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Anticorrelations among brain areas observed in fMRI acquisitions under resting state are not endowed with a well-defined set of
characters. Some evidence points to a possible physiological role for them, and simulation models showed that it is appropriate
to explore such an issue. A large-scale brain representation was considered, implementing an agent-based brain-inspired model
(ABBM) incorporating the SER (susceptible-excited-refractory) cyclic mechanism of state change. The experimental data used
for validation included 30 selected functional images of healthy controls from the 1000 Functional Connectomes Classic
collection. To study how different fractions of positive and negative connectivities could modulate the model efficiency, the
correlation coefficient was systematically used to check the goodness-of-fit of empirical data by simulations under different
combinations of parameters. The results show that a small fraction of positive connectivity is necessary to match at best the
empirical data. Similarly, a goodness-of-fit improvement was observed upon addition of negative links to an initial pattern of
only-positive connections, indicating a significant information intrinsic to negative links. As a general conclusion,
anticorrelations showed that it is crucial to improve the performance of our simulation and, since these cannot be assimilated to
noise, should be always considered in order to refine any brain functional model.

1. Introduction

The not-well-defined nature of negative correlations stimu-
lated several authors to study the persistence of significant
negative correlations by means of fMRI-specific correction
methods and to propose a possible physiological role for
them [1–4]. In this regard, however, a clear mechanism about
how negative interactions are related to the positive ones is
not available as yet. A rewarding approach to the problem
would be the simulation of brain activity, which opens the
door to mechanistic models amenable to validation by
empirical data.

Different models have been proposed [5] to approximate
the collective activity of neurons such as the conductance-
based biophysical model [6–8] or the FitzHugh-Nagumo
model [9, 10], by the mean-field [11] or mass action [12]
formalisms. fMRI produces data at a mesoscopic level while
brain activities are inspected at a much larger scale than that
of single neurons. This implies that we have to imagine how

the behavior of single functional units, of major importance
for the current understanding of brain’s activities, may influ-
ence the observations at a higher hierarchical level [13].

In order to reproduce the brain resting state from fMRI
acquisitions, the long-range myelinated fiber connections
by diffusion imaging, or the folded cortical surface by high
resolution imaging [14–17], have been used as a background
for the interactions between brain areas. Such interactions
have been simulated using the Kuramoto model [18], the
Ising model [19], and some discrete-time dynamical models
[20, 21]. In the last case [20, 21], a stochastic cellular
automaton approach was used by two well-established brain
computational models, the susceptible-excited-refractory
(SER) [22] model and the FitzHugh-Nagumo model [9].

An alternative approach to the large-scale brain modeling
is to simulate the brain activity using the functional connec-
tivity map itself as a background. In such a context, Joyce
et al. [23] realized an agent-based brain-inspired model
(ABBM) using both positive and negative values of
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functional connectivity. In general, an agent-based model
(ABM) includes a set of agents whose reciprocal interactions
are defined by a set of rules depending upon the system at
hand. These models can exhibit emergent behavior as
described by Wolfram [24].

Here we develop a model using an ABMmodel and a bio-
logically plausible SER model, which should account for both
positive and negative interactions between large-scale brain
areas. Different levels of functional connectivity in the back-
ground modulate the goodness-of-fit of simulations, and we
focus, in particular, on the fraction of negative links to test
their role in the organization of structured networks.

2. Materials and Methods

2.1. Data Collection. The sample is composed of 30 selected
functional images of healthy controls from the Beijing Zang
dataset (180 subject) in the 1000 Functional Connectomes
Classic collection (http://fcon_1000.projects.nitrc.org/indi/
retro/BeijingEnhanced.html). Resting data were obtained
using a 3.0T Siemens scanner at the Imaging Center for
Brain Research, Beijing Normal University. For each subject,
a total of 240 volumes of EPI images were obtained axially
(repetition time, 2000ms; echo time, 30ms; slices, 33; thick-
ness, 3mm; gap, 0.6mm; field of view, 200× 200mm2;
resolution, 64× 64; flip angle, 90°). For the anatomical
images, a T1-weighted sagittal three-dimensional magnetiza-
tion prepared rapid gradient echo (MPRAGE) sequence was
acquired, covering the entire brain: 128 slices, TR=2530ms,
TE=3.39ms, slice thickness = 1.33mm, flip angle = 7°, inver-
sion time= 1100ms, FOV=256× 256mm, and in-plane
resolution= 256× 192.

