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Abstract

Background: Metabolic engineering is an attractive approach in order to improve the microbial production of drugs.
Triterpenes is a chemically diverse class of compounds and many among them are of interest from a human health
perspective. A systematic experimental or computational survey of all feasible gene modifications to determine the
genotype yielding the optimal triterpene production phenotype is a laborious and time-consuming process.

Methodology/Principal Findings: Based on the recent genome-wide sequencing of Saccharomyces cerevisiae CEN.PK 113-
7D and its phenotypic differences with the S288C strain, we implemented a strategy for the construction of a b-amyrin
production platform. The genes Erg8, Erg9 and HFA1 contained non-silent SNPs that were computationally analyzed to
evaluate the changes that cause in the respective protein structures. Subsequently, Erg8, Erg9 and HFA1 were correlated
with the increased levels of ergosterol and fatty acids in CEN.PK 113-7D and single, double, and triple gene over-expression
strains were constructed.

Conclusions: The six out of seven gene over-expression constructs had a considerable impact on both ergosterol and b-
amyrin production. In the case of b-amyrin formation the triple over-expression construct exhibited a nearly 500% increase
over the control strain making our metabolic engineering strategy the most successful design of triterpene microbial
producers.
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Introduction

Metabolic engineering, which integrates engineering design

with systematic and quantitative analysis of metabolic pathways, is

considered as one of the major concepts in biotechnology [1]. The

central goal of metabolic engineering is the optimization of the

metabolic phenotype with an emphasis on the global state of the

cell, and not the individual reactions [2]. This manipulation of the

system with consideration of the efficiency of the overall bioprocess

is what distinguishes metabolic engineering from genetic engi-

neering [3]. Well-characterized and genetically fairly easy to

manipulate heterologous hosts, like Escherichia coli and Saccharomyces

cerevisiae, allow very specific engineering of biosynthetic pathways

for increased yields and generation of novel compounds. After

engineering a pathway, it is desirable to analyze the metabolic

profile to be able to compare before and after situations and detect

effects on the pathway originating from distant networks [4].

Metabolic engineering of microorganisms through the expres-

sion of one or more plant genes, often in connection with genetic

alteration of the whole cell metabolism, has become an

increasingly important route for small molecule synthesis.

Terpenoids, with more than 55,000 members identified, have

particularly benefited from this approach [5]. The value of these

natural products extends beyond their biological utility and they

have been commercialized to serve as antibiotics, anticancer and

other medicinal products. The need for metabolic engineering as a

framework of terpenoid production has arisen mainly as a result of

supply issues, since these molecules are synthesized in only minute

amounts in the natural hosts hampering their commercialization.

Engineering of plant terpenoids into microbial hosts has been
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focused primarily on isoprenoid-derived compounds such as

carotenoids, artemisin, and paclitaxel [6-8].

Metabolic pathways are stamped by natural bottlenecks, which

serve as control points within a native organism, to regulate

resource utilization and production of metabolites. The ultimate

goal of metabolic engineering is to predict the engineering

required for increasing (or maximizing) a metabolic flux through

a desired pathway, however, this has been particularly challenging

[9]. The lack of extensive knowledge about molecular interactions

and their kinetics makes the dissection and optimization of

metabolic pathways an outstanding issue of central importance

[10]. The identification of distant genes affecting a metabolic

phenotype, either through redistribution of metabolic precursors

or indirect kinetic and global regulatory effects recently spurred by

the high-throughput ‘omics’ and genome-based bioinformatic

approaches. Here we describe a novel method for pathway

optimization that focuses on identifying rate-limiting enzymes. We

establish a proof-of-concept that whole genome sequencing can be

used to identify single nucleotide polymorphisms between S.

cerevisiae strains, which can be subsequently linked with particular

phenotypes of interest (Figure 1). For example Daum et al [11]

have observed that the content of ergosterol and fatty acids in

CEN.PK is significantly higher than other yeast strains indicating

a possible correlation between genotype and phenotype. Previ-

ously to our work, a total of 13,787 high-quality SNPs, of which

782 in metabolic genes [12], were detected when the CEN.PK

113-7D sequence was compared to the S288C, the reference

genome of the Saccharomyces Genome Database. In the genomic

comparisons of the two strains by Otero et al the ergosterol

biosynthetic pathway had several non-silent SNPs identified in

Erg8 and Erg9, and silent SNPs identified in Erg20 and HMG1 [12].

In their paper the authors performed also a transcriptome

comparison between the two yeast strains. Both Erg8 and Erg9

were not significantly differentially expressed in glucose suggesting

that their potential affect on phenotype is likely post-transational.

Amino acid substitutions resulting from SNPs can enhance the

properties of a protein such as stability or catalytic activity and are

essential raw material of evolution [13]. They are starting points

for the adaptive evolution of new functions and often occur

through pathways consisting of sequential beneficial mutations

[14]. The effect of mutations on stability (DDG) of proteins has

been explored by several researchers [15-17]. It has been shown

that mutated proteins that are more stable than a particular

threshold energy can fold properly and result in improved or

changed function [18-21]. Changes in inter-residue interactions

caused by mutations are also important for understanding protein

folding and stability patterns of proteins [22].

The current work was undertaken to develop S. cerevisiae as a

production platform of triterpenoids using direct correlations

between genotype and phenotype. We describe here the utilization

of detected metabolic SNPs for constructing 7 yeast mutants

engineered to enhance carbon flux through the mevalonate

pathway and accumulate high levels of b-amyrin (Figure 1). Such

developments support long range objectives to generate large

quantities of end-product triterpenoids sufficient for detailed

chemical analyses and diverse biological and industrial testing.

Results

SNPs role on Erg8, Erg9 and HFA1
In their paper on the genome wide sequencing of CEN.PK113-

7D, Otero et al [12] identified two pathways with a significant

number of SNPs (Figure 1), both silent (blue font) and non-silent

(red font). Erg8 and Erg9, both participating in the ergosterol

biosynthesis pathway, included in total 7 silent and 5 non-silent

SNPs. In Erg8 there were detected 4 non silent SNPs in positions

49, 75, 192, and 247, while in Erg9 there was only 1 non silent

SNP in position 286 (Figure 1). In fatty acid metabolism, the HFA1

gene was highly enriched with 20 silent and non-silent SNPs.

HFA1 contained non-silent SNPs in amino acid positions 579, 877,

971, 1056, 1273, and 1798.

Predicting the effects of the nsSNPs on the protein structure-

stability-function of Erg8, Erg9 and HFA1 is very important for

selecting the three genes as metabolic engineering targets. The

computational strategy shown in Figure 2 was employed in the

present study, however our findings should be evaluated with

caution since no experimental verification was obtained for the

three last steps of the flowchart.

Computational analysis of nsSNPs based on primary
amino acid sequence

The underlying principle of the SIFT algorithm is that it

generates alignments with a large number of homologous

sequences and assign a tolerance index score to each amino acid

substitution ranging from 0 to 1 [23]. The higher the tolerance

index of a mutant is, the less functional impact the respective

amino acid substitution is likely to have. The results of SIFT for

respective amino substitutions in Erg8, Erg9 and HFA1 sequences

are shown in Supporting Information S1. The results were

examined by considering the S. cerevisiae S288C as the ‘‘wild type

strain’’ and the CEN.PK113-7D as the ‘‘mutant strain’’ in the first

step, and vice versa. From the SIFT scores, it appears that the

nsSNPs of Erg8 and HFA1 have an overall effect on CEN.PK113-

7D, whereas, the nsSNP of Erg9 has a neutral effect. This

assessment of nsSNPs by SIFT is mainly based on the conserved

positions along the amino acid sequences, and to understand the

effect of nsSNPs on inter-residue interactions and protein stability,

structural analysis is a necessity.

