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Abstract 

Background: Previously identified phenotypes of acute respiratory distress syndrome (ARDS) have been limited by 
a disregard for temporal dynamics. We aimed to identify longitudinal phenotypes in ARDS to test the prognostic and 
predictive enrichment of longitudinal phenotypes, and to develop simplified models for phenotype identification.

Methods: We conducted a multi-database study based on the Chinese Database in Intensive Care (CDIC) and four 
ARDS randomized clinical trials (RCTs). We employed latent class analysis (LCA) to identify longitudinal phenotypes 
using 24-hourly data from the first four days of invasive ventilation. We used the Cox regression model to explore the 
association between time-varying respiratory parameters and 28-day mortality across phenotypes. Phenotypes were 
validated in four RCTs, and the heterogeneity of treatment effect (HTE) was investigated. We also constructed two 
multinomial logistical regression analyses to develop the probabilistic models.

Findings: A total of 605 ARDS patients in CDIC were enrolled. The three-class LCA model was identified and had the 
optimal fit, as follows: Class 1 (n = 400, 66.1% of the cohort) was the largest phenotype over all study days, and had 
fewer abnormal values, less organ dysfunction and the lowest 28-day mortality rate (30.5%). Class 2 (n = 102, 16.9% of 
the cohort) was characterized by pulmonary mechanical dysfunction and had the highest proportion of poorly aer-
ated lung volume, the 28-day mortality rate was 47.1%. Class 3 (n = 103, 17% of the cohort) was correlated with extra-
pulmonary dysfunction and had the highest 28-day mortality rate (56.3%). Time-varying mechanical power was more 
significantly associated with 28-day mortality in Class 2 patients compared to other phenotypes. Similar phenotypes 
were identified in four RCTs. A significant HTE between phenotypes and treatment strategies was observed in the 
ALVEOLI (high PEEP vs. low PEEP) and the FACTT trials (conservative vs. liberal fluid management). Two parsimonious 
probabilistic models were constructed to identify longitudinal phenotypes.

Interpretation: We identified and validated three novel longitudinal phenotypes for ARDS patients, with both prog-
nostic and predictive enrichment. The phenotypes of ARDS can be accurately identified with simple classifier models, 
except for Class 3.
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Introduction
Acute respiratory distress syndrome (ARDS), clinically 
defined by the Berlin definition [1], is a heterogenous 
syndrome characterized by acute hypoxic respiratory 
failure that can be caused by a wide variety of insults 
[2]. ARDS is a clinically heterogenous syndrome with 
diverse populations, multiple etiologies, and a broad 
definition which might explain the absence of benefit 
in most randomized controlled trials (RCTs) assessing 
various treatment strategies [3]. Identifying specific 
ARDS phenotypes could lead to more favorable clinical 
trials and personalized ARDS management [4–6].

Several ARDS phenotypes have been documented. 
In the past few years, Calfee and colleagues used latent 
class analysis (LCA) using cross-sectional data at base-
line and identified two phenotypes: a hypo-inflamma-
tory, and a hyper-inflammatory phenotype [7]. The 
latter had higher levels of pro-inflammatory biomark-
ers and poorer outcomes. Subsequent analyses dem-
onstrated that patients with the hyper-inflammatory 
phenotype might benefit more from higher positive 
end-expiratory pressure (PEEP) and a conservative 
fluid strategy [8, 9]. According to 54 respiratory and 
CT-derived variables, a two-class model was identi-
fied as best fitting: non-recruitable phenotype and 
recruitable phenotype, and the recruitable phenotype 
presented with an increased  PaO2/FiO2 ratio, compli-
ance, and decreased alveolar dead space in response to 
a standardized recruitment maneuver [10].

However, these phenotypes do not capture the com-
plexity and diversity of ARDS, and were derived only 
based on cross-sectional data collected within one day. 
Using more diverse data with a longitudinal approach 
might be more informative in identifying phenotypes. 
The longitudinal phenotypes of traditional ARDS have 
never been addressed. Phenotypes may be dynamic and 
change throughout the course of a patient’s illness. A 
retrospective study divided septic patients into four ill-
ness categories based on the severity of laboratory and 
vital sign abnormalities, and demonstrated that almost 
60% of them changed their illness category at least once 
during hospitalization [11]. To our best knowledge, 
only one prior study has evaluated the dynamic change 
of ARDS phenotypes [12].

Therefore, we designed this study based on a multi-
database to identify longitudinal phenotypes of ARDS. 
We hypothesized that using diverse data with a lon-
gitudinal approach could identify novel longitudinal 

phenotypes, with different clinical characteristics, 
mortality rates, and most importantly, responding dif-
ferently to treatments. We also aimed to explore the 
dynamic change of ARDS phenotypes across days. 
Finally, we aimed to derive and validate simplified 
probabilistic models for phenotype assignment.