2.2. Data Preprocessing. The first 10 scans of each subject
were removed, and the remaining functional images were
analyzed according to the procedures fully described else-
where [25]. The SPM8 (Statistical Parametric Mapping)
(Wellcome Department of Cognitive Neurology, London,
UK) toolbox and the Functional Connectivity (CONN)
toolbox were used in the preprocessing of data on a
MATLAB R2010b platform.

The images from each subject were divided into 105 ROIs
without brainstem and cerebellum (see Figure 1) through the
MRI Atlas of the Human Brain, Harvard Medical School
[26], and from each ROI, the time series was extracted. An
average correlation matrix for each subject was calculated
for all possible couples of the 105 ROIs considering both
correlation signs and was used as an (individual) connectivity
matrix. Thus, the global, mean matrix to be used as a back-
ground for the brain simulation was reckoned according to
the following overall procedure:

(1) For each subject, the activation time series of 105
ROIs extracted from 240 functional images (see
Data Collection) were coupled and correlated in
all possible combinations, producing an individual
connectivity matrix. Then, a global average con-
cerning the whole group of subjects is obtained

by averaging the 30 individual matrices, as schema-
tized in Figure 2(a).

(2) For both positive and negative interactions, in the
above average matrix, a series of 20 binary and thre-
sholded matrices are constructed, taking fractions of
the highest absolute correlation values in the range
from 0% to 100% at 5% steps: this represents the net-
work density (cost). Thus, 20 binary matrices of
increasing cost are derived, having an unbalanced
amount of total positive and negative links (total pos-
itive correlations 70%, total negative correlations
30%). We call this type of threshold absolute-values-
proportional-threshold. A graphical overview of the
procedure is reported in Figure 2(b).

(3) A further set of binary and thresholded matrices is
calculated in order to distinguish the most signifi-
cant correlation value for each sign: 15 matrices
from the 0%–70% cost (maximum fraction of
positive links), containing only positive values,
and 7 matrices from the 0%–30% cost (maximum
fraction of negative links), containing only negative
values. Thus, we have different amounts of positive
and negative correlations for the same fraction of
total links. We call this type of threshold signed-
values-proportional-threshold.

(4) Finally, all the combinations of positive and negative
matrices for different thresholds are joined, produc-
ing 7∗ 15 = 105 matrices having different amounts
of positive and negative correlations.

2.3. Simulations by an ABBM Model. An agent-based
approach was used in a large-scale brain network simulation
able to account for the independent behavior of each brain
region as well as for the interactions between different
regions. Each node in the network represents, according to
the susceptible-excited-refractory (SER) formalism [20, 21],
a stylized biological neuron cycling in discrete time steps
through the following three states: (S), a susceptible state in
which the node can be excited with a transition probability
called sop; (E), an excited state after which the node enters
in a refractory state; and (R), a refractory state from which
the node can be regenerated (S) stochastically with a recovery
probability called nep.

The interactions among the nodes (agents) characterized
by the (SER) states are defined through positive and negative
links in a binary and thresholded matrix derived from empir-
ical data and simulated through an agent-based brain-
inspired model (ABBM) of the type suggested by Joyce [23].

In particular, each node is characterized by three
variables (φs, φp, and φn) and two parameters (πp and πn)
(see Figure 3), which are defined as follows.

(i) φs = 1 if the node is in the S (susceptible) state,
namely, prone to change (otherwise, φs = 0).

(ii) φp and φn are calculated from the average contribu-
tion of positive and negative neighbors, respectively;
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each neighbor contributes to the average if in the
active (on) state.

(iii) πn and πp are threshold parameters above which the
average of negative and positive neighbors (φp and
φn) are set to 1 (otherwise, are set to 0).

Taking into account the previous variables, we character-
ized an agent by three binary variables (φs, φp, and φn),
namely, by one of 23 possible combinations (111, 110, 101,
011, 100, 001, 010, 000). Simulations were carried out con-
currently for all agents and for each step, and in contrast with
Morris and Lecar [6], we designed some a priori rules to
decide whether or not a brain region could become active
at a given simulation step (Table 1).

