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Abstract: Mesial temporal lobe epilepsy (mTLE) is a life-threatening condition characterized by
recurrent hippocampal seizures. mTLE can develop after exposure to risk factors such as febrile
seizure, trauma, and infection. Within the latent period between exposure and onset of epilepsy,
pathological remodeling events occur that contribute to epileptogenesis. The molecular mechanisms
responsible are currently unclear. We used the mouse intrahippocampal kainite model of mTLE
to investigate transcriptional dysregulation in the ipsilateral and contralateral dentate gyrus (DG),
representing the epileptogenic zone (EZ) and peri-ictal zone (PIZ). DG were analyzed after 3, 7, and
14 days by RNA sequencing. In both the EZ and PIZ, transcriptional dysregulation was dynamic
over the epileptogenic period with early expression of genes representing cell signaling, migration,
and proliferation. Canonical Wnt signaling was upregulated in the EZ and PIZ at 3 days. Expression
of inflammatory genes differed between the EZ and PIZ, with early expression after 3 days in the
PIZ and delayed expression after 7–14 days in the EZ. This suggests that critical gene changes
occur early in the hippocampal seizure network and that Wnt signaling may play a role within the
latent epileptogenic period. These findings may help to identify novel therapeutic targets that could
prevent epileptogenesis.

Keywords: hippocampus; mechanisms; adult hippocampal neurogenesis; translational research;
epilepsy; Wnt signaling; neuroinflammation

1. Introduction

Epilepsy is a common neurological disorder that afflicts 1–2% of the U.S. population;
the most common form of adult focal epilepsy is mesial temporal lobe epilepsy (mTLE),
which is medically refractory in 40% of patients [1–4]. In many cases, an inciting event or
risk factor (e.g., febrile seizure, trauma, infection) can be identified prior to the onset of
clinical epilepsy [5–9]. The process of epileptogenesis, which occurs in this latent period,
is characterized by pathological remodeling of the hippocampus, specifically the dentate
gyrus. Critically, rodent models of epilepsy recapitulate important aspects of human mTLE,
such as mesial temporal sclerosis, hippocampal dentate granule cell dispersion, dentate
granule cell mossy fiber sprouting, and the loss of hippocampal hilar and pyramidal
neurons [10–13]. Furthermore, induction of a single episode of status epilepticus (SE) by
a variety of established methods in these rodent models typically results in acquisition
of epilepsy within two weeks [14–16], affording a unique opportunity to investigate the
earliest stages of epileptogenesis in vivo.

It is increasingly well recognized that the epileptic brain develops established seizure
propagation pathways that predispose one to recurrent seizures [17–19], and persistence of
these epileptic circuits after surgery may be responsible for delayed surgical failures [20,21].
The molecular mechanisms responsible for epileptogenesis and seizure network formation
represent unique therapeutic targets that might prevent epileptogenesis after a neurological
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insult and may even improve the efficacy of clinical interventions. As a result, prior studies
have sought to investigate transcriptomic and proteomic changes in human and animal
models of epilepsy [22–27]; several studies have indeed focused on the dentate gyrus as
one of the key sites in mTLE epileptogenesis [22,23,26]. These studies and others have
contributed significantly to our understanding of epilepsy-specific gene expression changes,
implicating specific molecular pathways including MAPK, NMDA-receptor-mediated
excitotoxicity, CaMK, mTor, and Wnt [22,25,27,28]. These previous studies, however, have
not examined differences between the ictal/epileptogenic zone and peri-ictal regions of the
seizure network at serial time-points during epileptogenesis.

There is growing evidence that the Wnt pathway may provide some of the key early
signaling events during epileptogenesis [29–32]. The Wnt pathway encompasses a family
of 19 secreted Wnt protein ligands, which bind a family of 10 membrane frizzled recep-
tors and co-receptors; these signal to downstream canonical beta-catenin-dependent and
non-canonical planar cell polarity and calcium pathways. The canonical Wnt pathway is
activated by the binding of Wnt ligands to a frizzled receptor and the LRP5/6 co-receptor;
this results in recruitment of the beta-catenin destruction complex to the plasma mem-
brane, allowing nuclear translocation of beta-catenin and activation of transcription factors
TCF/LEF1. The planar cell polarity (PCP) non-canonical Wnt pathway signals through
c-Jun N-terminal kinase (JNK) via Rho and Rac GTPases, and the calcium non-canonical
Wnt pathway results in the activation of calmodulin-dependent protein kinase II (CaMKII),
calcineurin, and protein kinase C (PKC), via phospholipase C signaling [33]. Under phys-
iological conditions, Wnt signaling has been implicated in neurogenesis and dendrite
formation in the adult rodent hippocampus [34–38]. More recently, the canonical Wnt path-
way has also been implicated under pathophysiological conditions during epileptogenesis,
affecting pro-epileptogenic neuronal remodeling and neurogenesis in the hippocampal den-
tate gyrus [30,39,40]. As yet, the specific role of Wnt signaling in epileptogenesis remains
to be determined.

In this study, we used the adult mouse intrahippocampal kainate model of focal mesial
temporal lobe epilepsy and performed transcriptome profiling of the hippocampal dentate
gyrus. Our use of this model provides a unique opportunity to examine transcriptional
dysregulation in varying regions of the seizure network. It has been demonstrated that
the contralateral dentate gyrus also undergoes pathological remodeling in this model,
and it is well recognized that the contralateral hippocampus is an independent source of
epileptic seizures [30,41]. We therefore investigated both the ipsilateral kainate-injected
dentate gyrus, representing the epileptogenic zone, and the contralateral dentate gyrus,
representing the peri-ictal zone, recognizing the role of both parts of the seizure network in
maintaining epilepsy [17–19,30]. We selected time-points during epileptogenesis, 3 days,
7 days, and 14 days after SE, which fall within the latent period between SE and the onset
of spontaneous recurrent seizures [15,22,23]. The data presented herein identify distinct
patterns of differential gene expression within the seizure network, which are dynamic over
the early epileptogenic period: In the epileptogenic zone, we identified early enrichment of
cell signaling and delayed inflammatory processes, and in the peri-ictal zone we identified
a brief early enrichment of cell signaling and inflammatory processes. We further observed
that Wnt signaling was dysregulated during early epileptogenesis in both the epileptogenic
zone and the peri-ictal zone. These findings provide clues as to the key dysregulatory
events that may contribute to epileptogenesis, which may potentially help identify novel
therapeutic targets that might be modulated to prevent the development of epilepsy.