Method
Study design and participants
We conducted a multi-database study based on the Chi-
nese Database in Intensive Care (CDIC) and RCTs from 
the National Heart, Lung, and Blood Institute (NHLBI) 
ARDS Network. The CDIC collected data from 11,560 
patients admitted to the Department of Critical Care 
Medicine, Zhongda Hospital, Southeast University, 
China, from January 2014 to March 2021, and was classi-
fied as a derivation cohort in the present study. Patients in 
CDIC who fulfilled the berlin definition of ARDS (detail 
in Additional file 1: Additional methods) [1] and received 
mechanical ventilation for at least 24 h were eligible for 
inclusion, we excluded patients younger than 18  years. 
We only included the first Intensive Care Unit (ICU) 
admission of each patient. ARDSNet trials including 
ALVEOLI [13], FACTT [14], EDEN [15] and SAILS [16] 
were classified as validation cohorts. Involved patients in 
RCTs were all intubated and received mechanical ventila-
tion. The details of CDIC and ARDSNet trials were pre-
sented in Additional file 1: Table S1.

The present study was approved by the Research Eth-
ics Commission of Zhongda Hospital Southeast Univer-
sity (2022ZDSYLL082-P01). For ARDSNet trials, all data 
were approved by Biologic Specimen and Data Reposi-
tory Information Coordinating Center (BioLINCC, 
https:// bioli ncc. nhlbi. nih. gov). STROBE recommenda-
tions were followed.

Data collection and outcomes
The detail of data collection was presented in Addi-
tional file  1: Additional methods. The primary outcome 
in the CDIC derivation cohort was 28-day mortality. The 
primary outcome was 60-day mortality in ALVEOLI, 
FACTT and SAILS trials, and was ventilator-free days 
(VFDs) to 28  days in the EDEN trial. Other outcomes 
included the use of neuromuscular blocking agents 
(NMBAs), ICU mortality, hospital mortality and 90-day 
mortality were also investigated.

Keywords: Acute respiratory distress syndrome, Longitudinal phenotypes, 28-day mortality, Heterogeneity of 
treatment effect

https://biolincc.nhlbi.nih.gov
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Quantitative CT analysis
For each patient in CDIC, the whole lung CTs were col-
lected within three days before the initiation of mechani-
cal ventilation, and were treated as lung CTs on Day 0. 
The cross-sectional lung images were processed and ana-
lyzed by a custom-designed software package [17]. After 
excluding hilar structures, the total lung parenchyma 
was divided into four regions with different inflated sta-
tus based on CT attenuation, as follows: non-aerated 
(voxel density + 100 to −  100 Hounsfield Units, HU), 
poorly-aerated (− 101 to − 500 HU), well-aerated (− 501 
to −  900 HU), and over-inflated lung tissue (−  901 to 
−  1000 HU) [18]. Fours masks in the total lung were 
gained as the output, the volume and volumetric per-
centage of each mask were calculated. The image analy-
sis process was displayed in Additional file 1: Fig. S1. All 
analyses were performed in Python version 3.7.

Phenotype derivation
In the CDIC derivation cohort, phenotypes were first 
studied longitudinally using time-dependent analysis 
with 24-hourly data from the first four days of invasive 
ventilation, which were identified by longitudinal LCA 
[19]. Clinical variables were selected based on their 
association with the severity or outcome of ARDS, and 
were used as inputs for the identification of latent classes 
(Additional file  1: Table  S2), including age, minute ven-
tilation, PEEP, driving pressure, mechanical power, ven-
tilatory ratio,  PaO2/FiO2 ratio, heart rate, MAP, pH, 
creatinine, bicarbonate, lactate and fluid balance. We 
recorded the most abnormal value if a variable was 
recorded more than once.

Before longitudinal LCA, we first assessed the distri-
butions and missingness (Additional file  1: Table  S3) of 
candidate variables. Multiple imputations with chained 
equations (MICE) were used to account for missing 
data (detail in Additional file  1: Additional methods). 
Standardized transformation was used for the dataset, 
and non–normally distributed variables were log-trans-
formed prior to standardized transformation. Longitu-
dinal LCA was fit to the combined datasets of candidate 
variables from all patients across Days 0, 1, 2 and 3, while 
allowing phenotype transition across ICU days. We esti-
mated models ranging from two to six classes, and the 
optimal number of latent classes were selected using the 
lowest AIC, SABIC and highest values of entropy. The 
minimum number of patients should be over 5% of the 
entire study population. The probability of class member-
ship was used to evaluate the robustness of class mem-
bership, and the minimum probability should be over 
80%. Sensitivity analysis included only the patients who 
remained on mechanical ventilation for more than 96 h. 

Longitudinal phenotypes were also validated in ARD-
SNet trials. LCA was performed using the tidyLPA pack-
age in R, and codes are available in Additional file 2.

We then employed group-based trajectory modeling 
(GBTM) [20] to assess if the trajectory of a single vari-
able could be used to identify trajectory phenotypes with 
similar dynamics to those identified by longitudinal LCA. 
Since longitudinal phenotypes differed most on mechani-
cal power and ventilatory ratio in present study, we 
applied GBTM on 24-hourly data from the first four days 
of invasive ventilation to identify trajectories for mechan-
ical power and ventilatory ratio in CDIC (detail in Addi-
tional file 1: Additional methods). GBTM was performed 
using the traj package in Stata.

