
70 kDa protein called MTA-70 (or METTL3) was successfully
isolated and found to contain a classic SAM-binding methyl-
transferase domain (SAM) [34]. METTL3 is the catalytic
subunit and binds to SAM [34] and METTL14 acts to stabilize
the conformation and promote binding to RNA [35,36]. The
lack of METTL3 could promote the apoptosis of HeLa cells
and causes a decrease of m6A level [37]. METTL3 is highly
conserved in eukaryotes and its homologues have been
found in yeast, plants and flies [38–40]. Notably, the absence
of METTL3 can block development in yeast and flies, and
can lead to death in Arabidopsis and mice [39–41]. An early
study revealed METTL14 is highly similar to METTL3 [42],
and further research confirmed that METTL14 is also a
methyltransferase [43]. METTL14 can synergistically increase
METTL3 methyltransferase activities [43,44]. Interestingly, the
knockdown of METTL14 resulted in a greater reduction in
m6A levels than the knockdown of METTL3 in HeLa and
293T cells [43]. The METTL3/14 complex can selectively
methylate RRACH sequences [43].

Subsequent efforts focused on m6A-METTL-associated
complexes and how these complexes promote methyltransfer-
ase activities. The Wilms tumour-associated protein (WTAP)
can interact with the METTL3/14 complex to promote mRNA
methylation [43]. Although WTAP lacks methyltransferase
activity in vitro, it promotes the localization of the METTL3/
14 complex to nuclear speckles and facilitates mRNAs methyl-
ation [45]. InterferingwithWTAP significantly reduces the level
of m6A and prevents METTL3/14 complex localization to
nuclear speckles [45]. KIAA1429 (also VIRMA) is a newly dis-
covered component of the methyltransferase complex.
Proteomic studies revealed important interactions with
KIAA1429 and WTAP, and the absence of KIAA1429 substan-
tially reduces the level of m6A modification [46,47]. Recent
studies showed KIAA1429 is critical for the specific installation
of m6A to 30 UTR sites [48]. The RNA-binding protein 15/15B
(RBM15/15B) preferentially binds to U-rich regions to recruit
the m6A complex and may promote the methylation of specific
RNA [25]. Another methyltransferase, METTL16, can install
m6A on U6 snRNA and other highly structured ncRNAs and
pre-mRNAs [49–51]. METTL16 may act a splicing enhancer to
produce stable mature MAT2A mRNA encoding SAM synthe-
tase during low-SAM conditions [49]. Recent study revealed
the role of METTL16 in promoting early mouse embryonic
development through regulation of SAM availability [52].
InArabidopsis, HAKAIwas identified as a newelement by inter-
action with WTAP and was found necessary for m6A
methylation [53,54]. The CCCH-type 13 zinc finger protein
(ZC3H13) and its homologous protein FLacc in Drosophila are
also involved in m6A installation by promoting the localization
of WTAP and the deposition of m6A [55,56]. Most recently,
ZCCHC4, a new m6A methyltransferase, was reported to
methylate human 28S rRNA within the AAC motif [57]. The
known m6A methyltransferases and their functions are listed
in table 1.
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3.2. m6A erasers
Until endogenous enzymes capable of demethylation of m6A
were found, m6A modification was regarded as a static modi-
fication. An important recent study identified FTO and
ALKBH5 as m6A demethylases that can remove m6A methyl-
ation. These ‘erasers’ belong to the AlkB family and require
the involvement of ferrous ion, α-ketoglutarate and oxygen
[65,66]. FTO is associated with weight gain and obesity in
humans [67]. Initial studies demonstrated that FTO could
demethylate 3-methylthymidine (3mT) in single-stranded
DNA and 3-methyluracil (3mU) in single-stranded RNA
[65,68]. In 2011, FTO was shown to effectively remove m6A
methylation of mRNA in vitro and inside cells [8]. Subsequent
study revealed that FTO can produce two intermediates in
removing m6A : N6-hydroxymethyladenosine (hm6A) and
N6-formyladenosine (f6A), which is unrecognized by m6A
‘readers’ [69]. Knockdown of FTO in HeLa cells can increase
the level of m6A and overexpression can reduce the level of
m6A in mRNA [8]. More recently, FTO has been found to pre-
ferentially target intronic regions in pre-mRNAs rather than
mRNAs, so can regulate pre-mRNA alternative splicing and
30 UTR processing [60]. In addition to m6A, FTO can also effec-
tively remove m1A from specific tRNAs and cap-m6Am from
mRNAs and some snRNAs [61]. FTO has higher demethyla-
tion activity for m6Am and can stabilize the 50 cap in mRNA,
making an effect on mRNA stability likely [61]. Most recently,
FTO was shown to remove m6Am methylation in snRNAs,
suggesting that methylation information in snRNA may
influence mRNA splicing [70].