2. Results
2.1. Mesial Temporal Lobe Epilepsy Model and Experimental Design

In the intra-hippocampal kainate model of epileptogenesis, spontaneous recurrent
seizures occur 10–14 days after SE-induction [15,16]. We therefore hypothesized that
critical gene expression changes that may be responsible for the development of epilepsy
may occur within this latent period. To identify differentially expressed genes (DEG) at
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the earliest stages of epileptogenesis, we focused our investigation on the first 2 weeks
after SE induction (Figure 1A). Since the dentate gyrus has been specifically implicated in
temporal lobe epilepsy [10–13,42], we performed anatomical microdissection and extracted
the dentate gyrus from kainate and saline-vehicle-control-injected animals for analysis
as previously described [30] (Figure 1B). Time-points sampled were 3 days, 7 days, and
14 days, representing the end of SE, the period between SE and the onset of recurrent
seizures, and the period near the onset of recurrent seizures, respectively [16]. It has
been shown previously that immature dentate granule cells in the contralateral dentate
gyrus also undergo remodeling 2 weeks after SE and, as a result, may contribute to the
maintenance of the seizure network [17–19,30]. Therefore, transcriptional dysregulation
in both the ipsilateral dentate gyrus epileptogenic zone (EZ) and the contralateral dentate
gyrus peri-ictal zone (PIZ) were assessed (Figure 1A), encompassing different regions of
the seizure network.
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epileptogenesis. (A) Timeline and schematic of the experimental design. Mice were injected 
unilaterally in the hippocampus with kainate to induce SE or with saline control and sacrificed 3 

Figure 1. RNA sequencing of the ipsilateral and contralateral hippocampal dentate gyri during
epileptogenesis. (A) Timeline and schematic of the experimental design. Mice were injected unilater-
ally in the hippocampus with kainate to induce SE or with saline control and sacrificed 3 days, 7 days,
and 14 days after injection. The bilateral dentate gyri were harvested, and the dorsal portions under-
went RNA sequencing. (B) Representative DAPI-stained brightfield coronal sections of anatomically
dissected ipsilateral and contralateral dentate gyrus; scale bar 100 µm. Hierarchical cluster analysis
demonstrating (C) the top 50 genes and (D) genes across the entire transcriptome with FDR < 0.01
and FC > ±1.5 dysregulated in the EZ and PIZ 3 days after SE induction across all samples. n = 4
mice per experimental group (2 males and 2 females).



Int. J. Mol. Sci. 2022, 23, 12030 4 of 22

2.2. Transcriptomic Dysregulation across the Seizure Network in Early Epileptogenesis

We initially examined the relative expression of differentially expressed genes between
kainate-injected epilepsy animals and saline-injected control animals between 3 to 14 days
after induction of status epilepticus. In doing so, we were able to broadly assess the overall
patterns of gene dysregulation over the first 2 weeks of epileptogenesis associated with both
the epileptogenic zone and the peri-ictal zone. The gene expression heatmap demonstrates
that in the epileptogenic zone, within the top 50 DEG, 60% were upregulated (30/50) and
40% were downregulated (20/50), 3 days after SE induction (Figure 1C). This pattern was
maintained, although with an overall reduction in fold-change magnitude, in the epilepto-
genic zone 7 days after SE induction and began to normalize 14 days after SE induction.
When we assessed the peri-ictal zone, we observed a similar pattern of differential expres-
sion in the same subset of genes that were dysregulated in the epileptogenic zone 3 days
after SE induction, although at an overall reduced fold-change magnitude. The magnitude
of dysregulation of these top 50 genes in the peri-ictal zone 3 days after SE-induction
was comparable to the levels observed 7 days after seizure induction in the epileptogenic
zone. In the peri-ictal zone, gene expression changes began to subside at 7 days and were
normalized by 14 days after SE induction when compared to saline controls. These patterns
of gene expression were also observed across the entire transcriptome (Figure 1D), and
when assessed at the other sampled time points (Figure S1).

These data suggest that unique transcriptional dysregulation events occur within the
first 2 weeks after SE induction; these may be important in the development of spontaneous
recurrent seizures, which occur toward the end of this latent period. These data also suggest
that some transcriptional changes are shared between the epileptogenic zone and seizure
network, and that transcriptional dysregulation is of greater magnitude and prolonged in
the epileptogenic zone.

2.3. Shared Patterns of Gene Dysregulation between the Epileptogenic Zone and Peri-Ictal Zone
across Early Epileptogenesis

We next examined overlapping gene groups across the first 2 weeks of epileptogenesis
in the EZ and PIZ. Data are represented as UpSet plots; total gene number in each indi-
vidual and overlapping group is represented by the histogram, and the groups included
are denoted by the circle-line plot beneath each bar of the histogram. Over early epilepto-
genesis in the EZ, the largest overlapping groups of DEG were observed between 3 days
and 7 days after SE induction. This indicates a large degree of overlap in underlying gene
dysregulation, and therefore shared molecular processes, during the first week after SE in
the epileptogenic zone. The number of DEG that remain either upregulated or downregu-
lated 14 days after SE induction fell by 95%, suggesting that the critical period after SE may
be captured within the first week (Figure 2A, Table S1). By comparison, in the peri-ictal
zone, the majority of genes were uniquely dysregulated 3 days after SE induction, with
few dysregulated genes observed at subsequent time-points; we observed less overlap be-
tween the 3-day and 7-day time-points, with overlap near-negated at the 14-day time-point
(Figure 2B, Table S2). These data suggest that the principal gene dysregulation period in
the peri-ictal zone may occur within 3 days of SE induction.
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Figure 2. UpSet plots depicting the extent of shared transcriptional dysregulation in the EZ and
PIZ across the first 2 weeks of epileptogenesis. In each UpSet plot, the vertical bars represent gene
number for the corresponding group/overlapping groups. Below the histogram, the circle-line chart
shows the group depicted for each bar; individual dots denote genes specific to an individual group,
and linked dots represent overlapping gene groups. The horizonal bars denote total gene number for
each region/time-point/differential expression group. Significantly upregulated genes are labeled
as SigUp, significantly downregulated genes are labeled as SigDown, and genes with FDR < 0.01
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but with less than 50% fold change are labeled as “Sig < 1.5 FC”. (A) Overlapping gene groups in
the epileptogenic zone 3, 7, and 14 days after seizure induction. (B) Overlapping gene groups in the
peri-ictal zone 3, 7, and 14 days after seizure induction. (C) Top 20 upregulated and dysregulated
DAVID gene ontology terms in the EZ shared between the 3-day and 7-day time-points. (D) Top 20
upregulated and dysregulated DAVID gene ontology terms in the PIZ shared between the 3-day and
7-day time-points. Tables listing names for the genes represented in each UpSet plot can be found in
Tables S1 and S2.