Statistical analyses
Values are presented as proportions for categorical 
variables and means (standard deviations) or medians 
[interquartile ranges (IQRs)] for continuous variables. 
For comparisons, we used analysis of variance and the 
Kruskal–Wallis test for continuous data and the  X2 test 
for categorical data.

After the derivation of phenotypes of ARDS, key vari-
ables between phenotypes were compared and visualized 
with rank plots, class membership transition over days 
0, 1, 2, and 3 were visualized with alluvial plots. We then 
assessed the correlation of the longitudinal phenotypes 
with pre-selected respiratory variables in CDIC, which 
included mechanical power, ventilatory ratio and driv-
ing pressure. We employed the Cox proportional hazards 
model to estimate the effect of a time-varying parameter 
on a time-to-event outcome in longitudinal phenotypes 
[21]. Based on the prior knowledge, baseline variables 
were selected into the Cox model and included pH, 
 PaO2/FiO2 ratio,  PaCO2 and dynamic compliance. Since 
patients with different phenotypes might have different 
inflated status of lung parenchyma, we also compared the 
volumetric percentage of each mask across phenotypes 
on Day 0 in CDIC.

We then compared 28-day mortality or 60-day mortal-
ity of patients in different phenotypes (Day 0) in CDIC 
cohort and ARDSNet trials using Kaplan–Meier curves 
and log-rank tests; we also performed a multivariate Cox 
regression model to explore the association and adjusted 
for age, gender and BMI. In each of the four ARDSNet 
trials, heterogeneity of treatment effect (HTE) was also 
evaluated by the interaction test to determine if treat-
ment effects were differential across phenotypes (Day 0) 
in existing trials. HTE was assessed by the interaction 
term (Class × Treatment strategy) of the Cox regression 
for mortality and Poisson regression for VFDs.

Finally, we attempted to construct two parsimonious 
models to predict phenotypes on Day 0 and Day 2 using 
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baseline variables, respectively. Machine learning algo-
rithms included extreme gradient boosting (XGBoost) 
and gradient boosted model (GBM) were used to iden-
tify the most critical classifier variables. To select the 
most important variables, variable importance was used 
for the XGBoost, relative influence factor of the variable 
was used for GBM (detail in Additional file 1: Additional 
methods). The common variables in the top five variables 
of the two machine learning models were selected, and 
therefore were used to develop final multinomial logis-
tical regression models to identify phenotypes on Day 
0 and Day 2, respectively. The ability of the final model 
to predict the phenotypes was determined by calculat-
ing the area under the receiver operating characteristic 
curves (AUROC) for the phenotypes, both in the CDIC 
and ARDSNet trials.

The p-value was calculated to evaluate the differences 
between phenotypes, and P < 0.05 was considered statisti-
cally significant. The level of significance for the test of 
interaction was adjusted to 0.0167 according to Bonfer-
roni correction. All statistical analyses were performed 
using R (version 4.0.3), Stata (16.0) and Python (3.7).

Results
Patients in study
In the CDIC derivation cohort, a total of 605 patients met 
inclusion and exclusion criteria and were enrolled in the 
final analyses (Additional file  1: Fig. S2). The mean sofa 
score was 9 (IQR: 6–12) and the  PaO2/FiO2 ratio was 
159 mmHg (IQR: 117–210). Pneumonia was the leading 
cause of ARDS (66.1%). The 28-day all-cause mortality 
was 37.7%. In the four ARDSNet trials, a total of 3294 
patients were included as validation cohorts (549 in the 
ALVEOLI trial, 1000 in the FACTT trial, 1000 in the 
EDEN trial and 745 in the SAILS trial), the 60-day mor-
tality across the four trials ranged from 22.7 to 26.9%.

Derivation of phenotypes for ARDS in CDIC
Using the longitudinal data from the first four days of 
mechanical ventilation, a three-class model was iden-
tified and had the optimal fit in the CDIC derivation 
cohort (Additional file  1: Table  S4). Entropy was 90.6% 
and the probability of class membership ranged from 
87.4 to 97.6%. The longitudinal phenotypes differed 
broadly in clinical characteristics and organ dysfunction 
patterns (Table  1 and Additional file  1: Table  S5). The 
standardized mean differences of main clinical charac-
teristics between phenotypes over time were shown in 
Fig. 1. Class 1 (n = 400, 66.1% of the cohort) was the larg-
est phenotype, and had fewer abnormal values and less 
organ dysfunction. Class 2 (n = 102, 16.9% of the cohort) 
was characterized by the highest minute ventilation, driv-
ing pressure, mechanical power, ventilatory ratio and the 

lowest  PaO2/FiO2 during the first four days of mechani-
cal ventilation, which can be called pulmonary mechani-
cal dysfunction phenotype. Class 3 (n = 103, 17% of the 
cohort) was characterized by the highest creatinine, lac-
tate and the lowest bicarbonate, MAP, and a higher pro-
portion of patients received vasopressors compared to 
other phenotypes, which can be called extra-pulmonary 
dysfunction phenotype (Additional file  1: Figs. S3–S5). 
Interleukin-6 (IL-6) was highest in Class 3 compared to 
other phenotypes (Additional file  1: Fig. S6). As for the 
causes of ARDS, Class 3 had the lowest proportion of 
pneumonia and the highest proportion of sepsis com-
pared to other phenotypes.