Various combinations of the sop, nep (connectivity inde-
pendent) and πp, πn (connectivity dependent) couples of
parameters have been checked in the above-described model
in order to simulate at best the whole empirical, positive con-
nectivity matrix by a given fraction of positive and negative
links. In particular, if negative links are associated with noise,
the simulation quality should decrease when their fractional
amount increases and, inversely, increase in the opposite,
symmetrical condition.

Simulations were repeated 100 times for each different
combination of parameters, assigning to nodes a random
series of 0 and 1 and a random SER state. Notice that in the
case of the πp, πn couple, the same value for each member
of the couple was used. Each simulation included 200 time
steps and produced a matrix of 105 columns (brain regions)

and 200 rows (total time steps); see Figure 4. The Pearson
correlation (r) carried out on the columns of such a matrix
produced a 105 × 105 simulated connectivity matrix. The
Pearson correlation between each of the 100 simulated matri-
ces and the one derived from experimental data produced
100 correlations values for each combination of parameters
which were averaged and the average value assigned to that
parameter combination. It is worthy to underline that the
Pearson correlation (r) was used throughout this work as
an index of the agreement (goodness-of-fit) between simula-
tions and empirical data.

The whole procedure included three series of simula-
tions: The first two series aimed to optimize the parameter
values; in the third series, the importance of different
fractions of negative and positive connectivities in the repro-
duction of the positive connectivity itself was estimated. In
particular, the following should be noted:

(i) In the first series of simulations, each of the 20
matrices characterized by an absolute-values-pro-
portional-threshold (from 0% to 100% of absolute
value threshold with 5% steps) was used as a back-
ground, as well as large variations of the other
parameters (sop and nep=0.25–0.50–0.75; πp/πn
from 0.1 to 1, step 0.1).

(ii) The second series of simulations aimed to improve
the parameter precision within the range identified
in the previous set of simulations.
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Figure 1: Brain parcellation. Location of the brain regions considered in the extraction of the BOLD signal and visible in a sagittal brain
representation. For the complete list of the 105 regions considered in this work, taken from FSL Harvard-Oxford maximum likelihood
cortical and subcortical atlas, see the Appendix.
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(iii) Finally, the third series of simulations was carried
out upon considering, within the 105 matrices
characterized by any possible combination of 15
positive and 7 negative signed-values-proportional-
thresholds, the one showing the best simulation per-
formance, namely, the best reproduction of the orig-
inal connectivity pattern.

The significance of the fitting performance was assessed
as follows: in order to check the effect of positive and negative
connectivities, 15 and 7 different fractions of positive and
negative links, respectively, were used and subjected to a
Friedman test. Then, a post hoc analysis using the ranks of
the goodness-of-fit was performed by the Tukey-Kramer test.

3. Results

3.1. Exploring the Parameters’ Space of the Brain Model. In
the first exploratory phase of the model validation, the

goodness-of-fit between empirical data and simulations, as
monitored by the Pearson (r), was studied over a wide range
of connectivity-independent (sop, nep) and connectivity-
dependent (πp, πn) parameters, namely, 0.25–0.50–0.75 and
from 0.1 to 1 at 0.1 steps, respectively.

In Figure 5(a), the πp and πn values associated with the
goodness-of-fit peaks show a trend increasing with both
sop and nep values. Since high sop and nep values point
to anexcitable system, endowedwithhighprobabilityof spon-
taneous activation and low probability of resting in the refrac-
tory state, the fitting appears improved by a relatively
conservative threshold for πp and πn, namely, πp and
πn = 0.1, under the condition of low excitability (sop and nep
being equal to 0.25).

The above considerations suggest to focus on the lower
range of parameters, namely, sop and nep from 0.025 to
0.25 (step= 0.025) and πp and πn from 0.025 to 0.1
(step =0.025). Thus, the matching between simulation and

240 functional images, including 105
ROIs(⁎) (sampling = 2 sec.)

(⁎)The activity trend (time series) of all ROIs was coupled among each other in any possible combination and correlated.
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Figure 2: Working out the connectivity matrices. (a) Refers to point (1) of the procedure detailed in the text. The fractions in (b) concern the
highest absolute correlation values of the threshold in the corresponding matrices (see point (2) in the text for details).
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empirical data could be improved by reaching the maximum
value of 0.50 at the following connectivity-independent
parameter values: sop=0.025; nep=0.175, 0.20, 0.225.