Recently, ALKBH5 was identified as a second mammalian
m6A demethylase [62]. ALKBH5 is enriched in the nucleus,
unlike FTO, which is detected in the cytosol and nucleus
[61,62]. Based on its localization, ALKBH5 may target nuclear
RNAs and also interact withmRNAprocessing factors to regu-
late mRNA processing, metabolism and export [62,63]. The
m6A demethylation process catalysed by ALKBH5 does not
produce any intermediates. A lack of ALKBH5 in HeLa cells
increased the m6A level by 9%, while overexpression of
ALKBH5 decreased m6A level by 29% in total mRNA [62].
ALKBH5 was found to be highly expressed in the testicles of
mice, and knockout of ALKBH5 inhibited spermatogenesis
and decreased male fertility [62]. ALKBH5 can also modulate
correct splicing and promote the production of longer 30 UTR
mRNAs in the nuclei of spermatocytes and round spermatids
[64]. The known m6A demethylases and their functions are
listed in table 1.

3.3. m6A readers
Although methyltransferase and demethylase endow the
structural characteristics of RNA, m6A readers preferentially
recognize m6A-containing mRNA, and impact the fate of
target mRNA to give diverse regulatory functions. Recent
studies have confirmed that m6A readers have a YTH domain
that enables them to selectively target m6A-containing
mRNA [71,72]. Proteins with a YTH domain for recognition
of m6A-containing mRNA include: YTHDC1, YTHDC2,
YTHDF1, YTHDF2 and YTHDF3. YTHDF2, which has the
highest affinity to m6A, can selectively bind the m6A motif to
regulate mRNA degradation [73]. Studies have found that
mRNA bound to YTHDF2 can be transferred to an RNA degra-
dation site using anN-terminal, such as the processor (p-body),
and YTHDF2 can also directly recruit the CCR4-NOT deadeny-
lase complex to accelerate degradation [73,74]. Several studies
suggested that the IDR domain plays an effector function,
where the IDR of YTHDF2 bound to mRNA allows targeting
of P-bodies and also interactionwithCCR4-NOTand endoribo-
nuclease RNase P/MRP [29,73,74]. Importantly, YTHDF2 can
block demethylation of 50 UTR by FTO to stabilize methylation
levels in cells [75].A ratioof totalmRNAby21%, suggesting that
the YTHDF2 destabilizes m6A-modified mRNA [73]. Related
proteins YTHDF1 and YTHDF3 can promote translation by
recruiting translation initiation factors in HeLa cells [76,77].
Knockout of YTHDF1 does not affect overall mRNA stability,
but the overall translation efficiency is significantly reduced
owing to interaction of YTHDF1with eIF3 and other translation
initiation factors [76]. Interestingly, YTHDF3 was proposed to
complex with both YTHDF1 and YTHDF2 to promote mRNA
translation and degradation upon binding its targets [78]. How-
ever, the mechanisms by which binding affects translation and
degradation have not been fully described. YTHDC1, also
knownasYT521-B, has avarietyof regulatory functions, includ-
ing regulation of mRNA splicing [79], accelerating mRNA
export [80], silencing the X chromosome [25] and promoting
the decay of specific transcripts [81]. Recent studies have
shown that YTHDC2 can increase the translation efficiency of
its targets as well as decrease their mRNA abundance and is
also involved in the regulation of meiosis and spermatogenesis
[82,83].