Most patients (56.9%) changed their phenotypes at 
least once during the first four days of mechanical ven-
tilation (Fig.  2). Class 1 had the largest number over 
all study days, while the number of Class 3 gradually 
decreased. Sensitivity analysis including only the patients 
who remained on mechanical ventilation for more than 
96 h (n = 459, 75.8% of the cohort) and yielded a similar 
result, with only 4.4% of patients on Day 0, 3.3% on Day 
1, 4.3% on Day 2 and 4.8% on Day 3 changing class mem-
bership (Additional file 1: Fig. S7).

After GBTM, three distinct trajectories of mechani-
cal power and ventilatory ratio were observed and had 
the optimal fit, as follows: a sustained low value, or a 
sustained moderate value, or a sustained high value for 
mechanical power or ventilatory ratio over the first four 
days of invasive ventilation (Additional file  1: Fig. S8). 
While the trajectories and longitudinal phenotypes did 
not overlap much in mechanical power and ventilatory 
ratio (Additional file  1: Fig. S9). The clinical character-
istics and outcomes between trajectories were shown in 
Additional file 1: Table S6.

Interaction between phenotypes and respiratory 
parameters on mortality
In the Cox proportional hazards model, after adjusting 
for pH,  PaCO2,  PaO2/FiO2 ratio and respiratory system 
compliance, there was a significant interaction between 
mechanical power and phenotypes (Fig.  3 and Addi-
tional file 1: Tables S7–S9). While time-varying mechani-
cal power was more significantly associated with 28-day 
mortality in Class 2 patients compared to other pheno-
types in the CDIC cohort (HR 1.04, 95% CI 1.01–1.07; p 
for interaction = 0.0051). No significant interaction was 
detected between time-varying ventilatory ratio or driv-
ing pressure and phenotypes.

Correlation of phenotypes with lung CT features in CDIC
A total of 427 patients performed lung CT within three 
days before the initiation of mechanical ventilation: 328 
(82%) patients in Class 1, 72 (70.6%) patients in Class 2 
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Table 1 Clinical characteristics and outcomes of the longitudinal phenotypes on Day 0 in the CDIC

BMI body mass index, ARDS acute respiratory distress syndrome, PBW predicted body weight, SOFA sequential organ failure assessment, APACHE acute physiology and 
chronic health evaluation II, PEEP positive end-expiratory pressure, PaCO2 partial pressure of Carbon Dioxide, PaO2 partial pressure of oxygen, MAP mean arterial blood 
pressure, BUN blood urea nitrogen, VFD ventilator-free days, ICU intensive care unit

All (n = 605) Longitudinal phenotypes of ARDS P value

Class 1 (n = 400) Class 2 (n = 102) Class 3 (n = 103)

Age (years) 65 (53–76) 66 (54–77) 65 (54–73) 63 (52–75) 0.18

Male (gender), n (%) 423 (69.9) 283 (70.8) 67 (65.7) 73 (70.9) 0.59

BMI (kg/m2) 23.5 (20.9–26.0) 23.7 (21.5–26.0) 23.4 (20.8–25.7) 22.9 (20.8–25.8) 0.35

ARDS Primary risk factor, n (%) 0.015

 Pneumonia 400 (66.1) 276 (69.0) 71 (69.6) 53 (51.5)

 Sepsis 97 (16.0) 59 (14.8) 10 (9.8) 28 (27.2)

 Aspiration 49 (8.1) 28 (7.0) 11 (10.8) 10 (9.7)

 Other 59 (9.8) 37 (9.2) 10 (9.8) 12 (11.6)

SOFA score 9 (6–12) 8 (6–11) 9 (6–13) 11 (9–14) < 0.001

APACHE II score 22 (17–28) 21 (16–27) 24 (17–31) 26 (22–32) < 0.001

Severity of ARDS at baseline, n (%) < 0.001

 Mild 175 (28.9) 133 (33.2) 15 (14.7) 27 (26.2)

 Moderate 321 (53.1) 208 (52.0) 57 (55.9) 56 (54.4)

 Severe 109 (18.0) 59 (14.8) 30 (29.4) 20 (19.4)

Parameters of mechanical ventilation in the first 24 h

 Respiratory rate (breaths  min−1) 25 (22–30) 24 (21–27) 32 (29–36) 28 (25–31) < 0.001

 Tidal volume (ml/kg PBW) 8.3 (7.1–9.7) 8.1 (7.0–9.4) 9.2 (7.5–10.5) 8.6 (7.3–10.0) < 0.001

 Minute ventilation (L/min) 12.8 (10.5–15.8) 11.8 (9.7–14.0) 16.9 (14.0–20.2) 13.7 (11.4–16.2) < 0.001

 PEEP  (cmH20) 9 (7–11) 9 (7–10) 10 (8–12) 10 (8–11) < 0.001

 Peak Pressure  (cmH20) 24 (21–27) 23 (21–26) 25 (22–29) 24 (22–29) < 0.001

 Driving pressure  (cmH20) 15 (12–19) 15 (12–18) 16 (13–20) 15 (13–19) 0.019

 Mechanical power (J/min) 20.4 (15.8–26.1) 18.9 (14.4–22.4) 30.3 (25.4–35.5) 21.9 (18.4–28.1) < 0.001