Protein stability estimation in coding nsSNPs based on
3D structures

Sequence and secondary structure alignments of phosphome-

valonate kinase (the protein product of Erg8) against the protein

models by PMP resulted into the selection of the Lin0012 protein

from Listeria innocua (DOI:10.2210/pdb3k17/pdb) as a template

for homology modeling. The secondary structure alignments and

respective scores generated using ClustalW [24] are shown in

Supporting Information S1. Pairwise structural alignment of the

3k17C and the Erg8 protein product was employed using the Dali

server [25] and is shown in File S1. The 3D-structural similarity

information of the Lin0012 protein from Listeria innocua (PDB ID:

3k17) with the existing crystal structures was retrieved from the

Research Collaboratory for Structural Bioinformatics – Protein

Data Bank [26] that uses the FATCAT method for flexible

structural alignments of proteins. The information shown in

Supporting Information S1 depicts the similarity of Lin0012

protein from Listeria innocua with kinase enzymes. The homology

model validation (Supporting Information S1) of the Erg8 protein

products from S. cerevisiae S288C and CEN.PK113-7D using the

ProSA-web showed z-scores of -6.1 and -5.97, respectively. The z-

scores of homology models for both Erg8 protein products are in

the range characteristic for x-ray determined structures deposited

in Protein Data Bank.

The homology modeling and structure validation of the Erg9

protein products from S. cerevisiae S288C and CEN.PK113-7D was

performed as above. Sequence and secondary structure alignments

for squalene synthase against the protein models by PMP resulted
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Figure 1. Schematic illustration of the mevalonate, the sterol pathway and the initial step of the fatty acid biosynthetic process, as
well as the steps engineered in the current study for triterpene production in yeast. The mevalonate pathway is localized to the
cytoplasm of eukaryotic cells and supports the biosynthesis of numerous terpenoids using different precursor molecules, while ergosterol is the
dominant terpenoid. Whole genome Illumina-Solexa sequencing of CEN.PK113-7D and S288C was completed prior to our study, and SNPs strictly
related to metabolic genes were identified [12]. There were clear correlations between physiology and pathway enrichment of non-silent SNPs
observed in genes involved in the ergosterol biosynthesis (red font indicates non-silent SNPs, while blue font indicates silent ones), suggesting that
genome-sequencing may assist in reducing the genetic target space for metabolic engineering applications. Various combinations of over-
expressions (single, double, triple) of genes coding for phosphomevalonate kinase (Erg8), squalene synthase (Erg9), and acetyl-coenzyme A
carboxylase (HFA1) may yield yeast strains capable of accumulating excess levels of b-amyrin, a triterpene molecule originating from oxidosqualene.
doi:10.1371/journal.pone.0014763.g001

Figure 2. Strategy for computational analysis of the non-silent (ns)SNPs.
doi:10.1371/journal.pone.0014763.g002

Triterpenoid Yeast Factory

PLoS ONE | www.plosone.org 3 March 2011 | Volume 6 | Issue 3 | e14763



into the selection of a human squalene synthase [27] as a template.

The secondary structure alignments and respective scores

generated using ClustalW [24] are also shown in Supporting

Information S1. Pairwise structural alignment of the 1ezfC and the

Erg9 protein product was employed using the Dali server [25] and

it is shown in Supporting Information S1. The homology model

validation (Supporting Information S1) of the Erg9 protein

products from S. cerevisiae S288C and CEN.PK113-7D using the

ProSA-web showed z-scores of -7.88 and -7.85, respectively.

Yeast contains two distinct acetyl-CoA carboxylase multi-

component enzyme systems, one in the cytoplasm encoded by

ACC1, and another one in the mitochondrial matrix encoded by

HFA1 [28]. The HFA1 protein product consists of three functional

units (Supporting Information S1), biotin carboxylase, biotinoyl

domain or biotin-carboxyl-carrier protein and carboxyl transferase

[29]. The homology models of the HFA1 protein product catalytic

domains were built using MODWEB, which is based on

MODPIPE, an automated software pipeline for comparative

modeling [30-31]. The modelled segments of the HFA1 protein

and the respective templates used for homology modeling are shown

in Supporting Information S1. Out of six nsSNPs, only one nsSNP

leading to amino acid substitution (I1798T) fall in a catalytic domain

of the HFA1 protein product, i.e., carboxyl transferase domain.

Therefore, the carboxyl transferase domain was considered for

further analysis. The homology model validation (Supporting

Information S1) for the carboxyl tranferse domain of the HFA1

protein products from S. cerevisiae S288C and CEN.PK113-7D using

ProSA-web showed z-scores of -8.51 and -8.53, respectively.

The change in the protein stability (DDG) induced by mutations

calculated by the Eris server indicated that Erg8, Erg 9 and HFA1

protein products from S. cerevisiae CEN.PK113-7D were probably

more stable than that from S288C (Supporting Information S2).

Accessible Surface Area calculations for the Erg8, Erg9 and HFA1

proteins and respective energies calculated by the InterProPatch

server (Supporting Information S2) also strengthen the protein

stability predictions obtained from Eris.

Graph theoretic measures of structural effects in proteins
caused by individual nsSNPs

Bongo calculates the overall impact (I) of a mutation according to

the ‘key’ residues affected by the mutation [32]. To understand the

notation of ‘key’ residues, let’s consider the amino acid substitutions

of the Erg8 protein product. Comparison of residue-residue

interaction graphs (Supporting Information S2) clearly shows that

amino acid substitutions viz., G49E, S75T and D247N have no

change in local environment of interactions with other residues,

whereas A129S amino acid substitution changes both local and

global residue-residue interaction networks. Analysis of the effect of

individual nsSNPs by Bongo shows that G49E, S75T and D247N

amino acid substitutions have an overall impact value within the

threshold (I,1), whereas A129S amino acid substitution shows an

impact value greater than 1 (I.1) and therefore may cause

structural effects on the Erg8 protein product. A protein can tolerate

functionally beneficial but destabilizing substitutions, only if it has

previously acquired one or more stabilizing mutations [33]. In the

case of the Erg9 protein product, the nsSNP or amino acid

substitution G286S appears to have no effect on local or global

residue-residue interaction networks (Supporting Information S2).

RMSD differences between protein variants and analysis
of binding pockets

Structural superposition of the Erg8, Erg9 and HFA1 protein

product variants was done using the SuperPose. The RMSD

differences of alpha carbons, protein backbone, heavy atoms and

overall RMSD between the variants of Erg8, Erg9 and HFA1

protein products are shown in SupportingInformation S2. An

overall RMSD of 2.02 Å was observed between the 3D-structures

of the Erg8 protein product from S. cerevisiae S288C and

CEN.PK113-7D. No RMSD differences were observed between

the Erg9 protein product variants, indicating that the nsSNP

acquired by CEN.PK113-7D has probably no effect on the 3D

structure which is in line with the residue-residue interaction

network analysis discussed above. The HFA1 protein product

variants showed an overall RMSD of 1.63 Å between their 3D-

structures.

Analysis of the hinge regions using the H-predictor server also

showed no differences in the case of the Erg9 protein product

variants, whereas a few differences were observed for the variants

of Erg8 and HFA1 protein products (Figure 3). It should be noted

that the predictions from the H-predictor server are not a measure

of the protein’s propensity for domain-swapping, but rather a

structural propensity that a hinge region may result in domain

swapping and also provide hint to the weakest regions that unfold

prior to the compete unfolding of protein.

Ligand binding sites of phosphomevalonate kinase,
squalene synthase and carboxyl transferase domain

Phosphomevalonate kinase catalyzes the phosphorylation of

mevalonate-5-phosphate into mevalonate-5-pyrophosphate [34].