In addition to the YTHdomain family, eukaryotic initiation
factor 3 (eIF3), a component of the 43S translation initiation
complex, directly binds to the 50 UTR of m6A mRNA and
affects translation initiation [84]. Member of the heterogeneous
nuclear ribonucleoprotein family, hnRNPC, hnRNPG, and
hnRNPA2B1, were identified as m6A readers that regulate
alternative splicing events [85–88]. The hnRNPC protein is a
nuclear RNA-binding protein that is involved in the processing
of pre-mRNA [89,90]. The m6A region of mRNA often lacks
secondary structure which promotes hnRNPC binding to
RNA, allowing it to regulate the abundance and alternative
splicing of target genes [87,91]. Another member of the
hnRNP family, hnRNPA2B1, was identified as anm6A binding
protein that affects m6A-dependent alternative splicing and
microRNA maturity [27,85]. The hnRNPG protein selectively
binds m6A-modified RNA using Arg-Gly-Gly (RGG) motifs
and interacts with RNA polymerase II (RNAPII) to regulate
exon splicing [86,88]. In another class of m6A readers, insu-
lin-like growth factor 2 binding protein 1-3 (IGF2BP1-3) and
Prrc2a stabilize m6A-containing mRNA [92,93]. The known
m6A readers and their functions are listed in table 2.
4. Biological function of m6A
With the improvement of m6A sequencing and detecting tech-
nology, many regulatory functions and mechanisms of m6A
have been revealed in a variety of biological processes. Several
studies have examined the biological function of m6A in gene
expression regulation [94], organism development [95] and
cancer development [96].

4.1. The regulation of gene expression
Modification by m6A regulates gene expression by affecting
the splicing, translation, stability and localization of mRNA.



Table 2. Functions of m6A readers.

molecule functions references

YTH domain family YTHDF1 promote m6A-modified RNA translation [77]

YTHDF2 regulate m6A-modified RNA degradation [29,73,74]

YTHDF3 promote m6A-modified RNA translation and degradation [77,78]

YTHDC1 regulate m6A-modified RNA splicing, export and degradation [79–81]

YTHDC2 promote m6A-modified RNA translation and degradation [82,83]

hnRNP family hnRNPC regulate the abundance and alternative splicing of target genes [87]

hnRNPG regulate the alternative splicing of target genes [86,88]

hnRNPA2B1 regulate the alternative splicing of target genes and microRNA maturity [27,85]

others eIF3 promote m6A-modified RNA translation [84]

IGF2BP1–3 stabilize m6A-modified mRNA [92]

Prrc2a stabilize m6A-modified mRNA [93]

royalsocietypublishing.org/journal/rsob
Open

Biol.10:200091

5

4.1.1. mRNA splicing

The function of m6Awas initially proposed to be the regulation
of mRNA splicing because characterized m6A residues were
observed in the nucleus and in introns of pre-mRNA, and
because intron splicing can reduce the m6A level of total
RNA [97,98]. Knockout of WTAP or METTL3 causes variable
mRNA splicing isoforms [45]. Several m6A reader proteins
can promote splicing events, including YTHDC1, which regu-
lates splicing via recruiting other splicing-related proteins [79],
as well as hnRNPC and hnRNPA2B1 that regulate splicing
via binding to m6A-dependent structural switches [87,88].
Additionally, hnRNPG as splicing factors can interact with
both nascent RNA and the carboxy-terminal domain (CTD)
of RNAPII to regulate alternative splicing of m6A-modified
RNA by hnRNPG binding and RNAPII occupancy [86]. In
addition, ALKBH5 has been shown to affect splicing rates
[62]. Further studies revealed that the deletion of METTL3 in
mouse embryonic stem cells (mESCs) can reduce 0.5% of
alternative splicing events [41,99]. Overall these results support
a model in which m6A regulates mRNA splicing.
4.1.2. mRNA translation

Early studies found significantly enrichment of ribosome-
related components in m6A-containing mRNA that was not
observed in mRNA without m6A [100]. The m6A reader
YTHDF1 increases the translation efficiency of m6A-modified
mRNA through direct interaction with translation initiation
factors and ribosomal subunits [76,78]. Another YTH domain
protein, YTHDF3, interacts with YTHDF1 in HeLa cells to
promote translation, but a clear mechanism by which the
combination of these two factors affect translation has not
been described [78]. Notably, increased 50 UTR methylation
in the form of m6A can promote translation initiation indepen-
dent of a 50-endN7-methylguanosine cap [75]. Separately from
catalytic activity, METTL3 enhances translation of bound RNA
by directly recruiting translation initiation factors in an RNA-
independent manner [58]. Most recently, a study showed that
METTL3 can interact with the eIF3 h subunit at the 50-end of
mRNA bound to specific sites near the translation stop codon
to facilitate circularization of themRNA for ribosome recycling
and translational control [59].
4.1.3. mRNA stability