As shown in Figure 5(b), the highest goodness-of-fit is
reached at πp =πn = 0.1 and using a small connectivity den-
sity (15%). At increasing πp and πn values, the trend changes
gradually until at πp =πn = 0.1 an absolute minimum in the
lower range of connectivity density can be observed, as well
as a maximum in the higher range of connectivity density.

Notice that sop and nep values are locked, respectively, at
0.025 and 0.225, and that changing the nep parameter does
not alter the observed trends.

This behavior can be ascribed to the different amounts of
positive and negative links using the absolute-values-propor-
tional-threshold: The number of negative links is lower
(almost nonsignificant for the lower level of general connec-
tivity cost), and a more conservative threshold πn would fur-
ther decrease the associated information. Thus, with a more
labile threshold of πn, more information from the negative
connectivities can be extracted, which increases their modu-
lation role. Due to the unbalanced distribution of positive
and negative links, however, the simulation reaches a

Table 1: Transition rules adopted in the model.

φs φp φn State transition

0 0 0 E→R; R→ S

0 1 1 E→R; R→ S

0 0 1 E→R; R→ S

0 1 0 E→R; R→ S

1 0 0 S→E; S→ S

1 1 1 S→E; S→ S

1 0 1 S→ S

1 1 0 S→E

The fourth column reports the type of transition at a given step (i→ i + 1)
depending upon the combinations of the φ values in columns 1–3.
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Figure 4: Example of a simulated time series. The time series
corresponds to the condition included in Figure 5(b) (blue curve),
namely, to the following parameter values: sop= 0.225, nep= 0.025,
πp =πn = 0.1, and absolute-values-proportional-threshold = 100%.
The spots indicate an excited state (E) for each of the 105 brain
regions in each step of the simulation.
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Figure 3: State balance of an agent (A) surrounded by six neighbors. (a) Activity levels of an agent in the SER (susceptible-excited-refractory)
states: top and bottom pictures refer to a cycling scheme and to the classical action potential scheme, respectively. In parentheses are the 0/1
activity level of the state. sop and nep indicate the probability of getting the S→E and R→ S state change, respectively (see the text for further
details). (b) The state of the central node (A) in the next time step depends upon local (endogenous) and global (exogenous) factors. Three out
of the four positively linked neighbors are active (1), so the average activity (3/4) exceeds the φp = 0.5 threshold. This is also the case for the
both active (1) and negatively linked neighbors, since φn = 0.5 also.
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maximum value of goodness-of-fit only in the higher range
of connectivity density (where a significant amount of nega-
tive connectivity is also increasing). At the same time, a lower
threshold πp can introduce random positive connections,
decreasing the goodness-of-fit in the lower range of the
connectivity density.

3.2. Modeling Positive and Negative Links. In this phase, the
task is to define the dependence of the fitting procedure on
the relative amounts of positive and negative links, using
the parameter values identified in the previous steps, namely,
sop=0.025, nep=0.225, and πp =πn = 0.1. In Figure 6, the
trend of correlation values at increasing positive connectivity
fractions is characterized by a peak within the middle values
of positive cost. Moreover, adding negative links at this stage
further improves the fitting up to a maximum (0.57) at the
higher values of negative network density.

A nonparametric statistical analysis (Friedman test)
reported in Figure 7 confirms a significant effect (p < 0 0001,
χ2 = 97.3, df = 1) of positive links on the fitting performance
of themodel.Theeffectofnegative links,however, isnot signif-
icant (p = 0 55,χ2 = 4.9, df = 6). The significant post hoc differ-
ence in the positive links is apparent in the range from 5% to
30% of positive network density (Figure 7(a)). The same
nonparametric test for negative links in the range of higher
values of goodness-of-fit is reported in Figure 7(c) where 6 dif-
ferent levels of positive cost (from 5% to 30%) are considered,
while the levels ofnegative links remain7. In contrastwithpre-
vious results, under these conditions, a significant effect for the

negative links (see Figure 7(c) p < 0 0001, χ2 = 37.1, df = 6)
emerges. This indicates a possible interaction between dif-
ferent amounts of positive and negative links, so that
only in the range of 5%–30% positive cost is there an
increasing trend of goodness-of-fit upon addition of neg-
ative links (25%–30%). Under other conditions, only ran-
dom fluctuations occur, probably caused by increasing
variability levels.