The template 3k17 (Lin0012 protein from Listeria innocua) that used

for homology modeling of the Erg8 protein products of S. cerevisiae

S288C and CEN.PK113-7D showed high sequence and structural

similarity with the crystal structure of phosphomevalonate kinase

(3GON) from Streptococcus pneumoniae. The active site of the

phosphomevalonate kinase (3GON) has been showed to have

enough space to accommodate interconversion of the reactive and

the nonreactive conformers [35]. The crystal structure of the

ternary complex of phosphomevalonate kinase with phosphome-

valonate and adenosine 59-[b,c-imido]triphosphate (AMPPNP)

showed the presence of twenty-one ordered water molecules filling

the interstices between the van der Waals surfaces of the

phosphomevalonate kinase active site and its ligands. We analyzed

the indirect binding pattern of amino acid residues with the ligands

through clusters of ordered water molecules in the active site of

phosphomevalonate kinase (Figure 4). A significant fraction of

reactive regions is filled with a shell of water molecules, raising the

issue about how phosphomevalonate kinase active site manages to

prevent b,c-bond hydrolysis during its catalytic cycle [35]. Analysis

of the binding pockets in phosphomevalonate kinase from S.

cerevisiae S288C and CEN.PK113-7D using Q-SiteFinder guided

us to assume that nsSNPs acquired by CEN.PK113-7D strain

were able to decrease the void space of the binding pocket which

we consider as nature’s engineering (Figure 5).

Squalene synthase is a membrane associated bifunctional

enzyme that catalyzes the condensation of two molecules of

farnesyl diphosphate (FPP) to give presqualene diphosphate (PSPP)

and the subsequent rearrangement of PSPP to squalene [36]. In

the human squalene synthase (PDB ID: 1ezf) it has been found

that the five a helices surrounding the active center are structurally

similar to that of other isoprenoid biosynthetic enzymes viz.,

farnesyl-diphosphate synthase, pentalenene synthase and 5-epi-

aristolochene synthase [27]. When the crustal structures of these

four enzymes were superimposed by Pandit et al [27], they all

showed exactly the same orientation and interestingly less than

16% of the residues are identical in the superimposed parts,

indicating that the pattern of the catalytic core is highly conserved

structurally. It has also been suggested that all class-I isoprenoid

Triterpenoid Yeast Factory
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Figure 3. Identifying the hot-spot hinge regions of domain swapping in the variants of the Erg8, Erg9 and HFA1 protein products.
doi:10.1371/journal.pone.0014763.g003
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enzymes may have evolved with similar structures regardless of the

degree of amino acid sequence identity [37]. Based on these

observations we expected that a single nsSNP coding for an amino

acid substitution distant from catalytic core may have less

structural impact on squalene synthase. Analysis of the binding

pockets in homology models of squalene synthase from S. cerevisiae

S288C and CEN.PK113-7D using Q-SiteFinder provided some

evidence that the binding pockets of both Erg9 protein products

are similar (Supporting Information S3).

Biotin carboxylase domain catalyzes the ATP dependent

carboxylation of a biotin group covalently linked to biotin

carboxyl carrier protein, and then the carboxyl transferase domain

catalyzes the transfer of the carboxyl group from biotin to acetyl-

CoA to produce malonyl-CoA [28]. The amino acid sequences of

carboxyl transferase domains have been found to be highly

conserved among the eukaryotic multifunctional acetyl-CoA

carboxylases and Zhang et al [38] have determined the crystal

structure of the yeast carboxyl transferase domain in complex with

CoA (PDB ID: 1OD2). Q-SiteFinder has been limited to PDB files

with less than 10,000 atoms and was not able to predict the

binding sites in the carboxyl transferase domain. So we used the

CASTp server, an online tool that locates and measures pockets

and voids on 3D protein structures [39]. However, CASTp was

not able to correctly predict the location of the binding site in the

carboxyl transferase domain where CoA molecule is known to

bind [38]. We therefore superimposed the homology model

structures of the HFA1 protein products (CT domain) from S.

cerevisiae S288C and CEN.PK113-7D using the Swiss-Pdb Viewer

tool [40], to observe the structural effect of the nsSNP acquired by

the CEN.PK113-7D strain (Supporting Information S3). We

observed a few changes in the loops around the cavity where the

CoA molecule is known to bind with the carboxyl transferase

domain.

Effects on ergosterol content and growth rate
Single over-expression constructs. In order to test our

hypothesis of a possible connection between the high levels of

ergosterol in the CEN.PK strain and the proteins Erg8, Erg9 and

HFA1, the corresponding three genes were over-expressed

resulting to the strains 1026.bA, 1027.bA and 1029.bA,

respectively (Figure 6). The three strains harbour also the PSY

gene, however, the gene was under the control of the GAL1

promoter and no b-amyrin is produced during the glucose phase.

This design allowed us to discern the effect of the over-expressions

on the ergosterol content when there is no competition between

the sterol pathway and the production of terpenes and on the

Figure 4. Ligand interaction diagrams for the active site of the phosphomevalonate kinase (PDB ID: 3GON). It was calculated that only
50% of the charge moieties of the ligands were in van der Waals contact with the protein. (a) The active site residues of phosphomevalonate kinase
and their interaction with the ligands phosphomevalonate and AMPPNP through clusters of ordered water. Ligands are shown in ball and stick
model. Phosphomevalonate is shown in brown color and AMPPNP in magenta color. Hydrogen bonds are shown as blue dashed lines. (b) Ligand
binding pattern for AMPPNP and distance between the interacting amino acid residues calculated using the Accelry Discovery Studio version 2.5. (c)
Ligand binding pattern for phosphomevalonate calculated and distance between the interacting amino acid residues using the Accelrys Discovery
Studio version 2.5. The values shown are in Å units.
doi:10.1371/journal.pone.0014763.g004
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second phase of the cultivation (ethanol consumption) to actually

monitor the flux redirection among the two pathways for the

available precursor (oxidosqualene). Indeed during our cultivations

and until glucose was exhausted there was no b-amyrin production

detected. On the other hand, the ergosterol content was

significantly affected from the over-expressions when the

constructs were compared with the control strain 1023.bA

(Figure 7). The yield of ergosterol per gram of DW at the end of

the exponential phase was ,1.6-fold higher in the strains 1027.bA

and 1029.bA compared to the 8.1 mg of ergosterol/g of DW that

was determined for the control strain. In addition the specific

growth rate of 1027.bA and 1029.bA was 14% and 9% lower than

the reference strain (CEN.PK-5D), while the difference between

the 1023.bA and the reference strain was negligible (3%).

However, the most promising strain appeared to be 1026.bA,

which reached an ergosterol content of 17.7 mg/g of DW, with no

effect on the specific growth rate that remained unaltered

compared to the reference strain.

Double and triple over-expression constructs..

Optimization of a secondary metabolite phenotype, such as

ergosterol production, obviously depends on the modulation of

several genes. With the intention to test a possible synergy in the

resulting phenotype between the Erg8, Erg9 and HFA1 genes, the

three double over-expression strains were also constructed.

Figure 7 summarizes the results of the multiple gene over-

expression constructs which seem to be of considerable interest.

The three combinations resulted in the strains 1028.bA, 1030.bA

and 1057.bA, which outperformed in ergosterol level the single

over-expression constructs. The observed higher ergosterol levels

of the double over-expression constructs it was not surprising and

it could be predicted since the single over-expressions either

enhanced (Erg8, HFA1) or matched (Erg9) the ergosterol level of

the control strain. While a combination of Erg8 and Erg9 (1028.bA)

had moderate effects on the ergosterol yield compared to the effect

of the Erg8 alone (1026.bA), this was not the case for the other two

strains. The 1057.bA (Erg8, HFA1) strain reached an ergosterol

level of 30 mg/g of DW, while even more impressive was the 34.3

mg of ergosterol/g of DW for the 1030.bA (Erg9, HFA1) strain. At

the same time the specific growth rate of the 1030.bA appeared to

be less affected by the over-expressions (,14% decrease)

compared to the other two strains which presented an .25%

decrease on their growth rate (Figure 7). The presence of multiple

plasmids within the yeast cell can be responsible for this profound

impact on the cellular physiology since they often impose a

metabolic burden on the cell. The highest ergosterol content was

observed when the Erg8, Erg9 and HFA1 genes were

simultaneously over-expressed. The quantification of the

ergosterol content for the strain named 1031.bA revealed an

amount as high as 46 mg/g DW, while the specific growth rate

was not lower than the double constructs 1028.bA, and 1057.bA.

b-amyrin production
Single over-expressions. In the second phase of the

cultivation, and while all glucose had been consumed, the

Figure 5. Ligand binding sites predicted using Q-SiteFinder. The two top ranked binding pockets were selected in each case. The differences
between the phosphomevalonate kinase from S. cerevisiae S288C and CEN.PK113-7D strains can be clearly observed from the homology model
structures shown. (a) Q-SiteFinder predictions for binding pockets in the phosphomevalonate kinase from Streptococcus pneumoniae, for which
crystal structure data is available (PDB ID: 3GON). Q-SiteFinder was able to accurately predict the active site of 3GON with two binding pockets, one
each for phosphomevalonate and AMPPNP. Both ligands are represented in stick model. (b) Q-SiteFinder predictions for binding pockets in
phosphomevalonate kinase from S. cerevisiae S288C. (c) Q-SiteFinder predictions for binding pockets in phosphomevalonate kinase from S. cerevisiae
CEN.PK113-7D.
doi:10.1371/journal.pone.0014763.g005
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growth of the constructs was based on the ethanol consumption.