We therefore examined the top 20 upregulated and downregulated DAVID (Database
for Annotation, Visualization and Integrated Discovery) pathway gene ontology (GO)
categories shared across the first 7 days after SE induction in the EZ and PIZ. In the EZ,
we observed upregulation of GO terms associated with cell signaling and remodeling,
including “cell proliferation”, “cell surface receptor signaling pathway”, “cell migration”,
and “signal transduction”, as well as inflammatory terms such as “cytokine production”
and “defense response” (Figure 2C). These suggest a prolonged period of cell-signaling
events for 7 days after SE induction that may encompass epileptogenic molecular processes.
As expected, due to the extensive neuronal loss that occurs in the epileptogenic zone,
neuronally associated GO terms such as “synapse” and “dendrite” were among the top 20
downregulated GO terms. In the PIZ, the top 20 upregulated GO terms shared across the
first week of epileptogenesis were associated predominantly with inflammation (Figure 2D).

When we compared across regions at each time-point, the epileptogenic zone and
peri-ictal zone demonstrated different patterns of gene dysregulation. Three days after
SE induction, there were 1389 overlapping genes between significantly upregulated and
downregulated genes in the epileptogenic zone and peri-ictal zone (Figure S2A, Table S3).
This suggests that some gene dysregulation events and their corresponding pathways
are shared between these two regions of the seizure network 3 days after SE induction.
However, the number of overlapping genes was reduced at 7 days (Figure S2B, Table S4)
and at 14 days (Figure S2C, Table S5) after SE induction, suggesting that gene dysregulatory
events diverge beyond 3 days after SE. Fourteen days after SE, 702 genes were upregulated
in the epileptogenic zone, 699 uniquely, and only 3 were shared with the peri-ictal zone
(Figure S2C); however, 691 genes overlapped with earlier time-points in the epileptogenic
zone 3 days and 7 days after SE (Figure 2A). These data indicate that transcriptional dys-
regulation in the peri-ictal zone declines 14 days after SE induction, and the epileptogenic
zone retains persistent gene dysregulation, as might be expected from the extent of injury
and remodeling observed in the epileptogenic zone. Gene lists for each overlapping group
are listed in Tables S1–S5.

2.4. Enrichment of Functional DAVID Categories in the Epileptogenic Zone and Seizure Network
across Early Epileptogenesis

In order to investigate the functional effect of transcriptional dysregulation in epilepto-
genesis across the two regions, we examined the enrichment of gene ontology (GO) terms
within DAVID pathways. We specifically identified the top 50 most significantly enriched
GO categories within each of the two regions at each time point (Figure 3A,B). We also
compared the pattern of expression in the peri-ictal zone with the top-most highly enriched
categories in the epileptogenic zone (Figure 3C). We observed that in the epileptogenic zone,
different overall patterns of GO terms were shared between the 3- and 7-day time-points,
compared to between the 7- and 14-day time-points, with a number of GO terms unique to
the 14-day time-point. In the epileptogenic zone, GO terms enriched at 3 days and 7 days af-
ter SE were associated with cell signaling (e.g., intracellular signal transduction, regulation
of signaling, regulation of cell communication, regulation of signal transduction, positive
regulation of molecular function, positive regulation of signal transduction, regulation
of intracellular signal transduction), cell migration and motility (e.g., cell migration, cell
adhesion, movement of cell or subcellular component, regulation of cell motility, regulation
of locomotion, locomotion, cell motility, localization of cell), and cell survival/proliferation
(e.g., cell proliferation, neurogenesis, cell death, apoptotic process, programmed cell death,
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cell development) (Figure 3A). These GO terms encompass pathological cellular processes
observed in the dentate gyrus after SE [43] and suggest that the molecular mechanisms
responsible for these pro-epileptogenic processes may be represented in this dataset and
may occur early after SE. GO terms enriched at the 7-day and 14-day time-points, as well
as more prominently in the 14 day time-point, are related to inflammatory processes (e.g.,
immune response, response to cytokine, inflammatory response, regulation of TNF super-
family cytokine production, regulation of adaptive immune response and more). These
inflammatory GO terms are less represented at the 3-day time-point, and if present, overlap
with the 7-day and 14-day time-points. This suggests that pro-inflammatory processes
occur in a delayed and prolonged manner from 7 days after SE in the epileptogenic zone.
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Figure 3. Gene Ontology term enrichment in the EZ and PIZ over the first 2 weeks of epileptogenesis.
Significant DAVID pathway gene ontology terms are expressed over the first 2 weeks of epileptogen-
esis as heatmaps across the EZ and PIZ. (A) Enrichment of GO terms in the EZ, 3 days, 7 days, and
14 days after SE induction. (B) Enrichment of GO terms in the PIZ, 3 days, 7 days, and 14 days after
SE induction. (C) Depiction of GO term enrichment in the PIZ of the most highly enriched GO terms
in the EZ, demonstrating how GO terms enriched in the EZ are represented in the PIZ across the first
2 weeks of epileptogenesis.

Within the peri-ictal zone, the majority of the most highly enriched GO terms were rep-
resented uniquely at 3 days or 7 days after SE induction with few overlapping groups; none
were represented at 14 days (Figure 3B). These data further support the return of transcrip-
tional dysregulation to baseline 14 days after SE induction. The GO terms enriched 3 days
after SE induction were, similarly to the 3-day/7-day time-point in the epileptogenic zone,
associated with cell signaling (e.g., intracellular signal transduction, positive regulation of
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signal transduction, cell surface receptor signaling pathway, regulation of signal transduc-
tion, regulation of cell communication, positive regulation of cell signaling), cell migration
and motility (e.g., cell adhesion, cell migration, regulation of cell motility, regulation of
locomotion, positive regulation of cell adhesion), and cell survival/proliferation (e.g., cell
proliferation, regulation of cell proliferation, positive regulation of developmental process),
although with less representation of cell-death-related GO terms, as might be expected
due to the lower cell death observed in comparison the ipsilateral epileptogenic zone [30].
There is, however, earlier representation of inflammation-related GO terms (e.g., regulation
of immune system process, immune response, cytokine production, leukocyte activation,
regulation of inflammatory response) 3 days after SE induction, which also comprise the
predominantly represented terms 7 days after SE in the peri-ictal zone (e.g., response to
cytokine, cellular response to interferon gamma, antigen processing and presentation of
peptide antigen). These data suggest that similar alterations in molecular signaling may
also drive epileptogenic remodeling in the peri-ictal zone seizure network.

When we examined how the most highly enriched GO terms in the epileptogenic zone
were expressed in the PIZ across the 3-, 7-, and 14-day time-points (Figure 3C), we observed
that there were similar functional consequences between the ipsilateral and contralateral
regions 3 days after SE induction. We observed enrichment of GO terms associated with
cell signaling (e.g., intracellular signaling induction, regulation of signaling, regulation of
cell communication, regulation of molecular function, regulation of signal transduction)
and cell migration and motility (e.g., cell migration, biological adhesion, regulation of
cell migration, regulation of cell motility, regulation of locomotion), most of which were
also represented 7 days after SE induction in the epileptogenic zone (Figure 3C). These
data suggest that early cell signaling processes may be critical for the initiation of pro-
epileptogenic remodeling in both the epileptogenic zone and peri-ictal zone. Days 3 and
7 in the peri-ictal zone and days 7 and 14 in the epileptogenic zone shared overlapping
enrichment of immune/inflammation-related GO terms (e.g., immune response, response
to cytokine, immune effector process, cellular response to cytokine stimulus). Our data
therefore suggest that inflammation may also play a role in epileptogenesis, with expression
of inflammation-related gene sets occurring in both the epileptogenic zone and peri-ictal
zone within the first 14 days after SE induction.