0.5

0.4

0.3

0.2

0.1

0

0.1

0

0.2

0.3

0.4

0.5

0.6

0.7
0.10 0.30.2

Negative cost (network density)

Po
sit

iv
e c

os
t (

ne
tw

or
k 

de
ns

ity
)

Figure 6: Fitting empirical data by combinations of positive
and negative cost. The false-color scale visualizes the Pearson
correlation between experiments and simulations obtained using
the fractions of negative and positive links indicated in the
horizontal and vertical axes, respectively.

0.3

0.25

0.2

0.15

Pe
ar

so
n 

(r
)

0.1

0.05

0

0.1 0.2 0.3
�휋p; �휋n

0.4 0.5

sop = 0.25  = 0.50  = 0.75

0.6 0.7

0.3

0.25

0.2

0.15

0.1

0.05

0

0.1 0.2 0.3

(a)

(b)

0.4 0.5 0.6 0.7

0.3

0.25

0.2

0.15

0.1

0.05

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7
�휋p; �휋n �휋p; �휋n

0.6

0.5

0.4

0.3

0.2

0.05 0.20 0.35 0.50
Cost (network density)

0.65 0.80 0.95

sop sop

Figure 5: Fitting empirical data by the ABM model: dependence upon model’s parameters. (a) Connectivity-dependent parameters (πp and
πn) on the x-axis. Blue, green, and red lines indicate, respectively, nep values of 0.25, 0.50, and 0.75. (b) Cost (network density) parameter on
the x-axis; sop and nep fixed at 0.025 and 0.225, respectively. Blue, green, red, and light-blue lines indicate, respectively, 0.1, 0.075, 0.05, and
0.025 values of πp and πn. Notice that a peak of the goodness-of-fit appears at πp, πn = 0.1, in the lower range only of the network density. In all
cases, the Pearson correlation (r) is used as a goodness-of-fit index.
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3.3. Modeling Individual Variability. Given the noticeable
level of individual variability in brain functional connectivity,
the model has been individually applied on a small sample of
subjects. For each of eight randomly chosen subjects, the sim-
ulations were repeated in the positive cost range indicated as
significant by our previous work (positive cost: 5%–30%),
and keeping the same values of the sop, nep and πp/πn
parameters. The results, shown in Figure 8, are in line with
the previous observation of a small effect of anticorrelation
variability in the model.

4. Discussion

4.1. General Issues about Our Brain Model. In this work, we
propose a simple agent-based model able to simulate brain
functional connectivity. Our results stress once again on
how a set of simple rules between interacting agents can show
a complex dynamics [24]. A peculiar feature of our work is
the input used for the simulation: instead of the structural
connectivity [14–17], we used the functional connectivity
itself as a background and did that to underpin the role of a
given amount of signed connectivity. In particular, we

focused on the relative fraction of positive and negative links,
to characterize the whole brain functions.

Our simulations exploit the appealing features of an
ABBM-based strategy already used for the same purpose
among several possible alternatives [23]. This approach
showed different patterns of dynamics, but only some partic-
ular combinations of parameters produced nontrivial results
[23] and, in addition, often lack coherent biological interpre-
tation. We initially used some parameter values directly
inspired to a biological system, and the results were unsatis-
factory. Thus, we shifted to a SER model with the agents’
dynamics defined by the sop and nep parameters. In this
way, the brain regions show a stochastic oscillation in line
with more realistic models [14, 15], and the connectivity rep-
resents a modulation among brain oscillating dynamics. As
the first result of the adopted modeling strategy, the
characterization of the system at hand was significantly
improved.

4.2. Modeling Brain Activity Using Different Amounts of
Positive and Negative Links. Different trends were found by
our simulations depending upon the relative amount of pos-
itive and negative connectivities: In the former case (positive
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connectivities), the goodness-of-fit shows a peak at lower cost
values, and a decreasing trend follows; in the latter (negative
connectivities), the goodness-of-fit shows an increasing trend
with a maximum at the maximal fraction of negative links.