 Compliance (ml/cmH20) 33.8 (26.3–43.8) 33.9 (26.9–43.2) 33.9 (25.0–47.0) 33.5 (25.4–42.9) 0.87

 Ventilatory ratio 1.90 (1.43–2.47) 1.69 (1.31–2.11) 3.26 (2.73–3.71) 1.97 (1.53–2.50) < 0.001

  PaCO2 (mmHg) 33.9 (28.5–40.0) 32.3 (28.1–37.9) 40.4 (35.5–53.4) 33.8 (27.5–41.1) < 0.001

  PaO2/FiO2 ratio (mmHg) 159 (117–210) 162 (124–220) 142 (90–186) 160 (113–202) 0.0012

Vasopressor use in the first 24 h, n (%) 481 (79.5) 301 (75.3) 87 (85.2) 93 (90.3) < 0.001

Vital signs in the first 24 h

 Heart rate (beats  min−1) 98 (94–99) 97 (92–98) 98 (95–99) 110 (101–120) < 0.001

 MAP (mmHg) 69 (65–75) 69 (65–75) 69 (65–80) 66 (62–71) 0.0092

 Temperature (℃) 37.8 (37.0–38.4) 37.5 (37.0–38.2) 37.9 (37–38.5) 38.2 (37.7–38.8) < 0.001

Laboratory data in the first 24 h

 pH 7.39 (7.33–7.43) 7.41 (7.36–7.45) 7.35 (7.25–7.40) 7.35 (7.29–7.41) < 0.001

 BUN (mg/dl) 9.6 (6.4–15.2) 9.2 (6.1–14.0) 10.5 (6.6–17.2) 11.7 (7.5–16.4) 0.013

 Creatinine (mmol/L) 100 (69–165) 92 (66.5–147) 104.5 (70–170.8) 134 (84–193.5) < 0.001

 Bicarbonate (mmol/L) 20.7 (17.8–23.7) 20.6 (17.8–23.3) 23.0 (19.8–26.2) 19.8 (16.3–21.9) < 0.001

 Lactate (mmol/L) 1.9 (1.2–3.0) 1.9 (1.2–2.8) 1.7 (1.2–2.5) 2.6 (1.8–4.3) < 0.001

Fluid balance in the first 24 h (L) 1.38 (-0.35–4.21) 1.05 (-0.56–3.78) 2.41 (-0.35–4.48) 2.89 (0.54–4.81) < 0.001

Clinical outcomes

 Alive and VFDs at Day 28 (days) 5.9 (0–21.4) 13.1 (0–22.4) 0 (0–15.5) 0 (0–13.9) < 0.001

 ICU mortality, n (%) 176 (29.1) 92 (23.0) 35 (34.3) 49 (47.6) < 0.001

 Hospital mortality, n (%) 189 (31.2) 102 (25.5) 36 (35.3) 51 (49.6) < 0.001

 28-day mortality, n (%) 228 (37.7) 122 (30.5) 48 (47.1) 58 (56.3) < 0.001
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Fig. 1 Standardized mean differences between three longitudinal phenotypes in CDIC cohort. A Class 1 vs. Class 2. B Class 1 vs. Class 3, C Class 2 vs 
Class 3. Fourteen variables were used of phenotyping, but seventeen variables are displayed to give a comprehensive clinical characteristic of the 
phenotypes. MAP = mean arterial blood pressure;  PaCO2 = partial pressure of Carbon Dioxide;  PaO2 = partial pressure of oxygen;  FiO2 = fraction of 
inspired oxygen; PEEP = positive end-expiratory pressure

Fig. 2 ARDS state transition over days 0, 1, 2 and 3 in CDIC cohort. A ARDS state transition over days in whole patients. B ARDS state transition over 
days based on the survival state on Day 28. C ARDS state transition over days for patients in Class 1; D ARDS state transition over days for patients in 
Class 2; E ARDS state transition over days for patients in Class 3. ARDS = acute respiratory distress syndrome; ICU = Intensive care unit
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Fig. 3 Interaction between longitudinal phenotypes of ARDS with time-varying mechanical power (A), ventilatory ratio (B) and driving pressure (C) 
on 28-day mortality in CDIC cohort. P values represent p values for interaction
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and 27 (26.2%) patients in Class 3. Compared to other 
phenotypes, patients in Class 2 had the lowest proportion 
of normally aerated lung volume, and the highest propor-
tion of poorly-aerated lung volume on Day 0 (Additional 
file 1: Table S10).