2.5. Wnt Pathway Gene Dysregulation during Early Epileptogenesis

Previous work has implicated the Wnt pathway as a factor in neuronal remodeling
in the dentate gyrus early after SE induction in this model [30]. Furthermore, Wnt path-
way gene changes have also been identified in adult and infantile generalized epilepsy
models [22,23,27], suggesting that Wnt pathway gene changes may be relevant in adult
focal epilepsy. Due to the representation of cell-signaling-associated GO terms during
early epileptogenesis, we specifically examined the transcriptional dysregulation of Wnt
pathway genes across the epileptogenic zone and peri-ictal zone.

The modified Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways presented
demonstrated Wnt signaling gene expression in the epileptogenic zone (Figure 4A) and
peri-ictal zone (Figure 4B) 3 days after SE induction; KEGG pathway representations
at other time-points are represented in Figure S3. Upregulation of canonical and non-
canonical Wnt signaling mediators and downstream effector genes was observed in both
the epileptogenic zone and peri-ictal zone 3 days after SE (Figure 4A,B). In the epileptogenic
zone, canonical pathway positive effector genes such as Fzd1 (fold change (FC) 2.99,
p-adjusted 3.38 × 10−8), LRP5 (FC 2.07, p-adjusted 2.20 × 10−4), Lef1 (FC 1.57, p-adjusted
8.35 × 10−3), and CTNNB1/beta-catenin (FC 1.23, p-adjusted 1.67 × 10−3) are noted
to be upregulated, and negative regulator genes such as GSK3b (FC − 1.46, p-adjusted
4.90 × 10−6), Btrc (encoding beta-TrCP [44,45]) (FC 1.42, p-adjusted 3.40 × 10−6), Wif1
(FC − 2.84, p-adjusted 2.13 × 10−3), DKK3 (FC − 2.77, p-adjusted 1.25 × 10−11), and APC
(FC − 1.34, p-adjusted 1.09 × 10−2) were downregulated, suggesting that the canonical
Wnt pathway may be activated 3 days after SE in the epileptogenic zone. Non-canonical



Int. J. Mol. Sci. 2022, 23, 12030 9 of 22

Wnt pathway genes were also dysregulated, with some genes upregulated, such as Wnt5b
(FC 2.41, p-adjusted 5.23 × 10−4), ROR2 (FC 4.60, p-adjusted 1.14 × 10−3), RhoA (FC 1.67,
p-adjusted 1.73 × 10−7), and Prickle3 (FC 1.99, p-adjusted 6.35 × 10−3), and other genes
were downregulated, such as Prickle2 (FC − 1.85, p-adjusted 2.51 × 10−6), JNK (FC − 1.76,
p-adjusted 1.35 × 10−6), PKC (FC − 2.43, p-adjusted 4.85 × 10−11), and CaMKII (FC − 2.82,
p-adjusted 3.49 × 10−7).
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Int. J. Mol. Sci. 2022, 23, 12030 10 of 22

Scale bar represents log2 fold-change in transcription; green color denotes upregulation and red
color denotes downregulation. Modified KEGG Wnt signaling pathways for other time-points can be
found in Figure S3. Whole transcriptome volcano plots with Wnt signaling mediators individually
labeled in the EZ (C) 3 days, (D) 7 days, and (E) 14 days, and in the PIZ (F) 3 days, (G) 7 days, and
(H) 14 days after SE induction; dashed lines denote FDR < 0.01 and FC > ±1.5 (equivalent to log2
fold-change > ±0.585). Pink dots represent genes with FDR < 0.01, FC > ±1.5; orange dots represent
genes with FDR < 0.01, FC < ±1.5; green dots represent genes with FDR > 0.01, FC > ±1.5; gray dots
represent genes with FDR > 0.01, FC < ±1.5. Log2 fold-change values and adjusted p-values for these
Wnt genes can be found in Table S6.

Transcriptional dysregulation of these Wnt pathway genes was followed across the
epileptogenic zone (Figure 4C–E) and peri-ictal zone (Figure 4F–H) at each time-point, 3 days,
7 days, and 14 days after SE (Figure 4B–G). Canonical Wnt gene dysregulation was most
highly represented in the epileptogenic zone 3 days and 7 days after SE (Figure 4A,C,D).
Non-canonical genes were also dysregulated in the epileptogenic zone 3 days and 7 days after
SE, with fewer genes significantly altered in expression (fold-change FC > ±1.5, false discovery
rate (FDR) < 0.01) than in the canonical Wnt pathway (Figure 4A,C,D). Frizzled receptor genes
were upregulated in the epileptogenic zone 3 days and 7 days after SE (Figure 4C,D). In
the peri-ictal zone, fewer canonical and non-canonical Wnt genes were dysregulated 3 days
after SE than in the epileptogenic zone; none were represented 7 days after SE (Figure 4F,G).
Wnt pathway gene differential expression was reduced in both regions 14 days after SE
(Figure 4E,H). As Wnt gene dysregulation appeared to reduce progressively over the first
14 days after SE, these data suggest that the first 7 days after SE may represent the therapeutic
window for potential Wnt-modulation-based interventions. Differential expression of these
genes over time in both the epileptogenic zone and peri-ictal zone is listed with respective
log2 fold-change and adjusted p-values in Table S6.