During that period the production of b-amyrin was observed and

the effect of the over-expression of Erg8, Erg9, and HFA1 was

evaluated. The strain 1023.bA was harbouring only the b-amyrin

synthase gene and no other modification for higher expression was

applied. Our metabolic engineering strategy was assessed based on

the production level of this control strain. After a total cultivation

time of 48 h the 1023.bA reached a maximum value of b-amyrin

of 0.69 mg/L (Figure 8). In the strain 1027.bA, despite the fact

that the over-expression of Erg9 led to increased ergosterol yield in

the glucose phase compared to the control strain, this positive

effect was not reflected in the b-amyrin production levels during

the ethanol phase (Figure 8). The final b-amyrin concentration

was 0.66 mg/L while the ergosterol yield was 11 mg/g of DW,

slightly lower than the 11.5 mg/g of DW of the control strain (data

of ergosterol in the ethanol phase not shown). On the other hand

over-expression of HFA1 and Erg8 did enhance the strains capacity

to produce b-amyrin. As shown in Figure 8 after 48 h the strain

1029.bA produced 0.82 mg/L of b-amyrin. A further increase in

the production levels was obtained from the strain 1026.bA with

over 1.6-fold improvement compared to the control strain. The

1.17 mg/L of b-amyrin for 1026.bA was accompanied with an

ergosterol yield of 12 mg/g of DW, higher than the control strain

and the 1029.bA (8.9 mg of ergosterol/g of DW).

Double and triple over-expressions. We further monitor

the b-amyrin changes triggered by the simultaneous up-regulation

of the Erg8, Erg9, and HFA1 genes in all the different combinations

and the results are summarized in Figure 8. Surprisingly, even

though Erg9 over-expression had no marked impact on the b-

amyrin measured, in combination with Erg8 and HFA1 over-

expression the production was positively altered. The strain

1030.bA (Erg9, HFA1) produced 1.05 mg/L of b-amyrin, a 59%

and 28% increase compared to the 1027.bA (Erg9) and 1029.bA

(HFA1) respectively, having single over-expressions. The ergosterol

yield of the 1030.bA was also rather high (25.7 mg/g of DW) but

as in the case of the single over-expressions lower than the

observed yield on glucose phase (34.3 mg/g of DW). On the other

hand, the change in the b-amyrin observed for 1028.bA (Erg8,

Erg9) was significantly greater than the 59% increase seen in the

1030.bA. The 1028.bA can accumulate up to 1.68 mg/L of b-

amyrin, a 154% increase compared to the 1027.bA (Erg9) but only

43% increase compared to the 1026.bA (Erg8). The ergosterol

yield for the strain 1028.bA was 31.3 mg/g of DW. However, from

all the double over-expression constructs the combination of Erg8

and HFA1 (1057.bA) was the most attractive. The difference in the

b-amyrin levels between the 1057.bA and the control strain

appear to be over twice the difference than the best single over-

expression achieved (1026.bA). The 2.39 mg/L of b-amyrin that

1057.bA produced were an increase of 246% compared to the

control strain, while maintaining the high ergosterol levels

(34 mg/g of DW). The construct with the triple over-expression

of Erg8, Erg9, and HFA1 outperformed the production of all the

Figure 6. Systematic gene over-expression in CEN.PK strains harbouring a plasmid (pYES: GAL1 promoter/URA3 selection marker)
with the PSY gene (P. sativum) coding for a b-amyrin synthase. The three genes Erg8, Erg9, and HFA1 were ligated in different plasmids with
the HIS3, TRP1 and LEU2 selection markers respectively, using the TDH3p promoter, and they were transformed in all combinations (single, double,
triple over-expressions) to the respective parental strains leading to prototrophic strains. A visual representation of the final constructs containing
from one (1) up to four (4) plasmids, as well as the name of the resulting strains, which is used in the text, is also given.
doi:10.1371/journal.pone.0014763.g006
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single and double over-expression constructs by a great extend.

The final concentration of b-amyrin from the 1031.bA strain

represents an increase of almost 500% compared to the control

strain. The 3.93 mg/L of b-amyrin for the 1031.bA was a 3.4-

times more b-amyrin than the best single over-expression

construct (1026.bA) and 1.6-times more than the best double

over-expression construct (1057.bA). At the same time the

ergosterol content of the 1031.bA was higher than during the

glucose phase and the highest observed compared to all the other

strains (69.6 mg/g of DW).

Discussion

Triterpenoids are a large class of isoprenoidal natural products

present in higher plants. Among them, oleanane type triterpenes,

which are produced from b-amyrin, are one of the most common

Figure 7. Physiological characterization of the reference and recombinant S. cerevisiae strains. (A) Bars represent the growth rates of
the constructs relative to the reference strain when grown on glucose and the inset shows the growth curves. (B) Improved in vivo production of
ergosterol from CEN.PK constructs. The production yields have been calculated at the end of the exponential growth. During this time period no b-
amyrin was detected. Strains: PSY (1023.bA), Erg8,PSY (1026.bA), Erg9,PSY (1027.bA), HFA1,PSY (1029.bA), Erg8,Erg9,PSY (1028.bA), Erg9,HFA1,PSY
(1030.bA), Erg8,HFA1,PSY (1057.bA), Erg8,Erg9,HFA1,PSY (1031.bA).
doi:10.1371/journal.pone.0014763.g007
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triterpenes, along with ursane type triterpenes produced from a-

amyrin. b-amyrin in particular serves as the olefin precursor to a

wide range of downstream products. The action of oxidative

enzymes and glycosyltransferases convert b-amyrin to various

triterpene saponins. These saponins exhibit a wide range of both

structural diversity and biological activity (antimicrobial, insecti-

cidal agents) and therefore are regarded as important and

promising sources for medicinal compounds. The effect of plant

saponins on low-density lipoprotein cholesterol absorption and

arterial atherosclerosis has received much attention, leading to the

development of several cholesterol-reducing dietary supplements

[41]. The formation of these complex carbon skeletons through a

series of protonation, cyclization, rearrangement and deprotona-

tion reactions of 2,3-oxidosqualene is well documented in the

famous biogenetic isoprene rule [42]. Although triterpene

synthases have been expressed in microbial hosts such as S.

cerevisiae there has been little effort made so far to engineer the

metabolism of a microbial host for enhanced production of

triterpenes. Imbalances in gene expression can lead to –over or –

under production of enzymes in the pathway, accumulation of

toxic metabolic intermediates, and metabolic burden on the host,

all of which result in suboptimal product titers [43]. A novel

metabolic engineering strategy for designing a triterpenoid-yeast-

production-platform is presented here based on the whole genome

sequencing of S. cerevisiae CEN.PK recently completed by Otero

et al [12].