KnockdownofMETTL3andMETTL14 led to amodest increase
in stability of methylated transcripts, suggesting that m6A can
influence mRNA stability [44]. Studies on the half-life of
target mRNAs revealed a significant increase in stability
when YTHDF2was not present, indicating that YTHDF2 accel-
erates mRNA degradation. Importantly, YTHDF2 localized to
P-bodies, a subset of cellular processing bodies [73]. Consistent
with this view, a study found that YTHDF2 recruits CCR4-NOT
throughdirect interactionwithCNOT1 topromotedegradation
ofmethylated transcripts [74]. Anotherm6A reader involved in
RNA degradation is YTHDC2. The researchers observed that a
slight increase in the expression of m6A-modified transcripts in
YTHDC2-knockout testes [83]. Unlike the m6A reader, m6A
may regulate RNA stability byaffecting its secondary structure.
The RNA-binding protein HuR, which binds to the U-rich
region of the 30 UTR in mRNA, blocks binding of the miRNA
and thus prevents degradation [101]. Studies have shown that
m6A interfereswithHuRbinding inmiRNAtarget genes, there-
fore promoting the degradation of mRNA. At the same time,
knockout of METTL3 inhibits Ago2 binding to target mRNA
and increases its stability [44]. A new mechanism of m6A-
modified RNAs degradation was reported recently, in which
HRSP12 acts as an adaptor to connect YTHDF2 and RNase
P/MRP (endoribonucleases) resulting in endoribonucleolytic
cleavage of YTHDF2-bound RNAs [29].
4.1.4. mRNA export

Knockdown of METTL3 can prevent the nuclear export of cir-
cadian clock genes Per2 and Arntl, resulting in a prolonged
circadian period [102]. ALKBH5 is mainly localized in nuclear
speckles and depletion of ALKBH5 can accelerate the nuclear
export of target RNAs [62]. Combined depletion of WTAP
and KIAA1429 led to a nuclear accumulation of specific
m6A-modified transcripts [103]. The m6A reader YTHDC1
mediates the export of methylated mRNA from the nucleus
to the cytoplasm in human cells. YTHDC1 can interact with
SRSF3 and SRSF3 interacts with the nuclear export receptor
NXF1 to mediate the export of mRNA. The knockdown of
YTHDC1 does not affect the overall level of m6A, but does
result in nuclear accumulation of mRNA [80]. The nuclear
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export of mRNA is controlled by the TREX complex and the
heterodimeric nuclear export receptor NXF1-P15 [104]. The
m6A writer complex can recruit TREX to m6A-modified
mRNAs and TREX can stimulate recruitment of YTHDC1
and NXF1, resulting in the export of mRNA [103]. Both Zika
virus and HIV-1 have a high level of m6A methylation, with
accelerated nuclear export, and other processing steps depen-
dent on m6A during replication, suggesting that methylation
may be necessary for nuclear export of mRNA [105].

4.2. Organism development
Growing research indicates that m6Amodification is necessary
for early embryo development. Early studies showed a lack of
Ime4 in Drosophila, the METTL3 homologous protein, has a
semi-lethal effect on development, and the fertility of adult
individuals is reduced owing to impaired NOTCH signalling
[40]. Recent study indicates that depletion of Ime4 inDrosophila
does not really cause prominent lethality in adults. The study
showed that m6A methyltransferase plays a critical regulator
in controlling neuronal functions and sex determination by
its nuclear reader YT521-B [106]. However, depletion of
METTL3 in mice has a lethal effect on embryonic development
[41]. Furthermore, inArabidopsis, the absence of the orthologue
of the yeast and human mRNA adenosine methylase (MTA)
can affect embryonic development and in yeast, Ime4 plays
an important role in cell meiosis [23,107]. During the maternal
to zygomatic transition (MZT) in zebrafish, maternal mRNAs
with m6A modification were rapidly cleared by YTHDF2.
Knockout of YTHDF2 increased the stability of maternal
mRNAs and prevented the egg transforming into the fertilized
state, ultimately slowing the embryo from entering the MZT
and delaying development of the offspring zebrafish [108].
These studies indicate that m6A modification is required for
early embryo development in animals.