2.6. Activated-Beta-Catenin Was Upregulated Early after SE Induction in the Epileptogenic and
Peri-Ictal Zones

Our transcriptomic analysis suggests that canonical Wnt pathway expression is in-
creased 3 days and 7 days after SE induction in the epileptogenic zone, and in the peri-ictal
zone, 3 days after SE. In order to determine whether the transcriptional changes we
observed in the Wnt pathway reflect changes in molecular signaling during epileptogene-
sis, we evaluated the expression of the active form of beta-catenin, the central signaling
molecule in the canonical Wnt pathway [33]. We evaluated activated beta-catenin expres-
sion through immunohistochemistry in the dentate gyrus 3 days, 7 days, and 14 days after
SE induction (Figure 5). As expected, granule cell dispersion was evident in the epilepto-
genic zone 7 and 14 days after SE, with loss of doublecortin (DCX)-positive dentate granule
cells (Figure 5C,D) [11,46,47]. We observed expression of active beta-catenin 3 days after
SE induction both in the peri-ictal zone (Figure 5F) and the epileptogenic zone, especially
in the subgranular zone and hilus (Figure 5B). Interestingly, active beta-catenin expres-
sion diminished at later time-points (Figure 5C,D,G,H), consistent with both our KEGG
pathway data (Figure 4A,B) and individual gene expression transcriptional data (Table S6).
Quantification of cell-specific expression 3 days after kainate injection demonstrated that
67.4 ± 9.8% of subgranular zone GFAP-positive glial cells and 27.8 ± 7.0% of DCX-positive
dentate granule cells co-localized with active beta-catenin in the EZ, and 62.4 ± 11.2% and
27.2 ± 5.1%, respectively, in the PIZ (Figure S4). These results validate our finding of early
canonical Wnt activation, as identified in the transcriptomic data.
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Figure 5. Immunohistochemical evidence for canonical Wnt activation in the hippocampus. Im-
munofluorescent images demonstrating active beta-catenin (ABC—a marker of canonical Wnt path-
way activation) and doublecortin (DCX—a marker of immature dentate granule cells) in (A–D) the
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unchanged, data not shown), and in kainate-injected mice (B,F) 3 days, (C,G) 7 days, and (D,H)
14 days after SE. Scale bar 100 µm.

3. Discussion
3.1. Transcriptomic Data Implicated a Role for Wnt Pathway Dysregulation in the Seizure Network
in Early Epileptogenesis

There is increasing interest in understanding the molecular pathways underpinning
pathological remodeling in epileptogenesis. Clinical epilepsy is characterized by the onset
of spontaneous recurrent seizures, which often occur in a delayed fashion after exposure to a
specific risk factor, such as febrile seizure, infection, tumor, and trauma [6–8]. Unfortunately,
there are currently no clinical treatments that can be applied to prevent the development
of epilepsy after exposure to a known risk factor. Insights into the pathways responsible
will be critical for understanding the underlying disease mechanisms and generating novel
therapeutic strategies to prevent epileptogenesis.

In the intrahippocampal kainate model of mTLE, the induction of status epilepticus by
the injection of intrahippocampal kainate is followed by a latent period prior to the onset
of spontaneous recurrent seizures 14 days after injection [14–16]. This represents a latent
period during which epileptogenesis is believed to occur. Importantly, this latent period
is recapitulated in clinical epilepsy. We therefore focused our investigation on this critical
period, as the molecular processes that occur may be responsible for epileptogenesis and
may represent novel therapeutic targets for seizure prevention. Our choice of time-points
has been informed by prior studies. Hansen et al. (2014) performed RNA sequencing of the
whole hippocampus using the systemic pilocarpine mouse model of generalized temporal
lobe epilepsy [25]. Time-points were selected across various periods of epilepsy, with 12 h
representing acute SE, 10 days considered the latent period, and 6 weeks representing
chronic epilepsy. As might be expected, the investigators found that the three time-points
differed in transcriptomic profile as they represent different phases of pre-clinical model
epilepsy development. Interestingly, they found increased similarity between the 12 h
acute SE and 6-week chronic phase, which the authors conclude may have been due to ictal
activation-related changes, with the 10-day time-point representing a unique phase specific
to epileptogenesis. These insights corroborate our choice of time-points within the latent
epileptogenic period [16,25,48].

We focused our study on the hippocampal dentate gyrus as it undergoes extensive
remodeling in epileptogenesis and is believed to be responsible for the development of
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spontaneous recurrent seizures in mTLE [10,11,13,43,49]. The dentate gyrus has been the
focus of other studies, however, using systemic chemoconvulsant/generalized epilepsy
model systems [22,23,26]. Uniquely, our use of a focal pre-clinical model of mTLE and
transcriptomic examination of the bilateral dentate gyri allows for investigation of different
regions of the seizure network, including the epileptogenic zone and peri-ictal zone, as
it has been shown previously that both the ipsilateral and contralateral hippocampi un-
dergo pathological remodeling events [30] and generate independent seizures [41]. Our
study therefore uniquely provides insights into their relative contributions to epileptoge-
nesis. This may enhance clinical translation, as there is increasing awareness of the role
of the seizure network in human clinical epilepsy, with network nodes being targeted
therapeutically and being believed to be responsible for seizure recurrence after epilepsy
surgery [19–21,50].

Our data interestingly demonstrated shared patterns of transcriptomic dysregulation
in the epileptogenic zone and the peri-ictal zone during the first week of epileptogenesis.
These included enrichment of cell signaling, motility, and proliferation functional categories,
as might be expected given the pathological remodeling of dentate granule cell neurons
observed in the dentate gyrus during epileptogenesis. Interestingly these processes declined
within 14 days of SE induction in both the epileptogenic zone (EZ) and peri-ictal zone
(PIZ). Since extensive remodeling is observed in the epileptogenic zone and peri-ictal
zone 2 weeks after seizure induction [30], it is possible that these early transcriptional
changes may contribute to epileptogenic remodeling. Our finding that both the ipsilateral
EZ and contralateral PIZ demonstrate shared transcriptional events corroborates with
the description of the contralateral hippocampus as part of the seizure network as the
contralateral hippocampus undergoes pathological remodeling and generates seizures after
ipsilateral kainate injection [28,30,41]. These data, in conjunction with previously published
findings, also have implications for the use of the contralateral hippocampus for baseline
control measurements.

Our investigation of serial time-points highlights the dynamic nature of transcriptional
dysregulation events after seizure induction. Our data demonstrate that cell-signaling
events and Wnt signaling were increased 3 days after seizure induction and returned to
baseline within 7 days. Moreover, by contrast, inflammation in the EZ was most apparent
7–14 days after seizure induction. If these processes are to be targeted for epilepsy treatment,
accurate timing may be critical. Furthermore, sampling outside of this period may not
capture these early gene changes. Indeed, in our data, immune processes followed a
different time-course in the epileptogenic zone and peri-ictal zone. In the epileptogenic
zone, immune representation was delayed, beginning 7 days after SE, and was sustained to
14 days after SE. Conversely, in the peri-ictal zone, immune processes were represented
3 days and 7 days after SE and were no longer represented 14 days after SE. These findings
also suggest that inflammation may play a role in altering the neuronal phenotype and
warrant further investigation in future studies.