The non-synonymous SNPs, the so called non-silent SNPs,

which are single nucleotide variations in the coding regions that

gives ‘birth’ to amino acid mutations, are often involved in the

modulation of protein function. Understanding the effect of

individual amino acid mutations on a protein/enzyme function or

stability is useful for altering its properties for wide variety of

engineering studies. Since measuring the effects of mutations

experimentally is a laborious process, a variety of computational

methods and algorithms have been devised to predict these effects

in silico [44-50]. Bioinformatics approaches to predict the effect of

mutations on protein stability utilizes the sequence alignment

information of evolutionarily related sequences [51] or protein

families or rely on physicochemical modeling of the mutation

augmented by information obtained from statistical analyses of

protein sequences and three-dimensional structures [52]. Compu-

tational approaches for predicting the effect of amino acid

mutations has proven to be surprisingly successful, with a wide

range of studies supporting them [53-56]. Different computational

algorithms provide valuable insights to explore relationships

between beneficial mutations and phenotypic variation and speed

up both fundamental and industrial applied research [57]. Erg8,

Erg9, and HFA1 genes are part of the sterol and fatty acid

biosynthesis in S. cerevisiae. S. cerevisiae CEN.PK contains an

unusually high content of ergosterol and fatty acids compared to

other S. cerevisiae strains [11]. When Otero and colleagues [12]

compared the genome-wide sequence of CEN.PK with S288C

Figure 8. Production of b-amyrin is shown over 48 h for the constructs with single, double and triple over-expressions of Erg8, Erg9,
and HFA1, and the control strain. The b-amyrin was detected after the exhaustion of glucose and the initiation of the consumption of ethanol
that had produced by the strains. The data shown as total production are means for two independent cultivations for each strain.
doi:10.1371/journal.pone.0014763.g008
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they identified a number of SNPs in these 3 genes. Our hypothesis

in this study was that these SNPs are linked to the observed

phenotype in CEN.PK, by the formation of more efficient Erg8,

Erg9 and HFA1 proteins, influencing the flux towards the two

pathways. Our hypothesis was supported by the use of an array of

computational tools that there is a positive effect of the nsSNPs on

the protein structure-stability-function of the Erg8, Erg9 and

HFA1.

The Erg8 codes for a phosphomevalonate kinase, an essential

cytosolic enzyme which catalyzes the reaction ATP+(R)-5-

phosphomevalonate = ADP+(R)-5-diphosphomevalonate. An indi-

rect over-expression of Erg8 through an enhanced activity of

UPC2 (a global transcription factor regulating the biosynthesis of

sterols in S. cerevisiae) for terpenes production has been studied by

Ro et al [58]. However, UPC2 as a single modification had only a

modest effect on amorphadiene production. A negative effect of

the enhanced UPC2 activity on the epicedrol production, a

sesquiterpene originating from FPP, was observed by Jackson et al

[59]. However, in the present study the direct over-expression of

Erg8 resulted in higher ergosterol content than the control strain

during growth on glucose, which was then reflected in the ethanol

phase in the 1.6-fold higher production of b-amyrin compared to

the control strain.

The Erg9 codes for a squalene synthase that joins two farnesyl

pyrophosphate moieties in the reaction 2 farnesyl diphosphate =

diphosphate+presqualene diphosphate. There have been several

studies targeting Erg9 as an attempt to increase precursor

availability for terpenes production. In the case of Shimada et al

[60] disruption of the Erg9 gene as a single modification in Candida

utilis had no significant effect on lycopene production. On the

other hand Paradise et al [61] increased by 5-fold the production of

amorphadiene by down-regulating the Erg9, however this

improvement was in a strain background with several other

genetic modifications. In line with the above two studies were the

effects of Erg9 over-expression in the b-amyrin production

observed here. While Erg9 over-expression as a single metabolic

engineering strategy had no positive effect on b-amyrin produc-

tion, in combination with Erg8 over-expression there was a 2.4-fold

improvement compared to the control strain.

The HFA1 is a mitochondrial acetyl-coenzyme A carboxylase that

catalyzes the production of malonyl-CoA in fatty acid biosynthesis

through the reaction ATP+acetyl-CoA+HCO3
2 = ADP+phospha-

te+malonyl-CoA. Interestingly, by enhancing the expression level of

HFA1 the production level of b-amyrin was improved by 1.2 times.

Kizer et al [62] engineered an E. coli strain to produce high levels of

terpenoids, however, further optimization led to an imbalance in

carbon flux and the accumulation of the pathway intermediate 3-

hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA), which proved

to be toxic to E. coli. Their results indicated that HMG-CoA inhibits

fatty acid biosynthesis in the microbial host, leading to generalized

membrane stress. The cytotoxic effects of HMG-CoA accumulation

could be counteracted by the addition of palmitic acid and oleic acid,

and it is possible that the positive effect of HFA1 over-expression in

ergosterol and b-amyrin levels that we observed in our study to be a

mechanism of the cell to deal with the high HMG-CoA

concentrations. Over-expression of HFA1 with concomitant over-

expression of Erg8 led to the highest production of b-amyrin in

between all the single and double over-expression constructs, while

the final concentration was 3.5-fold higher than the control strain.

Further improvement in the b-amyrin production level was achieved

by the triple over-expression construct.

In summary we have created a strain of S. cerevisiae capable of

producing 500% more b-amyrin than the control strain by the

simultaneous over-expression of Erg8, Erg9 and HFA1. To the best

of our knowledge the only metabolic engineering work applied for

b-amyrin production has been performed by Kirby et al [63]. By

manipulating the two key enzymes in the pathway, HMG-CoA

reductase and lanosterol synthase, Kirby and colleagues improved

the b-amyrin production by 50%. This was a 10-fold lower

improvement than the one achieved through our metabolic

engineering strategy. However, in the study of Kirby et al the final

titer of b-amyrin was 6 mg/L [63].

In addition to the above modifications, a careful inspection of

the metabolic pathways that include the acetyl-CoA molecule for

SNPs could reveal more targets for redirecting the fluxes towards

the mevalonate pathway. The supply of acetyl-CoA has been

shown as an important parameter for the production of many

secondary metabolites and in particular terpenoid molecules, as

Shiba et al [64] demonstrated in their study.

However, it is important also to stress out that despite the very

encouraging results from integrating protein computational

analysis with metabolic engineering, there is a clear need for

further experimental verification of our hypothesis. In order to

increase our confidence that the SNPs in the three proteins are

responsible for the differences observed in the ergosterol level

between the strains, we should create point mutations in the

CEN.PK genes to construct the respective version of the S288

strain and examine if the phenotype of S288 is restored in the

CEN.PK and vice versa. This could potentially demonstrate the

role of the SNPs in a flux level. Additionally, an isolation of the

different versions of the S288 and CEN.PK proteins and the

evaluation of their in vitro activity against their natural substrates

would definitely strengthen the computational predictions regard-

ing the beneficial effects caused by the SNPs in the proteins of

CEN.PK. It would also be of interest to overexpress Erg8, Erg9 and

HFA1 in S288 and compare the obtained levels of b-amyrin in

S288 and CEN.PK which may point out other limitations in

creating a yeast b-amyrin hyper-producer.

In this work we propose that high-throughput genome

sequencing of S. cerevisiae may serve as a commonplace tool,

complimentary to transcriptomics and physiological characteriza-

tion, to extract direct genotype to phenotype information. The

analysis presented here serves as a foundation for comparative

metabolic engineering SNP analysis, where in the future reference

strains may be compared to their metabolically engineered

derivatives that use directed evolution in order to answer what

changes have made a strain a preferred microbial cell factory.

Future work must also expand to the SNP analysis presented in the

paper of Otero et al [12] to include all 13,787 SNPs, realizing

phenotypic observations may not necessarily be linked directly to

metabolic SNPs, but rather SNPs affecting larger regulatory

mechanisms and networks, such as those governed by transcrip-

tion factors.

Materials and Methods

Analysis of nsSNPs by Sequence Homology Based
method

We used SIFT, a sequence homology based tool that Sorts

Intolerant From Tolerant amino acid substitutions, to find out the

effect of nsSNPs in Erg8, Erg9 and HFA1 protein products. The

SIFT algorithm relies solely on sequence to predict whether an

amino acid substitution at a particular position in a protein will

have a phenotypic effect. To predict the effect of an amino acid

substitution, SIFT considers the information about the position at

which the change occurred and the type of amino acid change.