Recent studies have shown that m6A is involved in various
physiological processes, such as stem cell self-renewal and
differentiation, lipid metabolism, glucose metabolism, DNA
damage repair, control of heat shock response, and circadian
rhythm. The lack of YTHDF1 can impair hippocampal-
dependent neurological functions in mice such as spatial
learning and memory, but overexpression of YTHDF1 in the
hippocampus can restore this damage. Itwas showed that bind-
ing of YTHDF1 to methylated transcripts can promote the
function of synaptic transmission and long-term potentiation
genes [109]. After an organism was subjected to heat shock,
METTL3 rapidly bound to heat shock genes and YTHDF2 can
compete with the FTO to prevent 50 UTR demethylation, thus
enhancing translation [75]. Similarly, after DNA ultraviolet
damage, transcripts methylated by METTL3 are rapidly loca-
lized at the site of injury, and then recruit DNA polymerase κ
(Pol κ) to promote damage repair [110]. The process of m6A
methylation also plays a vital physiological role in the circadian
rhythm cycle. Reduced m6A can prevent the nuclear export of
circadian clock genes Per2 and Arntl [102]. There are many
reported roles of m6A in lipid metabolism. FTO-dependent
demethylation led to lipid accumulation and triglyceride depo-
sition in skeletal muscle cells and hepatocytes [111,112]. FTO
can also affect glucose metabolism by reducing the m6A level
of FOXO1, an important transcription factor that regulates
hepatic gluconeogenesis [113].

Many studies have emphasized a role of m6A in the regu-
lation of stem cell differentiation. Earlier research showed
that knockdown of METTL3 or METTL14 reduced the level
of m6A and self-renewal in mESCs [44]. However, conflicting
results indicated that knockout ofMETTL3 inmESCs increased
self-renewal and impaired differentiation towards cardiomyo-
cytes and neurons by enhancing the level of regulator Nanog
necessary for self-renewal [114]. The knockout of METTL3 in
early mouse embryos failed to transform naive mESCs into
the primed state, resulting in post-implantation embryo
death. However the knockdown of METTL3 at a primed plur-
ipotency state promoted differentiation [41]. This result
suggests that m6A may serve as a switch to regulate the
expression of multiple pluripotency genes and developmental
regulators in early embryos. Similarly in mouse embryonic
fibroblasts, knockdown of METTL3 resulted in a decrease in
m6A abundance and improved reprogramming efficiency
[115]. In addition, in haematopoietic stem cells (HSCs) the
knockout of YTHDF2 can maintain the function of HSCs by
regulating the stability of multiple mRNAs critical for HSC
self-renewal [116]. Taken together, these results suggested
that m6A is required for maintaining pluripotency and stem
cell differentiation.
4.3. Cancer development
The process of m6A methylation has been related to the devel-
opment of human diseases, especially cancer proliferation,
apoptosis and metastasis. The deletion of WTAP in a human
acute myeloid leukaemia (AML) cell line reduced proliferation
and increased differentiation and apoptosis [117]. Consistent
with that effect of WTAP deletion, deletion of METTL3 in the
AML cell line promoted cell differentiation and apoptosis by
reducing translation of METTL3-binding genes, including
MYC, BCL2 and PTEN [118]. Meanwhile, METTL14 play an
oncogenic role in the AML cell line by regulating m6A methyl-
ation of tumour genes MYB and MYC [119]. However, the
reduction of m6A plays an oncogenic role in some AMLs. In
the t (11q23), t (15; 17), and FLT3-ITD type AML cell lines,
FTO is highly expressed, which can promote leukemogenesis.
FTO can also suppress AML cell differentiation induced by
all-trans-retinoic acid (ATRA) treatment [120].

In breast cancer (BC), HBXIP can upregulate METTL3 by
suppressing miRNA let-7 g, and METTL3 promotes HBXIP
expression through increased m6A modification, leading
to an accelerated proliferation of BC cells [121]. In human
pancreatic cancer (PC), YTHDF2 is upregulated to promote
cancer cell proliferation and the epithelial-mesenchymal tran-
sition (EMT) [122]. The overall m6A level was significantly
enriched in PC cells and overexpression of ALKBH5 can inhi-
bit cancer cell migration and invasion by demethylating
lncRNA KCNK15-AS1 [123]. In human hepatoma cells
(HCC), decreased m6A and METTL14 was detected and over-
expression of METTL14 can interact with DGCR8 to regulate
the maturation of pri-miRNA126 in an m6A-dependent
manner, reducing the metastasis of hepatoma cells [124].
However, METTL3 is upregulated in HCC and knockdown
of METTL3 significantly inhibits the proliferation, migration
and metastasis of cancer cells. The results indicated that
METTL3 can increase m6A abundance in SOCS2 mRNA,
with degradation that is dependent on YTHDF2, which ulti-
mately promoted liver cancer [125]. The conflicting results
demonstrate that more work remains to explore the function
of m6A methylation.
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Glioblastoma stem cells (GSCs) possess self-renewal and
differentiation capabilities in malignant tumours. The knock-
down of METTL3 and METTL14 in GSCs reduced the m6A
level, thereby enhancing the expression of oncogenes including
ADAM19, EPHA3 and KLF4, which promoted cell growth
and self-renewal. However, overexpression of METTL3 or
knockdown of FTO inhibited GSC growth and self-renewal,
resulting in inhibition of tumorigenesis [126]. The latest
research has shown that m6Amodification affects tumour anti-
gen-specific T cell immune responses by regulating the
translation efficiency of lysosomal cathepsin in dendritic cells
[127]. Knockout of YTHDF1 in mice enhances the response of
tumour antigen-specific CD8+ T cells. Further study showed
that the mRNAs of multiple lysosomal cathepsins are m6A
modified and methylated transcripts can be recognized by
YTHDF1, resulting in increased translation [127].