Validation of longitudinal phenotypes for ARDS 
in ARDSNet trials
Longitudinal phenotypes were also validated in the four 
ARDSNet trials, and showed the same optimal phenotype 
numbers as observed in the derivation cohort (Additional 
file  1: Fig. S10). The phenotype sizes varied across the 
trials: Class 1 ranged from 41.8 to 62.0%, Class 2 ranged 
from 14.4 to 34.9%, and Class 3 ranged from 9.9 to 37.2%. 
The clinical characteristics of the phenotypes were largely 
similar to those of the derivation cohort (Additional 
file  1: Tables S11–S14 and Additional file  1: Figs. S11–
S14). Specifically, Class 1 was characterized by less organ 
dysfunction, Class 2 was predominantly characterized by 
pulmonary mechanical dysfunction phenotype and Class 
3 was mainly characterized by extra-pulmonary organ 
dysfunction. IL-6 and Soluble intercellular adhesion mol-
ecule-1 (sICAM-1) were assessed in the ALVEOLI trial, 
compared to Class 1 and Class 2, both IL-6 and sICAM-1 
were highest in Class 3 (Additional file 1: Fig. S6).

Relationship between phenotypes and clinical outcomes
In the CDIC derivation cohort, the 28-day mortality rates 
were highest in Class 3 (56.3%), followed by Class 2 and 
Class 1 (47.1% and 30.5%, respectively). Kaplan–Meier 
survival curves showed the 28-day mortality was highest 
in Class 3 (P < 0.0001) compared with other phenotypes. 
Across all ARDSNet trials, the highest 60-day mortal-
ity occurred in Class 3 compared with other phenotypes 
(P < 0.001). In the ALVEOLI trial, 60-day mortality was 
18.9% for Class 1, 32.9% for Class 2 and 35.6% for Class 3. 
In the FACTT trial, 60-day mortality was 17.7% for Class 
1, 35.4% for Class 2 and 47.9% for Class 3. In the EDEN 
trial, the 60-day mortality was 18.2% for Class 1, 24.2% 
for Class 2 and 27% for Class 3. In the SAILS trial, the 
60-day mortality was 24.2% for Class 1, 27.5% for Class 
2 and 36.6% for Class 3 (Fig. 4). The derived phenotypes 
demonstrated significant differences in VFDs across the 
cohort and trials. Specifically, patients assigned to Class 1 

had the most VFDs and patients assigned to Class 3 had 
the least VFDs (In the EDEN trial, patients in Class 2 had 
the least VFDs).

Heterogeneity of treatment effect within phenotypes
We assessed HTE in four ARDSNet trials based on the 
phenotypes on Day 0. In the ALVEOLI trial, a significant 
interaction between phenotypes and PEEP strategy on 
60-day mortality was detected, patients classified to Class 
2 had a 60-day mortality of 23.6% when received lower 
PEEP strategy, versus 54.2% when received higher PEEP 
strategy. In contrast, patients classified to Class 3 had a 
60-day mortality of 41.6% when received lower PEEP 
strategy, versus 30.9% when received higher PEEP strat-
egy (P for interaction = 0.0016) (Additional file  1: Fig. 
S15 and Table 2). In the FACTT trial, we also identified 
a significant effect of the interaction between phenotypes 
and fluid management strategy on 60-day mortality. Spe-
cifically, mortality among Class 2 patients was 30.8% with 
the fluid conservative strategy compared to 39.3% with 
the fluid liberal strategy. While mortality among Class 
3 patients was 58.5% with the fluid conservative strat-
egy compared to 35.6% with the fluid liberal strategy (P 
for interaction = 0.0068) (Additional file  1: Fig. S16 and 
Table 3). No significant HTE was observed in the EDEN 
and SAILS trials (Additional file 1: Figs. S17–S18).

Parsimonious probabilistic models to identify phenotypes
The most important classifier variables for predicting 
phenotypes were shown in Additional file  1: Fig. S19–
S20. Ultimately, model A included mechanical power, 
ventilatory ratio, respiratory rate and pH was constructed 
to predict phenotypes on Day 0, and model B included 
ventilatory ratio, mechanical power, and creatinine was 
constructed to predict phenotypes on Day 2 (Additional 
file  1: Table  S15). The AUROC for model A to predict 
phenotypes on Day 0 was 0.86 (95% CI 0.82–0.90) for 
Class 1, 0.97 (95% CI 0.95–0.98) for Class 2, and 0.67 
(95% CI 0.62–0.73) for Class 3. While for the prediction 
of phenotypes on Day 2, the AUROC of model B was 
0.78 (95% CI 0.72–0.83) for Class 1, 0.80 (95% CI 0.74–
0.86) for Class 2, and 0.70 (95% CI 0.60–0.79) for Class 3 
(Fig. 5). For the external validation cohorts, the predictive 

(See figure on next page.)
Fig. 4 Mortality by longitudinal phenotypes on Day 0. A 28-day mortality stratified by phenotype assignment on Day 0 in CDIC. After adjusting for 
age, gender and BMI, compared with Class 1, the adjusted hazard ratio of 28-day mortality for Class 2 and Class 3 were 1.86 (95% CI 1.33–2.62), 2.48 
(95% CI 1.81–3.41), respectively. B–E 60-day mortality stratified by phenotype assignment on Day 0 in ARDSNet Trials. In ALVEOLI trial, compared 
with Class 1, the adjusted hazard ratio of 60-day mortality for Class 2 and Class 3 were 2.58 (95% CI 1.61–5.12), 2.56 (95% CI 1.76–3.72), respectively. 
In FACTT trial, compared with Class 1, the adjusted hazard ratio of 60-day mortality for Class 2 and Class 3 were 2.72 (95% CI 2.05–3.61), 3.02 (95% CI 
2.07–4.40), respectively. In EDEN trial, compared with Class 1, the adjusted hazard ratio of 60-day mortality for Class 2 and Class 3 were 1.83 (95% CI 
1.26–2.64), 1.53 (95% CI 1.13–2.07), respectively. In SAILS trial, compared with Class 1, the adjusted hazard ratio of 60-day mortality for Class 2 and 
Class 3 were 1.29 (95% CI 0.92–1.81), 2.09 (95% CI 1.43–3.04), respectively
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Fig. 4 (See legend on previous page.)
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ability of the parsimonious models was shown in Addi-
tional file 1: Table S16.