SIFT is a multistep procedure that, for a query sequence, (1)

searches for similar sequences, (2) chooses closely related
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sequences that may share similar function, (3) obtain multiple

alignment of these chosen sequences, and (4) calculates normalized

probabilities for all possible substitutions at each position from the

alignment. Substitutions at each position with normalized

probabilities less than the chosen SIFT cutoff are predicted to

be deleterious and those that are greater than or equal to the SIFT

cutoff are predicted to be tolerated. Therefore, the accuracy for

predicting the phenotype that results from an amino acid

substitution based on sequence alignment of protein family

members has been assumed to be better than using a generalized

substitution scoring matrix [65].

Homology modeling and Structure validation
Homology modeling of Erg8, Erg9 and HFA1 protein products

was carried out using the Protein Model Portal (PMP) that

provides a single interface to access 12.7 million comparative

protein models across various protein structure databases (Release

date: 2010/03/19) and also provides interactive services for

template selection, target template alignment, model building and

quality assessment [66]. PMP is a module of the Protein Structure

Initiative Knowledge Base (PSI KB) developed by the Protein

Structure Bioinformatics group at the SIB - Swiss Institute of

Bioinformatics and the Biozentrum - University of Basel. The

overall model quality of structures obtained from homology

modeling were validated using ProSA-web Protein Structure

Analysis tool [67]. ProSA-web calculates the overall quality z-score

for a specific input structure and relates to the scores computed

from all experimental structures deposited in Protein Data Bank

(PDB). The z-score is displayed on a plot, so that low-resolution

structures and approximate models obtained through homology

modeling can be evaluated and compared against high resolution

structures.

Simulations for functional change in coding nsSNPs
based on 3D structures

Structural analysis was performed for evaluating the structural

stability of homology models for Erg8, Erg9 and HFA1 protein

products from both S. cerevisiae S288C and CEN.PK113-7D

strains. A measure of protein stability is the difference between the

free energies of the folded and infolded states. We used Eris, a

protein stability prediction server [68] that employs improved

Medusa force field [69] for estimation of change in free energy

difference (DDG) upon mutation. Eris features an all-atom force

filed, a fast side-chain packing algorithm, and a backbone

relaxation method for accurate protein stability predictions. To

obtain information about Accessible Surface Area (ASA) changes

caused by nsSNPs on protein structures, homology models of Erg8,

Erg9 and HFA1 protein products from both S. cerevisiae S288C and

CEN.PK113-7D were submitted to InterProPatch server [70] that

shows surface region differences.

Analysis of changes in Residue-Residue Interactions
caused by individual nsSNPs

Analysis of changes in residue-residue interactions caused by

nsSNPs on Erg8, Erg9 and HFA1 protein products was done at

University of Cambridge -UK, using Bongo server (Bonds ON
Graph). Bongo uses graph theoretic measures to annotate nsSNPs and

represent residue-residue interaction networks within proteins on

graphs. A single amino acid substitution encoded by a nsSNP may

often not only give rise to rearrangement of amino acid side chains

near the mutation site, but also to a substantial local or global

movement of polypeptide backbone. A major advantage of Bongo is

that it considers the long-distance structural impact of a point

mutation.

Structural analysis and Scanning of binding pockets
To analyze the overall structural differences between the Erg8,

Erg9 and HFA1 protein products of S. cerevisiae S288C and

CEN.PK113-7D, we used SuperPose, a sophisticated structural

superposition program that uniquely combines sequence align-

ment and difference distance (DD) matrix calculations to constrain

its quaternion superposition algorithm [71]. Through H-Predictor

server, we also analyzed putative hinge regions that are involved in

protein oligomerization via the domain-swapping mechanism

[72]. Using a simple contact-based potential for enthalpy and

graph theory- based estimation for entropy, H-Predictor quantifies

for each residue the propensity as the hinge region. Finally, the

binding pockets of Erg8, Erg9 and HFA1 protein products from

both S. cerevisiae S288C and CEN.PK113-7D were scanned using

Q-SiteFinder [73] to find out the protein-ligand binding site

differences caused by coding nsSNPs. The special feature of Q-

SiteFinder is that it uses interaction energy and a simple van der

Walls probe to locate energetically favourable binding sites. By

scanning binding pockets, not only the ligand binding sites of a

given protein can be identified, but also protein residues within a

suitable range of the binding pocket are identified, which could be

used for analysis of functional sites and comparison.

Strains and Media
The strains used in this study as well as the construction process

are shown in Figure 6. The plasmids (2micron multi-copy vectors)

pPK529 (Erg8), pPK532 (Erg9) and pPK534 (HFA1) were

transformed as single, double (in all combinations), and triple

over-expressions to the respective parental strains. The genes were

cloned between the TDH3 promoter and terminator region. In

addition, a gene (PSY) coding for a b-amyrin synthase from the

plant Pisum sativum (pea) [74] was transformed to the above

CEN.PK over-expression mutants and the reference strain

(CEN.PK-5D) using the commercially available pYES plasmid

(Invitrogen) as described previously [75]. The final strains

harbouring different combinations of plasmids and their designat-

ed names are shown in Figure 6. All the resulting strains were

prototrophic. Cultures were maintained by plating in SCD

medium and these stocks were used to inoculate the pre-cultures.

Pre-cultures were grown in shake flask cultures on defined mineral

medium [76], supplemented with vitamins, adjusted to pH 6.0 and

containing 2% (w/v) glucose.

Batch Cultivation Conditions
To determine the physiological characteristics of the different

yeast strains they were grown in batch cultivations in well-

controlled 2 L bioreactors with a working volume of 1.5 L. In

brief, the cultures were fed with a defined mineral medium as

described above, containing glucose (2% w/v) as the limited

nutrient. The bioreactors were equipped with two disc-turbine

impellers rotating at 600 rpm. The pH was kept constant at 5.0 by

addition of 2 M KOH or HCl and the temperature was

maintained at 30 uC. Air was used for sparging the bioreactor at

a constant flow rate of 1.0 vvm (volume of gas per volume of liquid

per minute).

Analysis of substrates and products
Cell dry weight was determined using nitrocellulose filters (pore

size 0.45 mm, Gelman Sciences). Fermentation samples were

immediately filtered and stored at 220 uC until analysis. The
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concentrations of glucose, ethanol, glycerol, acetate, succinate, and

pyruvate were determined by HPLC as described previously [77].

Sampling, extraction, determination and analysis of
ergosterol and b-amyrin

For the analysis of ergosterol and b-amyrin dublicate biological

samples were collected (30 ml), centrifuged at 4000 rpm for 3 min

and the pellets immediately stored at 220 uC. The defrosted pellet

was re-suspended in 2 ml 20% w/v sodium hydroxide in 50%

ethanol. The mixture was transferred to glass tube and was kept in

boiling water for 5 min with occasional shaking. Subsequently, 1

ml of 20% w/v sodium hydroxide in 50% ethanol and 2 ml

hexane were added, followed by vortex-mixing for 30–60 seconds.

The tubes were centrifuged for 5 min at 1000 rpm and the hexane

phase was extracted for further analysis. After drying the samples

were derivatised by adding 50 ml BSTFA and 50 ml pyridine [78],

dried and dissolved in 75 ml toluene.

GC-MS was used for quantifying the ergosterol and b-amyrin

content of the samples. The injection volume was 1 ml in a Rtx-

5 ms (30 meters, 0.25 mm ID) column with helium carrier. The

column temperature was maintained at 240 uC for 2 min, elevated

to (10 degrees/min) 330 uC and then held for 6.5 min at 330 uC.