In our previous work, we investigated the role of the Wnt pathway in epileptoge-
nesis utilizing this model, finding that specific Wnt pathway ligands were differentially
expressed in the epileptogenic zone and peri-ictal zone at a single time-point 3 days after
SE induction [30]. Data from our current study corroborate our previous findings, with
upregulation of Wnt5b in the epileptogenic zone, Wnt7b upregulation across both the
epileptogenic zone and peri-ictal zone, and Wnt9a downregulation across both the epilep-
togenic zone and peri-ictal zone, providing evidence for the robustness of the model. The
whole transcriptome data in the current study builds on our previous work and suggests
that canonical Wnt signaling mediators are upregulated in the epileptogenic zone during
epileptogenesis, either in a causative capacity or reactive to SE. We also observed expression
of active beta-catenin protein by immunofluorescence in the epileptogenic zone and peri-
ictal zone 3 days after SE induction; while this correlated with our gene expression data
for beta-catenin in the epileptogenic zone, it did not in the peri-ictal zone. However, beta-
catenin is regulated both by expression and also by phosphorylation status and degradation
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by GSK3b [33]; therefore, transcription level of beta-catenin alone may not fully reflect sig-
naling activity and activity of downstream genes. Direct assessment for active beta-catenin
can provide a more accurate picture, as demonstrated in our immunohistochemistry and
KEGG pathway data.

Differential gene expression in the Wnt pathway has been described in other animal
pre-clinical epilepsy models, corroborating our findings. Canto et al. (2021) investigated
transcriptomic and proteomic changes 15 days after SE, during the epileptogenic period,
using the rat systemic pilocarpine bilateral temporal lobe epilepsy model; tissues were
separated into dorsal and ventral dentate gyrus and CA3 sub-regions. The investigators
observed a decrease in neuronal markers and increased microglial markers in the DG and
CA3 sub-regions, and specifically implicated NMDA excitotoxicity, calcium/calmodulin-
dependent protein kinase (CaMK), and LRRK2/Wnt signaling [22]. Interestingly, this study
reported increased expression of CaMKs and LRRK2, which we observed in our data, as
well as specific enrichment of the pathway “adult neurogenesis in the subventricular zone”
in the dentate gyrus, which they concluded to be mediated by LRRK2, Wnt, and CDK5.
LRRK2 is a Wnt signaling scaffold protein that has been implicated in the pathogenesis of
Parkinson’s disease [51] and mediates canonical Wnt signaling [52].

Other Wnt-related processes were also upregulated in the DG, including nuclear factor
kappa b (NFKB) and transforming growth factor-beta (TGF-beta) signaling. TGF-beta sig-
naling has been observed after neurological injury and has been shown to modulate the ex-
tracellular matrix, specifically affecting peri-neuronal nets surrounding inhibitory neurons;
TGF-beta has therefore been mechanistically linked to post-traumatic epilepsy [53]. Sup-
porting this hypothesis, blockade of TGF-beta signaling by losartan prevented seizures in
an albumin-induced epilepsy model [54]. Serum albumin release into the brain after blood–
brain barrier disruption has been specifically implicated in upregulating TGF-beta signaling
and is associated with astrocyte and microglial activation as well as a pro-inflammatory
response including NFKB activation [55]. Indeed, given the relationship between inflam-
mation and NFKB signaling [56], NFKB has also been implicated in regulating seizure
threshold [57] and may potentiate neuronal death in temporal lobe epilepsy [58,59]. Addi-
tional pathways may also, therefore, contribute to the development of epilepsy.

Given the variability in pre-clinical epilepsy models, Dingledine et al. (2017) utilized
a number of rat pre-clinical generalized epilepsy models, including systemic pilocarpine,
systemic kainite, and electrical kindling models, and extracted the mid-layer of the right
dentate gyrus for RNA sequencing. Of the 72 dysregulated genes common to all models,
19 genes were related to Wnt signaling. These genes were ABCD2 [60], C1s [61], CBFB [62],
CRIM1 [63], Ext1 [64], FAM129B [65], FAT1 [66], GDF10 [67], GPC3 [68], KHDRBS3 [69],
KLF15 [70], Lox [71], MMP9 [72], NTF3 [73], SS18 [74], SSBP3 [75], TRH [76], Wls [77], and
ZMIZ1 [78]. Of these genes, 17 are represented in our transcriptomic data, highlighting
the overlap in molecular signaling identified in their study and ours. The authors did not,
however, specifically implicate the Wnt pathway. Their methods investigated the mid-layer
of the dentate granule cell layer by laser microdissection. While specific for the dentate,
this method excluded the region adjacent to the hilus containing immature dentate granule
cells, which are known to undergo remodeling during epileptogenesis [12,30,79]. Our
histological examination demonstrated that, within the dentate gyrus, active beta-catenin
(a marker of canonical Wnt signaling activation) was predominantly expressed in this
region adjacent to the subgranular zone and less so in the mid-dentate gyrus. This provides
some suggestion as to why Wnt signaling may have been less represented in their study
overall. Interestingly, we observed active beta-catenin staining in subgranular zone glial
cells and immature dentate granule cells, suggesting that in early epileptogenesis, canonical
Wnt signaling is increased over baseline levels [37,38], an observation also made in other
studies [27,29,80]. This suggests that canonical Wnt signaling may contribute to aberrant
development of dentate granule cells during epileptogenesis.

Work by Theilhaber et al. (2013) also implicated Wnt signaling in pre-clinical epilep-
togenesis. Using a neonatal rat pup hypoxia model of generalized epilepsy, the whole



Int. J. Mol. Sci. 2022, 23, 12030 14 of 22

hippocampus and cortex were analyzed by RNA sequencing; the investigators observed
increased expression of canonical Wnt signaling molecule genes such as beta-catenin, LRP6,
and Dvl3, as well as inhibitors such as GSK3b, sFRP2, and Wif1. Notably, in this model, hip-
pocampal cell death is not observed after hypoxic seizure, which differs from kainate-based
models [81,82]. Nonetheless, the findings of Wnt dysregulation across numerous different
pre-clinical epilepsy models potentially suggest that the Wnt pathway may be relevant in
the pathogenesis of epilepsy. Indeed, the Wnt pathway has been implicated experimentally
in several rat epilepsy models. Using a systemic pilocarpine model, mossy fiber sprouting
into the CA3 region of the hippocampus correlated with N-cadherin and beta-catenin
expression, suggesting that the canonical Wnt signaling plays a role in pathological axonal
sprouting and path-finding in epilepsy [39]. Similarly, using an electroconvulsive epilepsy
model, increased expression of Wnt2 and beta-catenin was observed in the hippocampal
subgranular zone during the first 48 h after seizure induction, supporting our observation
that canonical Wnt signaling is upregulated in early epileptogenesis [80]. In a systemic
kainate rat epilepsy model, seizure induction was associated with a reduction in canonical
Wnt signaling mediators Wnt1, beta-catenin, Dvl1, and phospho-GSK3b (inactive Wnt
inhibitor) 72 h after injection; anti-epileptic drug treatment (carbamazepine) increased
expression of these canonical Wnt signaling mediators and was associated with reduced
neuronal death, as well as reduced glutamate excitotoxicity, implicating canonical Wnt
signaling as a potential neuroprotective signaling pathway [31]. Supporting a neuroprotec-
tive role for canonical Wnt signaling, in a chronic systemic pilocarpine rat epilepsy model,
epileptic animals were found to have reduced synaptic spine density in the dentate gyrus
and CA1 regions of the hippocampus, as well as long-term potentiation at CA1 Schaffer
collaterals, which was associated with reductions in canonical Wnt signaling; intermittent
hypobaric hypoxia rescued these deficits in a canonical-Wnt-signaling-dependent manner
as DKK1 infusion (canonical Wnt inhibitor) blocked its therapeutic effect [32]. Compet-
ing with these observations, however, is the finding that HBP1 knockout mice (a known
repressor of Wnt signaling [83]) developed spontaneous seizures, which the investiga-
tors attributed to increased Wnt and mTor signaling within the first 5 days after systemic
chemoconvulsant injection [29].