Discussion
The novel findings of our analyses can be summarized as 
follows. First, based on a multi-database, we derived and 
validated three novel longitudinal phenotypes of ARDS, 
with different severity of pulmonary mechanics, organ 
dysfunction, chest CT features, and outcomes. Second, 
we detected a significant HTE between phenotypes and 
treatment strategies in the ALVEOLI and FACTT trials. 
Third, we developed two simplified probabilistic models 
to predict ARDS phenotypes, potentially applicable to 
other cohorts.

Longitudinal phenotypes in present study differed from 
the prior ARDS phenotypes in several critical aspects. 
First, different variables were applied to identify the phe-
notypes. Calfee and colleagues focused mainly on the 
degree of inflammatory conditions of ARDS, and first 
derived two inflammatory phenotypes using numer-
ous inflammatory factors in the ALVEOLI trial [7]. The 
two inflammatory phenotypes were subsequently iden-
tified in other ARDSNet trials and cohorts [22, 23]. 
Recently, two studies declared that inflammatory phe-
notypes could also be accurately predicted without bio-
marker data using supervised learning approaches [24, 
25]. Another study identified three phenotypes of ARDS 
based on routine medical data in the eICU database [26]. 
From another perspective, we concentrated primarily 
on pulmonary mechanics and organ function, including 

mechanical power and ventilatory ratio, which were both 
significantly associated with mortality in ARDS [27, 28], 
and had never been employed to identify phenotypes in 
traditional ARDS. Second, the previous ARDS pheno-
types described above were largely used cross-sectional 
data, unlike in our study using longitudinal data. While 
longitudinal data might be more informative in identify-
ing phenotypes. In a prospective cohort study including 
COVID-19 related ARDS patients,  Bos LDJ et al. [29] did 
not yield any latent classes using cross-sectional data, but 
found that a two-class model best fit the cohort using the 
longitudinal data.

Our phenotypes were partially consistent with the two 
longitudinal respiratory subphenotypes in COVID-19 
patients [29]. Specifically, subphenotype 1 was character-
ized by the least abnormalities of pulmonary mechanics, 
while subphenotype 2 was characterized by increasing 
minute ventilation, mechanical power and ventilatory 
ratio. The characteristics of Class 1 and Class 2 in our 
study were similar to subphenotype 1 and subphenotype 
2, respectively. Additionally, we discovered a novel lon-
gitudinal phenotype (Class 3) which was predominantly 
characterized by extra-pulmonary dysfunction, since we 
enrolled patients with other causes-related ARDS and the 
model included more markers of organ dysfunction.

Phenotypes of disease could change dynamically 
accompanied by treatment response and disease progres-
sion. Limited studies have addressed the dynamic change 
of ARDS phenotypes. Delucchi and colleagues [12] per-
formed a secondary analysis of the ARMA and ALVEOLI 

Fig. 5 Receiver operating curves for the multinomial regression models for predicting phenotypes on Day 0 (A) and Day 2 (B) in CDIC cohort
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trials to determine the stability of ARDS subphenotypes 
over time. LCA was conducted separately at day 0 and 
day 3 using inflammatory factors, and a two-class model 
was identified in both day 0 and day 3. Latent transition 
analysis demonstrated that most patients (> 94%) stayed 
in the same class from day 0 to day 3 in both trials. How-
ever, whether the levels of inflammatory factors in Class 
2 on day 3 were similar to Class 2 on day 0 was unclear, 
since they performed LCA independently on days 0 and 
3. That said, Class 2 on day 3 might differ from Class 2 on 
day 0. In comparison, we found that 56.9% of the patients 
changed their phenotypes at least once during the study 
days. Except for the different variables included in the 
model, the different approaches might explain the differ-
ence in proportions. In present study, LCA was employed 
using the longitudinal data, which was fit to the com-
bined datasets from all patients across all study days. The 
values of pulmonary mechanics or organ dysfunction 
markers were similar in same class across all study days.

The radiographic severity differed in phenotypes in our 
study. Previous research provided conflicting evidence 
concerning the association between radiographic sever-
ity and disease severity of ARDS patients. A prospective 
cohort study employed a radiographic assessment of lung 
edema (RALE) score to reflect the radiographic severity, 
and found that the RALE score was neither associated 
with ARDS severity grouped by  PaO2/FiO2 ratio nor pul-
monary mechanics [30]. Whereas a secondary analysis 
of the FACTT trial showed that a lower baseline RALE 
score was independently associated with a higher  PaO2/
FiO2 ratio [31]. RALE score was calculated based on 
the chest X-ray, which might limit the diagnostic accu-
racy of radiographic severity. We employed quantitative 
CT analysis to assess the radiographic severity directly, 
and found that patients with pulmonary mechanical 
dysfunction phenotype had the lowest proportion of 
normally aerated lung volume and the highest propor-
tion of poorly-aerated lung volume compared to other 
phenotypes.