Authentic b-amyrin and ergosterol were derivatized and analyzed

in GC-MS in the same manner.
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Erg8, Erg9 and HFA1 protein products of both S.cerevisiae

S288C and S.cerevisiae CEN.PK113-7D strains. Accessible

Surface Area (ASA) calculations for Erg8, Erg9 and HFA1 protein

products of both S.cerevisiae S288C and S.cerevisiae

CEN.PK113-7D RMSD differences between Erg8, Erg9 and

HFA1 protein product variants of S.cerevisiae S288C and

S.cerevisiae CEN.PK113-7D strains Graph theoretic measures of

the structural effects in proteins caused by individual nsSNPs

Found at: doi:10.1371/journal.pone.0014763.s002 (8.12 MB
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Supporting Information S3 Ligand binding sites of the

squalene synthase predicted using the Q-SiteFinder and structural
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Acknowledgments

The authors thank Tammy M.K. Cheng for analysing residue-residue

interaction networks using Bongo server at University of Cambridge, UK.

Author Contributions

Conceived and designed the experiments: GP. Performed the experiments:

KM SS. Analyzed the data: GU JMO TK GP. Contributed reagents/

materials/analysis tools: PK JN YE. Wrote the paper: GU GP.

References

1. Stephanopoulos G, Alper H, Moxley J (2004) Exploiting biological complexity

for strain improvement through systems biology. Nat Biotechnol 22: 1261–1267.

2. Tyo KE, Alper HS, Stephanopoulos GN (2007) Expanding the metabolic

engineering toolbox: more options to engineer cells. Trends Biotechnol 25:

132–137.

3. Lee SY, Papoutsakis ET (1999) The challenges and promise of metabolic

engineering. pp.1-12, Chapter 1 in ‘Metabolic Engineering’ (SY Lee and ET

Papoutsakis, Eds), Marcel Dekker, 1999.

4. Khosla C, Keasling JD (2003) Metabolic engineering for drug discovery and

development. Nat Rev Drug Disc 2: 1019–1025.

5. Ajikumar PK, Tyo K, Carlsen S, Mucha O, Phon PH, et al. (2008) Terpenoids:

Opportunities for biosynthesis of natural product drugs using engineering

microorganisms. Mol Pharm 5: 167–190.

6. Schmidt-Dannert C, Umeno D, Arnold FH (2000) Molecular breeding of

carotenoid biosynthetic pathways. Nat Biotechnol 18: 750–753.

7. Newman JR, Weissman JS (2006) Systems biology: many things from one.

Nature 444: 561–562.

8. Withers ST, Keasling JD (2007) Biosynthesis and engineering of isoprenoids

small molecules. Appl Microbiol Biotechnol 73: 980–990.

9. Lee SY, Kim HU, Park JH, Park JM, Kim TY (2009) Metabolic engineering of

microorganisms: general strategies and drug production. Drug Discov Today 14:

78–88.

10. Santos CN, Stephanopoulos G (2008) Combinatorial engineering of microbes

for optimizing cellular phenotype. Curr Opin Chem Biol 12: 168–176.

11. Daum G, Tuller G, Nemec T, Hrastnik C, Balliano G, et al. (1999) Systematic

analysis of yeast strains with possible defects in lipid metabolism. Yeast 15:

601–614.

12. Otero JM, Vongsangnak W, Asadollahi MA, Olivares-Hernandez R, Maury J,

et al. (2010) Whole-genome sequencing of Saccharomyces cerevisiae: from genotype

to phenotype for improved metabolic engineering applications. BMC Genomics

11: 723–740.

13. Tokuriki N, Tawfik DS (2009) Stability effects of mutations and protein

evolvability. Curr Opin Struct Biol 19: 596–604.

14. Bloom JD, Arnold FH (2009) In the light of directed evolution: pathways of

adaptive protein evolution. Proc Natl Acad Sci USA 106: 9995–10000.

15. Bloom JD, Silberg JJ, Wilke CO, Drummond DA, Adami C, et al. (2005)

Thermodynamic prediction of protein neutrality. Proc Natl Acad Sci USA 102:

606–611.

16. Bershtein S, Segal M, Bekerman R, Tokuriki N, Tawfik DS (2006) Robustness-

epistasis link shapes the fitness landscape of a randomly drifting protein. Nature

444: 929–932.

17. Zeldovich KB, Chen P, Shakhnovich EI (2007) Protein stability imposes limits

on organism complexity and speed of molecular evolution. Proc Natl Acad Sci

USA 104: 16152–16157.

18. Wang X, Minasov G, Shoichet BK (2002) Evolution of an antibiotic resistance

enzyme constrained by stability and activity trade-offs. J Mol Biol 320: 85–95.

19. Reumers J, Schymkowitz J, Ferkinghoff-Borg J, Stricher F, Serrano L, et al.

(2005) SNPeffect: a database mapping molecular phenotypic effects of human

non-synonymous coding SNPs. Nucleic Acids Res 33: D527–D532.

20. Yue P, Li Z, Moult J (2005) Loss of protein structure stability as a major

causative factor in monogenic disease. J Mol Biol 353: 459–473.

21. Randles LG, Lappalainen I, Fowler SB, Moore B, Hamill SJ, et al. (2006) Using

model proteins to quantify the effects of pathogenic mutations in Ig-like proteins.

J Biol Chem 281: 24216–24226.

22. Gromiha MM, Selvaraj S (2004) Inter-residue interactions in protein folding and

stability. Prog Biophys Mol Biol 86: 235–277.

23. Xi T, Jones IM, Mohrenweiser HW (2004) Many amino acid substitution

variants identified in DNA repair genes during human population screenings are

predicted to impact protein function. Genomics 83: 970–979.

24. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007)

ClustalW and ClustalX version 2. Bioinformatics 23: 2947–2948.

25. Holm L, Kääriäinen S, Rosenström P, Schenkel A (2008) Searching protein

structure databases with DaliLite v.3. Bioinformatics 24: 2780–2781.

26. Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide Protein

Data Bank. Nat Struct Biol 10: 980.

27. Pandit J, Danley DE, Schulte GK, Mazzalupo S, Pauly TA, et al. (2000) Crystal

structure of human squalene synthase. A key enzyme in cholesterol biosynthesis.

J Biol Chem 275: 30610–30617.

28. Hoja U, Marthol S, Hofmann J, Stegner S, Schulz R, et al. (2004) HFA1

encoding an organelle-specific acetyl-CoA carboxylase controls mitochondrial

fatty acid synthesis in Saccharomyces cerevisiae. J Biol Chem 279: 21779–21786.

29. Toh H, Kondo H, Tanabe T (1993) Molecular evolution of biotin-dependent

carboxylases. Eur J Biochem 215: 687–696.

30. Pieper U, Eswar N, Webb BM, Eramian D, Kelly L, et al. (2009) MODBASE, a

database of annotated comparative protein structure models and associated

resources. Nucleic Acids Res 37: D347–D354.

Triterpenoid Yeast Factory

PLoS ONE | www.plosone.org 13 March 2011 | Volume 6 | Issue 3 | e14763



31. Eswar N, John B, Mirkovic N, Fiser A, Ilyin VA, et al. (2003) Tools for

comparative protein structure modeling and analysis. Nucleic Acids Res 31:
3375–3380.

32. Cheng TM, Lu YE, Vendruscolo M, Lio P, Blundell TL (2008) Prediction by

graph theoretic measures of structural effects in proteins arising from non-
synonymous single nucleotide polymorphisms. PLoS Comput Biol 4(7):

e1000135.
33. Bloom JD, Glassman MJ (2009) Inferring stabilizing mutations from protein

phylogenies: Application to influenza hemagglutinin. PLoS Comput Biol 5(4):

e1000349.
34. Houten SM, Waterham HR (2001) Nonorthologous gene displacement of

phosphomevalonate kinase. Mol Genet Metab 72: 273–276.
35. Andreassi JL, Vetting MW, Bilder PW, Roderick SL, Leyh TS (2009) Structure

of the ternary complex of phosphomevalonate kinase: the enzyme and its family.
Biochemistry 48: 6461–6468.

36. Lee S, Poulter CD (2008) Cloning, solubilization, and characterization of

squalene synthase from Thermosynechococcus elongatus BP-1. J Bacteriol 190:
3808–3816.