As a result, the specific role of Wnt pathway dysregulation in epileptogenesis remains
to be fully elucidated. Given the complexity of the signaling pathways, including mixed
changes in expression of the non-canonical pathways and inhibitor molecules evidenced in
our data, it is possible that the role of Wnt pathway dysregulation in epileptogenesis may be
temporally defined, as it is during hippocampal neurogenesis [84]. Furthermore, different
Wnt pathways and signaling mediators may play different roles in the formation of the
epileptogenic zone and peri-ictal zone. Indeed, Wnt signaling has been reported as both
protective and deleterious in rat generalized epilepsy models; the effect of network/region-
specific changes remain to be fully elucidated [29,31,32,39,80].

3.2. Study Limitations

There are limitations of our study that ought to be considered in interpretation of the
data. The pre-clinical focus uniquely allows access to mammalian hippocampal tissues
at early timepoints during epileptogenesis, which cannot be routinely accessed in human
epilepsy patients as time to presentation for epilepsy surgery can be many years from
first presentation [85]. Variation in pre-clinical models and their concordance with clinical
epilepsy must therefore be considered; the presence of pathological changes in the dentate
gyrus of epileptic mice and humans is now well documented, with shared histological
features such as granule cell dispersion, hippocampal sclerosis, aberrant migration, and
dendrite formation [10,12,13,86–90]. These lend biological credibility to pre-clinical animal
models; however, human studies are still needed to validate pre-clinical findings and
generate hypotheses for development of novel therapeutics targeting epileptogenesis.
Human tissue studies have been reported, and though interpretation of findings is limited
by the use of cadaveric and allogenous tumor-associated tissues as controls, Wnt pathway
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genes such as casein kinase have been observed in human mTLE [24,91]. Attempting to
increase the fidelity of pre-clinical models to human clinical epilepsy is therefore of value
to improve translation. Our utilization of a focal model of mesial temporal lobe epilepsy as
a model for human mTLE aims to address this; however, the use of kainate injection may
not accurately recapitulate the typical etiology in humans. Nonetheless, insights can be
made into the epileptogenic process.

Given the role of the dentate gyrus in epileptogenesis, our study focused on micro-
dissected dentate gyrus tissue, as described previously [30], as opposed to laser microdis-
section studies that focus on specific sub-regions of the dentate gyrus [23], and largely
excluded immature dentate granule cells, the principal cell type aberrant in pre-clinical
TLE [12,79]. While the dissected tissue does include the hilus region, the whole dentate
is sampled and thereby includes immature and mature neurons as well as associated
non-neuronal cell types, thereby reflecting the overall signaling environment in the den-
tate gyrus. Another limitation of our study, therefore, is that in using bulk RNA-seq for
transcriptomic analysis, we cannot uncover cell-type-specific contributions. The specific
contributions of individual cell types to the signaling environment will require further
cell-specific studies.

4. Materials and Methods
4.1. Animal Husbandry and Experimental Design

Experiments were performed using adult wild-type C57Bl6/J mice (Jax #000664) of
8–10 weeks of age. Mice were housed in group cages with a maximum of 5 animals per cage,
with free access to food and water ad libitum, according to local IACUC guidelines. All
animal procedures were performed in accordance with the Indiana University animal care
committee’s regulations. For these experiments, mice received either unilateral intrahip-
pocampal saline (control) or unilateral intrahippocampal kainate by stereotactic injection.
Brains were extracted 3 days, 7 days, and 14 days after intrahippocampal injection, and
dentate gyri were anatomically dissected from both hemispheres for RNA sequencing. Each
of the 6 groups included 4 animals, 2 male and 2 female. Samples were analyzed separately
and not pooled; our use of 4 independent animals for each group meets or exceeds sample
numbers described in other studies [25,27,92].

4.2. Intrahippocampal Kainate-Induced Status Epilepticus

Mice were induced and maintained under anesthesia with isoflurane by spontaneous
respiration. The head was secured with ear bars in a stereotactic apparatus (Stoelting,
Wood Dale, IL, USA), the head was shaved, and the scalp was sterilized with alternating
ethanol and betadine. A single midline incision was made, and stereotactic coordinates
were obtained relative to bregma. A single burr hole was placed at ML + 1.8, AP − 2.1,
and the debris was cleared with sterile saline injection. The injection needle (Hamilton,
Reno, NV, USA) was slowly advanced to DV -1.9 from the skull. A total of 85 nl of sterile
normal saline or kainate (18.7 nM in normal saline, MilliporeSigma, Burlington, MA, USA)
was delivered over 1 min using the Quintessential Stereotactic Injector (Stoelting, Wood
Dale, IL, USA); the needle was retained in position for 2 min to prevent reflux prior to slow
removal. The skin was closed using VetBond dermal glue (3M, Saint Paul, MN, USA), and
the animal was recovered in a warmed chamber. Seizures were scored for 2 h after injection
by modified Racine scale [93]; stages 1 and 2—freezing, head nodding, mastication; stage
3—forelimb clonus; stage 4—rearing; stage 5—rearing and falling; stage 6—“popcorn”-
type seizure. Induction of status epilepticus (SE) is well described after intrahippocampal
kainate injection; therefore, seizure induction was confirmed behaviorally without the
use of EEG, as described previously [11,40,79,94–96]. Only mice that underwent at least
one observed Racine 3–6 seizure were included in the epilepsy group; all animals that
received kainate incurred a Racine 3–6 seizure within the 2 h observation period, and no
saline-injected mice demonstrated behavioral seizure activity. Mice received food saturated
with pediatric Tylenol (3.2 mg/mL) for 24 h after surgery for analgesia, as required by
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local IACUC guidelines, and soft food daily until tissue extraction. Tylenol is not an anti-
inflammatory drug [97,98], and non-steroidal anti-inflammatory drugs (NSAIDs) were
not administered.