As for positive connectivities, the statistical analysis
showed clear differences between the random model (no
connections among nodes, and all brain regions showing
random oscillations) in the range between 5% and 30%. This
result is in line with previous findings pointing to a small-
world topology in that range [27]: In the same range, the
brain positive networks show an efficient balance between
the segregation-integration properties, and brain regions
can be clustered in different subnetworks without losing the
possible information transfer among each other [28]. As for
negative links, the goodness-of-fit shows a trend different
from that of the random model only if the positive links are
in the range 5%–30%: otherwise, the trend is lost. In this
frame, negative links showed importance in order to improve
the fitting and prove their nonartifactual nature, while a
higher density of positive links may indicate a significant
noise source.

The results gathered by our model on single subjects are
in agreement with those on the average matrix, indicating a
good reproduction of individual variability. As a more gen-
eral validation of our study, the same analysis carried out
over another set of 30 randomly chosen individuals from
the same database (Beijing Zang dataset, the 1000 Functional
Connectomes Classic collection) produced pretty similar
results (not shown).

An objective interpretation of our observations should
take into account several factors: (1) More positive than neg-
ative modulations could be favoured by our model; (2) the
anticorrelations have a more variable dynamics, more depen-
dent on experimental conditions. From this point of view,
such interactions are characteristic of the resting state itself
and have a more local than global meaning; (3) our

preprocessing method (aCompCorr [29]) used for the fMRI
analysis could be not good enough to characterize negative
networks. The first issue can be tested using different types
of simulations in order to work out models for negative con-
nections. In this regard, we would need a more accurate
large-scale brain modeling able to account for this type of
brain interaction. As for the second issue, different evidence
is prone to assess the local versus global nature of anticor-
relations. As a matter of fact, two evidence pointed out
these different hypotheses: Gopinath et al. [30] found
intracluster anticorrelations in several task-positive net-
works (TPNs) during a resting state, indicating a possible
state-dependent activity. However, more recently [4], we
found a low-connection probability between the most con-
nected nodes using anticorrelated functional networks (the
highly connected nodes tend to avoid connections among
each other, indicating a global network organization).

About the last issue, however, there is no univocal consen-
sus, and alternative methods have been proposed [2], among
which the aCompCorr appeared as a most reliable one [1].

A direct comparison of aCompCorr with GSR [31],
however, did not allow us to provide a final answer to
the general problem, which remains, then, still open to
further exploration.

5. Conclusion

All in all, the target of the present work was not to develop an
alternative to the already used large-scale brain models but to
underpin the importance of different connectivity types for
the brain system. To this aim, we introduced a simple model
able to fit empirical data, provided a method to identify the
random (or noisy) functional connections, and found some
evidence about the importance of anticorrelations for the
optimal characterization of connectivity patterns.

It seems fair to conclude that anticorrelations (1)
should be distinguished from noise and (2) may improve
the characterization of positive connectivity and contribute
to the refinement of the global brain functional system in
fMRI acquisitions.

Appendix

Anatomical Labels of Brain Regions

(1) FP r (frontal pole right)

(2) FP l (frontal pole left)

(3) IC r (insular cortex right)

(4) IC l (insular cortex left)

(5) SFG r (superior frontal gyrus right)

(6) SFG l (superior frontal gyrus left)

(7) MidFG r (middle frontal gyrus right)

(8) MidFG l (middle frontal gyrus left)

(9) IFG tri r (inferior frontal gyrus, pars triangularis
right)
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Figure 8: Modeling individual patterns. The goodness-of-fit values
as a function of increasing amount of negative links (average of the
fraction of positive links between 5% and 30%) concern 8 randomly
chosen subjects. For the average values of the whole group of
subjects, see Figure 7(c).
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(10) IFG tri l (inferior frontal gyrus, pars triangularis
left)

(11) IFG oper r (inferior frontal gyrus, pars opercularis
right)

(12) IFG oper l (inferior frontal gyrus, pars opercularis
left)

(13) PreCG r (precentral gyrus right)

(14) PreCG l (precentral gyrus left)

(15) TP r (temporal pole right)

(16) TP l (temporal pole left)

(17) aSTG r (superior temporal gyrus, anterior division
right)

(18) aSTG l (superior temporal gyrus, anterior
division left)

(19) pSTG r (superior temporal gyrus, posterior
division right)

(20) pSTG l (superior temporal gyrus, posterior
division left)

(21) aMTG r (middle temporal gyrus, anterior division
right)

(22) aMTG l (middle temporal gyrus, anterior divi-
sion left)

(23) pMTG r (middle temporal gyrus, posterior
division right)