37. Wendt KU, Schulz GE (1998) Isoprenoid biosynthesis: manifold chemistry
catalyzed by similar enzymes. Structure 6: 127–133.

38. Zhang H, Yang Z, Shen Y, Tong L (2003) Crystal structure of the

carboxyltransferase domain of acetyl-coenzyme A carboxylase. Science 299:
2064–2067.

39. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, et al. (2006) CASTp:
computed atlas of surface topography of proteins with structural and

topographical mapping of functionally annotated residues. Nucleic Acids Res
34: W116–W118.

40. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: An

environment for comparative protein modeling. Electrophoresis 18: 2714–2723.
41. Carr TP, Jesch ED (2006) Food components that reduce cholesterol absorption.

Adv Food Nutr Res 51: 165–204.
42. Eschenmoser A, Ruzicka L, Jeger O, Arigoni D (1955) Zur Kenntnis der

Triterpene. Eine stereochemische Interpretation der biogenetichen Isoprenregel

bei den Triterpenen. Helv Chim Acta 38: 1890–1904.
43. Pitera DJ, Paddon CJ, Newman JD, Keasling JD (2007) Balancing a

heterologous mevalonate pathway for improved isoprenoid production in
Escherichia coli. Metab Eng 9: 193–207.

44. Gilis D, Rooman M (2000) PoPMuSiC, an algorithm for predicting protein
mutant stability changes: application to prion proteins. Protein Eng 13: 849–856.

45. Zhou H, Zhou Z (2002) Distance-scaled, finite ideal-gas reference state improves

structure-derived potentials of mean force for structure selection and stability
prediction. Protein Sci 11: 2714–2726.

46. Capriotti E, Fariselli P, Casadio R (2005) I-Mutant2.0: predicting stability
changes upon mutation from the protein sequence or structure. Nucleic Acids

Res 33: W306–W310.

47. Parthiban V, Gromiha MM, Schomburg D (2006) CUPSAT: prediction of
protein stability upon point mutations. Nucleic Acids Res 34: W239–W242.

48. Gromiha MM (2007) Prediction of protein stability upon point mutations.
Biochem Soc Trans 35: 1569–1573.

49. Capriotti E, Fariselli P, Rossi I, Casadio R (2008) A three-state prediction of
single point mutations on protein stability changes. BMC Bioinformatics 9(2):

S6.

50. Gong S, Blundell TL (2010) Structural and functional restraints on the
occurrence of single amino acid variations in human proteins. PLoS One 5(2):

e9186.
51. Steipe B, Schiller B, Pluckthun A, Steinbacher S (1994) Sequence statistics

reliably predict stabilizing mutations in a protein domain. J Mol Biol 240:

188–192.
52. Yin S, Ding F, Dokholyan NV (2007) Modeling backbone flexibility improves

protein stability estimation. Structure 15: 1567–1576.
53. Maxwell KL, Davidson AR (1998) Mutagenesis of a buried polar interaction in

an SH3 domain: sequence conservation provides the best prediction of stability

effects. Biochemistry 37: 16172–16182.
54. Lehmann M, Loch C, Middendorf A, Studer D, Lassen SF, et al. (2002) The

consensus concept for thermostability engineering of proteins: further proof of
concept. Protein Eng Des Sel 15: 403–411.

55. Amin N, Liu AD, Ramer S, Aehle W, Meijer D, et al. (2004) Construction of

stabilized proteins by combinatorial consensus mutagenesis. Protein Eng Des Sel
17: 787–793.

56. Dai M, Fisher H, Temirov J, Kiss C, Phipps ME, et al. (2007) The creation of a

novel fluorescent protein guided by consensus engineering. Protein Eng Des Sel
20: 69–79.

57. Bloom JD, Glassman MJ (2009) Inferring stabilizing mutations from protein
phylogenies: application to influenza hemagglutinin. PLoS Comput Biol 5(4):

e1000349.

58. Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, et al. (2006)

Production of the antimalarial drug precursor artemisinic acid in engineered

yeast. Nature 440: 940–943.

59. Jackson BE, Hart-Wells A, Matsuda SPT (2003) Metabolic engineering to

produce sesquiterpenes in yeast. Org Lett 5: 1629–1632.

60. Shimada H, Kondo K, Fraser PD, Miura Y, Saito T, et al. (1998) Increased

carotenoid production by the food yeast Candida utilis through metabolic
engineering of the isoprenoid pathway. Appl Environ Microbiol 64: 2676–2680.

61. Paradise E, Kirby J, Chan R, Keasling JD (2008) Redirection of flux through the

FPP branch-point in Saccharomyces cerevisiae by down-regulating squalene
synthase. Biotechnol Bioeng 100: 371–378.

62. Kizer L, Pitera DJ, Pfleger BF, Keasling JD (2008) Application of functional
genomics to pathway optimization for increased isoprenoid production. Appl

Environ Microbiol 74: 3229–3241.

63. Kirby J, Romanini DW, Paradise EM, Keasling JD (2008) Engineering
triterpene production in Saccharomyces cerevisiae – b-amyrin synthase from Artemisia

annua. FEBS Journal 275: 1852–1859.

64. Shiba Y, Paradise EM, Kirby J, Ro DK, Keasling JD (2006) Saccharomyces

cerevisiae for high level production of isoprenoids. Metab Eng 9: 160–168.

65. Ng PC, Henikoff S (2003) SIFT: Predicting amino acid changes that affect

protein function. Nucleic Acids Res 31: 3812–3814.

66. Arnold K, Kiefer F, Kopp J, Battey JN, Podvinec M, et al. (2009) The Protein
Model Portal. J Struct Funct Genomics 10(1): 1–8.

67. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the
recognition of errors in three-dimensional structures of proteins. Nucleic Acids

Res 35: W407–W410.

68. George PDC, Rao S (2009) Impact of single nucleotide polymorphisms in HBB

gene causing haemoglobinopathies: in silico analysis. Nat Biotechnol 25:

214–219.

69. Yin S, Ding F, Dokholyan NV (2007) Modeling backbone flexibility improves

protein stability estimation. Structure 15: 1567–1576.

70. Negi SS, Braun W (2007) Statistical analysis of physical-chemical properties and

prediction of protein-protein interfaces. J Mol Model 13: 1157–1167.

71. Maiti R, Van Domselaar GH, Zhang H, Wishart DS (2004) SuperPose: a simple

server for sophisticated structural superposition. Nucleic Acids Res 32:

W590–W594.

72. Ding F, Prutzman KC, Campbell SL, Dokholyan NV (2006) Topological

determinants of protein domain swapping. Structure 14: 5–14.

73. Laurie AT, Jackson RM (2005) Q-SiteFinder: an energy-based method for the

prediction of protein-ligand binding sites. Bioinformatics 21: 1908–1916.

74. Morita M, Shibuya M, Kushiro T, Masuda K, Ebizuka Y (2000) Molecular
cloning and functional expression of triterpene synthases from pea (Pisum

sativum); new b-amyrin producing enzyme is a multifunctional triterpene
synthase. Eur J Biochem 267: 3453–3460.

75. Kushiro T, Shibuya M, Ebizuka Y (1998) B-Amyrin synthase cloning of
oxidosqualene cyclase that catalyzes the formation of the most popular triterpene

among higher plants. Eur J Biochem 256: 238–244.

76. Verduyn C, Postma E, Scheffers WA, Van Dijken JP (1992) Effect of benzoic
acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation

of respiration and alcoholic fermentation. Yeast 8: 501–517.

77. Panagiotou G, Christakopoulos P, Grotkjaer T, Nielsen J, Olsson L (2006)

Engineering of the redox imbalance of Fusarium oxysporum enables anaerobic
growth on xylose. Metab Eng 8: 474–482.

78. Nielsen KF, Madsen JO (2000) Determination of ergosterol on mouldy building

materials using isotope dilution and gas chromatography-tandem mass
spectrometry. J Chromatography 892: 227–234.

Triterpenoid Yeast Factory

PLoS ONE | www.plosone.org 14 March 2011 | Volume 6 | Issue 3 | e14763