Accurate and precise phenotypes will more effectively 
guide individualized treatment strategies. The original 
FACTT trial found no difference in 60-day mortality 
between conservative and liberal fluid management [14]. 
After that, Famous et  al. discovered that the conserva-
tive strategy was associated with improved mortality in 
patients with hyperinflammatory phenotype but had 
the opposite effect in patients with hypoinflammatory 
phenotype [9]. Inconsistent with the previous study, we 
found that fluid management strategies had no effect 
in Class 1 patients, while Class 2 patients can particu-
larly benefit from conservative fluid strategy and Class 
3 patients (similar to hyperinflammatory phenotype) 
can more strongly benefit from the liberal fluid strategy. 

Several explanations exist. Compared to other pheno-
types in the FACTT trial, Class 3 was more likely to use 
vasopressor, had the lowest pH, serum bicarbonate and 
mean arterial blood pressure. Together these observa-
tions strongly implied inadequate effective circulating 
blood volume in Class 3 patients, whose are required 
early aggressive fluid resuscitation. A retrospective study 
included septic patients with ARDS and declared that 
patients who received adequate early fluid administration 
followed by later conservative fluid management had the 
lowest mortality [32]. More research regarding the effect 
of fluid management strategy on mortality in various 
phenotypes of ARDS is needed.

We also detected a significant interaction between 
phenotypes and PEEP strategy on 60-day mortality in 
the ALVEOLI trial [13]. The effect of PEEP is primarily 
related to the balance between the number of alveoli that 
are recruited to participate in ventilation and the amount 
of lung that is overdistended when PEEP is applied. 
Unlike inflammatory response-guided PEEP strategy in 
the previous study [8], we chose PEEP strategy from a 
physiological perspective. Class 2 in the ALVEOLI trial 
was characterized by the highest driving pressure, venti-
latory ratio and  PaCO2, which suggested a higher propor-
tion of dead space in Class 2 patients. This can interpret 
the beneficial effect of lower PEEP in Class 2. No sig-
nificant interaction between phenotypes and treatment 
strategies was observed in the EDEN and SAILS trials. 
Possible reasons have been discussed elsewhere [33].

Our study is the first to identify longitudinal pheno-
types for various etiologies ARDS based on compre-
hensive metrics and multi-database. Unlike previous 
inflammatory phenotypes, we also detected novel HTE 
between longitudinal phenotypes and treatment strate-
gies (PEEP and Fluid management strategy). This study 
also has several limitations. First, although we identified 
and validated the longitudinal phenotypes in five sepa-
rate cohorts, several factors might affect the robustness 
of phenotypes, such as the missing data, the treatments 
and ventilator settings. In four ARDSNet trials, the phe-
notypes can be affected by the randomization arms, 
although we excluded PEEP in the ALVEOLI trial and 
fluid balance in the FACTT trial when performing LCA, 
we cannot exclude the impact of the randomization arms 
since the respiratory variables are both mathematically 
and physiologically coupled. Meanwhile, such variations 
can create inconsistencies in the construct of phenotypes 
between studies. Second, most patients changed their 
states at least once during the study days, which may 
limit the translational premise of our approach for thera-
peutic targeting in future ARDS clinical trials. Third, the 
inflammatory factors are limited in CDIC and ARDSNet 
trials. Therefore, our phenotypes cannot compare to the 
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inflammatory phenotypes directly and precisely. Mean-
while, the performance of parsimonious models was poor 
for predicting Class 3, since Class 3 was characterized 
as the pro-inflammatory ARDS, and we did not include 
any inflammatory factors in the model. More studies 
are required further to investigate the predictive perfor-
mance of the model after including inflammatory fac-
tors. Fourth, we found that the longitudinal phenotypes 
responded differently to treatment, which was derived 
from a secondary analysis of ARDSNet trials. Whether 
the results reflect the true biology was unclear, and the 
treatment benefits need prospective validation. Addi-
tionally, the significant HTE was only against Day 0 phe-
notypes and may not against longitudinal assignments. 
Finally, the longitudinal phenotypes are dynamic and 
patients can switch classes during the first four days of 
invasive ventilation, although we developed models to 
predict phenotypes on Day 0 and Day 2, we can neither 
predict the phenotypes at any time nor the change of the 
phenotypes.

Conclusion
In this retrospective analysis of a multi-database from 
patients with ARDS, three novel longitudinal pheno-
types were identified, with various sites and severity of 
organ dysfunction, and different clinical outcomes. Most 
patients changed their phenotypes at least once dur-
ing the first four days of invasive ventilation. Besides, 
the analysis suggested heterogeneity of treatment effects 
within phenotypes on Day 0 in the ALVEOLI and FACTT 
trials.
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