Recent studies provide evidence thatm6Amethylationmay
be used as a potential prognostic biomarker of the tumour. In
gastric cancer, reduced m6A modification can promote gastric
cancer malignancy by activating oncogenic signalling, and
FTO acting as an oncogene can promote tumour growth
[128,129]. Similarly, hnRNPCwas identified as an independent
prognostic biomarker in oral squamous cell carcinoma (OSCC)
and the overexpression of hnRNPC facilitated the development
of OSCC cells in vitro [130]. MALDI-TOF-MS revealed that the
methylation level of miRNA methylation was significantly
higher in PC compared with normal tissues, so evaluating
miRNA methylation is a promising diagnostic strategy [131].
However, whether m6A methylation can serve as a molecular
tool to regulate gene expression for treatment of human
diseases is a key question to be addressed.
5. Conclusion
Similar to DNA methylation, RNA m6A methylation is a
dynamic reversible modification catalysed by methyltransfer-
ase and demethylase, where the proteins that recognize this
modification alter the function of the target mRNA. With
improved technology to detect and analyse m6A, recent years
have witnessed a rapid advance in studies on m6A methyl-
ation. The m6A methylation is widely found in various
RNAs in both prokaryotes and eukaryotes, and m6A methyl-
ation can regulate RNA stabilization, transport, splicing and
translation. In addition, m6Amethylation can alter RNA struc-
tures to affect the interaction of mRNA binding proteins [88].
Additionally, m6A is closely related to embryonic develop-
ment, cancer metastasis, immune response, stem cell self-
renewal differentiation, lipid metabolism, glucose metabolism,
DNAdamage repair, heat shock response control and circadian
rhythm control.

Several challenging questions about m6A methylation
remain to be addressed. In mammals a consensus sequence
of m6A: G [G/A] (m6A) CU has been defined. However,
although this consensus motif is ubiquitous in the transcrip-
tome, only a fraction of these sites are methylated in vivo.
Thus, we still need to elucidate the mechanisms for selective
specificity in the m6A-modified transcripts. The result of this
selection may be related to different requirements for devel-
opment and environmental stimuli. Functions of m6A may
vary in different environmental stimuli or cellular type. For
example, in heat stress, the level of m6A increases in the 50

UTR and promotes the expression of HSF by initiating inde-
pendent-cap translation, thus promoting the response of the
cell heat shock pathway [75]. This dynamical change prob-
ably leads to different fates of the methylated RNAs for
various environmental stimuli or cellular types. Additionally,
the diversity in the binding classes of m6A readers also can
change the fate of methylated transcripts. YTHDF3 has two
different functions, acting to promote targeted mRNA trans-
lation with YTHDF1 and acting to accelerate degradation
with YTHDF2 [78]. The mechanism by which YTHDF3 com-
bines with YTHDF1 or YTHDF2 remains unclear. This
complexity means that simply exploring the m6A functions
in single environmental systems may not adequately reveal
the comprehensive roles of m6A methylation in multiple bio-
logical processes. YTHDC1 possesses a variety of regulatory
functions, but how YTHDC1 selects different sets of m6A-
modified RNA is unclear [79–81]. Indeed, there is limited
understanding of how m6A readers identify and select their
target transcripts to modulate the fate of modified RNAs.
In addition, METTL3 and ALKBH5 have regulatory functions
for modified RNAs that are independent of both catalytic
activity and m6A readers [62,59]. Thus, we should continue
to investigate the function and molecular mechanisms of
m6A methylase to better understand this complex process.
Collectively, m6A methylation needs us to uncover the
occurrence and function from different layers.
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