4.3. RNA Extraction and Library Preparation

Brains were extracted 3 days, 7 days, and 14 days after intrahippocampal injection.
The dentate gyri were anatomically microdissected in an RNAse-free environment. The
ipsilateral and contralateral dentate gyri were isolated separately and hemisected into
dorsal and ventral parts as described previously [30]; dorsal dentate gyri were used for
transcriptomic analysis. The ipsilateral dentate gyrus has been shown to undergo exten-
sive neuronal loss, gliosis, and remodeling of immature dentate granule cells [43,47,99];
the contralateral dentate gyrus also undergoes remodeling and generates independent
seizures [30,41]. Therefore, as published previously [30], the dorsal ipsilateral dentate gyrus
tissue is denoted to represent the epileptogenic zone (EZ), synonymous with the ictal zone,
and the dorsal contralateral dentate gyrus tissue is denoted to represent the peri-ictal zone
(PIZ). Tissues were preserved in RNALater (AM7020, Invitrogen, Waltham, MA, USA) for
24 h at 4 ◦C, mechanically macerated (Kimble-Chase, Vineland, NJ, USA), and stored at
−80 ◦C until all tissues were collected. RNA extraction was performed for all samples si-
multaneously, utilizing high-throughput automation. Samples were prepared for extraction
using the standard protocol for lipid-rich samples described in the QIAsymphony RNA
Handbook (November 2020 edition). Tissue disruption and homogenization was carried
out using a Qiagen Tissuelyser II. RNA extraction was performed using a QIAsymphony
SP (protocol: RNA_CT_800_V7, kit: QIAsymphony RNA Kit (192), catalog no. 931636). In
brief, RNA was separated from lysates through binding to magnetic particles, DNA was
removed by RNase-free Dnase treatment, and RNA was eluted into 100 µL of RNase-free
water and analyzed using an Agilent 4200 TapeStation. All samples received RNA integrity
scores over 7.5. Poly-A selected libraries were prepared with the Illumina TruSeq Stranded
mRNA Library Preparation Kit protocol (catalog no. 20020595). The libraries were analyzed
by Agilent 4200 TapeStation, and pooled. The pooled libraries were loaded on a NextSeq
500 High Output v2.5 run with a 75-cycle sequencing module (catalog no. 20024906) to
generate paired-end reads. The demultiplexing of the reads was performed with bcl2fastq
version 2.20.0 (Illumina, San Diego, CA, USA).

4.4. RNA Sequencing and Bioinformatic Analysis

A total of 48 poly-A selected RNA-seq libraries were sequenced to an average depth of
27.8 million read pairs. On average, 24.5 million read pairs were mapped as properly paired
reads (88%) per sample. Of these 24.5 million read pairs, 21.2 million could be assigned
to known features (87%). NextSeq reads were trimmed using fastp (version 0.20.1) with
parameters “-l 17 –detect_adapter_for_pe -g -p” [100]. The resulting reads were mapped
against GRCm39 using HISAT2 (version 2.2.1) with parameters “–rna-strandness F” [101].
HISAT uses Bowtie2, which is based on the Burrows–Wheeler transform algorithm for
sequence alignment and allows for mapping across exon junctions [102]. Read counts
for each gene were created using featureCounts from the Subread package (version 1.6.4,
Bioconductor, Boston, MA, USA) with the parameters “-O -M –primary -p –largestOverlap
-s 2 -B” and Gencode M28 as the annotation [103,104]. Differential expression analysis
was performed using the DESeq2 package (version 1.32.0) in R/Bioconductor (R version
4.1.1, Bioconductor, Boston, MA, USA) [105]. Functional analysis was performed using The
Database for Annotation, Visualization and Integrated Discovery (DAVID) version2022q1
(FIS, Jacksonville, FL, USA) [106,107]. DAVID is an online functional annotation tool used
for gene enrichment analysis. Gene lists for each timepoint were selected using fold-change
(FC) > 1.5 and false discovery rate (FDR) < 0.01, then analyzed through DAVID web
services using custom perl scripts. Gene ontology (GO) terms (GOTERM_XX_FAT), Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways, and BioCarta Pathways were used
for the functional enrichment analysis [108–113]. KEGG and BioCarta are online databases
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of chemical and biological networks used to ascribe pathway enrichment in large datasets.
GO terms are formal representations of biological domains and functions. Genes with FDR
< 0.01 and FC < ±1.5 were also considered in data analysis, specifically when considering
overlapping gene expression groups in Figure 2 (labeled as Sig < 1.5 FC), in order to include
significant genes with less than ± 50% alteration in expression level that may nonetheless
be biologically significant.

4.5. Immuno-Histochemistry

Animals were transcardially perfused with saline and 4% paraformaldehyde (Sigma-
Aldrich, St. Louis, MI, USA) in 0.1 M PBS. Brains were extracted and placed in 4% PFA
for 24 h, then dehydrated in 30% sucrose prior to sectioning. Coronal sections of the brain
were obtained using a cryostat (Leica Microsystems, Wetzlar, Germany) at 40 µm slice
thickness. Slices were blocked and permeabilized in PBS containing 5% normal goat serum
(Cell Signaling, Danvers, MA, USA) and 0.4% Triton-R X-100 (Alfa Aesar, Haverhill, MA,
USA) for 1 h. Primary antibodies were applied at 1:500 overnight at 4 ◦C, and Alexa-Fluor-
conjugated secondary antibodies (Life Technologies, Carlsbad, CA, USA) were applied at
1:1000 overnight at 4 ◦C. DAPI was applied at 1:10,000 dilution for 45 min, and sections
were mounted with VectaShield HardSet (H-1400, Vector Laboratories, Newark, CA, USA).
Antibodies included activated beta-catenin (05-665, MilliporeSigma, Burlington, MA, USA)
and doublecortin (AB2253, MilliporeSigma). Images were obtained by confocal microscopy
(Olympus FV1000, 20×, 405 nm 5%, 473 nm 3%, 559 8%), and all images were acquired at
identical settings.

5. Conclusions

In conclusion, our study investigated transcriptomic changes across a focused period
during epileptogenesis, the latent period between status epilepticus and the development
of spontaneous recurrent seizures. We differentiated between different regions within the
seizure network, utilizing the intrahippocampal kainate model of focal mesial temporal
lobe epilepsy to examine the epileptogenic zone and the peri-ictal zone. We specifically
examined Wnt pathway dysregulation and found canonical Wnt pathway activation in the
epileptogenic zone and peri-ictal zone early in the latent period. Whether the canonical
Wnt pathway is acting in a causative or reactive manner remains to be determined in future
studies. Many questions remain: Can these pathways be modulated to alter the course
of epileptogenesis? Do various clinical presentations and pre-clinical models of epilepsy
share common signaling pathways? Is there re-emergence of various signaling pathways
during breakthrough clinical seizures or during recurrence after epilepsy surgery? Our
database can be interrogated to determine the involvement of other molecular pathways
in the formation of the seizure network. There remains a need for improved graphic
representation, data integration amongst studies, and defined epilepsy-specific gene-sets
for data analysis interpretation. With these, a more integrated view of epileptogenesis may
be achieved.
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