(24) pMTG l (middle temporal gyrus, posterior
division left)

(25) toMTG r (middle temporal gyrus, temporooccipi-
tal part right)

(26) toMTG l (middle temporal gyrus, temporooccipi-
tal part left)

(27) aITG r (inferior temporal gyrus, anterior division
right)

(28) aITG l (inferior temporal gyrus, anterior division
left)

(29) pITG r (inferior temporal gyrus, posterior division
right)

(30) pITG l (inferior temporal gyrus, posterior division
left)

(31) toITG r (inferior temporal gyrus, temporooccipital
part right)

(32) toITG l (inferior temporal gyrus, temporooccipital
part left)

(33) PostCG r (postcentral gyrus right)

(34) PostCG l (postcentral gyrus left)

(35) SPL r (superior parietal lobule right)

(36) SPL l (superior parietal lobule left)

(37) aSMG r (supramarginal gyrus, anterior division
right)

(38) aSMG l (supramarginal gyrus, anterior division
left)

(39) pSMG r (supramarginal gyrus, posterior division
right)

(40) pSMG l (supramarginal gyrus, posterior division
left)

(41) AG r (angular gyrus right)

(42) AG l (angular gyrus left)

(43) sLOC r (lateral occipital cortex, superior division

right)

(44) sLOC l (lateral occipital cortex, superior division

left)

(45) iLOC r (lateral occipital cortex, inferior division
right)

(46) iLOC l (lateral occipital cortex, inferior division

left)

(47) ICC r (intracalcarine cortex right)

(48) ICC l (intracalcarine cortex left)

(49) MedFC (frontal medial cortex)

(50) SMA r (juxtapositional lobule cortex—formerly
supplementary motor cortex right)

(51) SMA L (juxtapositional lobule cortex—formerly
supplementary motor cortex left)

(52) SubCalC (subcallosal cortex)

(53) PaCiG r (paracingulate gyrus right)

(54) PaCiG l (paracingulate gyrus left)

(55) AC (cingulate gyrus, anterior division)

(56) PC (cingulate gyrus, posterior division)

(57) Precuneus (precuneus cortex)

(58) Cuneal r (cuneal cortex right)

(59) Cuneal l (cuneal cortex left)

(60) FOrb r (frontal orbital cortex right)

(61) FOrb l (frontal orbital cortex left)

(62) aPaHC r (parahippocampal gyrus, anterior
division right)

(63) aPaHC l (parahippocampal gyrus, anterior
division left)

(64) pPaHC r (parahippocampal gyrus, posterior
division right)
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(65) pPaHC l (parahippocampal gyrus, posterior

division left)

(66) LG r (lingual gyrus right)

(67) LG l (lingual gyrus left)

(68) aTFusC r (temporal fusiform cortex, anterior

division right)

(69) aTFusC l (temporal fusiform cortex, anterior
division left)

(70) pTFusC r (temporal fusiform cortex, posterior

division right)

(71) pTFusC l (temporal fusiform cortex, posterior

division left)

(72) TOFusCr (temporal occipital fusiformcortex right)

(73) TOFusC l (temporal occipital fusiform cortex left)

(74) OFusG r (occipital fusiform gyrus right)

(75) OFusG l (occipital fusiform gyrus left)

(76) FO r (frontal operculum cortex right)

(77) FO l (frontal operculum cortex left)

(78) CO r (central opercular cortex right)

(79) CO l (central opercular cortex left)

(80) PO r (parietal operculum cortex right)

(81) PO l (parietal operculum cortex left)

(82) PP r (planum polare right)

(83) PP l (planum polare left)

(84) HG r (Heschl’s gyrus right)

(85) HG l (Heschl’s gyrus left)

(86) PT r (planum temporale right)

(87) PT l (planum temporale left)

(88) SCC r (supracalcarine cortex right)

(89) SCC l (supracalcarine cortex left)

(90) OP r (occipital pole right)

(91) OP l (occipital pole left)

(92) Thalamus r

(93) Thalamus l

(94) Caudate r

(95) Caudate l

(96) Putamen r

(97) Putamen l

(98) Pallidum r

(99) Pallidum l

(100) Hippocampus r

(101) Hippocampus l

(102) Amygdala r

(103) Amygdala l

(104) Accumbens r

(105) Accumbens l
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