
American Journal of Epidemiology
© The Author(s) 2021. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of
Public Health. This is an Open Access article distributed under the terms of the Creative Commons Attribution
Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0), which permits non-commercial re-use,
distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use,
please contact journalpermissions@oup.com.

Vol. 191, No. 1
https://doi.org/10.1093/aje/kwab235

Advance Access publication:
September 22, 2021

Practice of Epidemiology

Implementation of an Alternative Method for Assessing Competing Risks:
Restricted Mean Time Lost

Hongji Wu, Hao Yuan, Zijing Yang, Yawen Hou, and Zheng Chen∗
∗ Correspondence to Prof. Zheng Chen, Department of Biostatistics, School of Public Health (Guangdong Provincial Key
Laboratory of Tropical Disease Research), Southern Medical University, No. 1023, South Shatai Road, Guangzhou 510515,
China (e-mail: zheng-chen@hotmail.com).

Initially submitted January 28, 2021; accepted for publication September 14, 2021.

In clinical and epidemiologic studies, hazard ratios are often applied to compare treatment effects between 2
groups for survival data. For competing-risks data, the corresponding quantities of interest are cause-specific
hazard ratios and subdistribution hazard ratios. However, they both have some limitations related to model
assumptions and clinical interpretation. Therefore, we recommend restricted mean time lost (RMTL) as an
alternative measure that is easy to interpret in a competing-risks framework. Based on the difference in RMTL
(RMTLd), we propose a new estimator, hypothetical test, and sample-size formula. Simulation results show that
estimation of the RMTLd is accurate and that the RMTLd test has robust statistical performance (both type I error
and statistical power). The results of 3 example analyses also verify the performance of the RMTLd test. From
the perspectives of clinical interpretation, application conditions, and statistical performance, we recommend that
the RMTLd be reported along with the hazard ratio in analyses of competing-risks data and that the RMTLd even
be regarded as the primary outcome when the proportional hazards assumption fails.

competing risks; hazard ratio; hypothesis testing; restricted mean time lost; sample size; survival analysis

Abbreviations: cHR, cause-specific hazard ratio; CI, confidence interval; CIF, cumulative incidence function; COVID-19, coro-
navirus disease 2019; CSH, cause-specific hazard function; HR, hazard ratio; RMTL, restricted mean time lost; RMTLd, difference
in restricted mean time lost; SDH, subdistribution hazard function; sHR, subdistribution hazard ratio.

Clinical trials of treatments and preventative measures for
coronavirus disease 2019 (COVID-19) have received global
attention. In published and ongoing randomized trials for
COVID-19 treatments, the time-to-event endpoint of inter-
est, such as the time to clinical improvement (or recovery),
has been the most commonly used primary outcome (1).
The corresponding method used has been the Kaplan-Meier
method, and the effect size has been the hazard ratio (HR).
However, patients may die of COVID-19 before improve-
ment (or recovery), so competing-risks problems occur (2);
that is, the occurrence of the event of interest (improvement
or recovery) may be precluded by a competing event (death).
At this time, the commonly applied single-event survival
analysis techniques may lead to biased results, with subjects
who experience a competing event being censored (3, 4).
Therefore, competing-risks analysis should be applied in
such situations.

There are 2 widely used approaches to competing-risks
analysis based on hazards (5). One is based on a cause-
specific hazard function (CSH), which refers to the instan-
taneous rate of occurrence of a specific event among the
individuals who are still event-free; its corresponding sta-
tistical test is the log-rank test, and the statistical measure—
that is, the cause-specific hazard ratio (cHR)—can be esti-
mated through a cause-specific Cox regression model. The
other approach is the subdistribution hazard function (SDH),
which refers to the instantaneous rate of the event of interest
in subjects who have not yet experienced the given event.
The statistical test is the Gray test, and the estimated effect
of one group relative to another—that is, the subdistribution
hazard ratio (sHR)—can be calculated using the Fine-Gray
model. Meanwhile, the clinical or epidemiologic interests
in this approach are characterized by the cumulative inci-
dence function (CIF), the probability of one event of interest

163 Am J Epidemiol. 2022;191(1):163–172

https://doi.org/10.1093/aje/kwab235


164 Wu et al.

occurring by a particular time in the presence of other events,
which reflects the risk of the cause of interest without ig-
noring the presence of other competing events.

In the clinical analysis of competing-risks data, the esti-
mations and statistical tests based on the cHR and sHR still
have some limitations. First, the HR (both the cHR and the
sHR) should be described as a relative rate, not as a relative
risk (6). Without the assumption of independence of com-
peting events, the cHR cannot be linked to the comparison
of CIFs for an event between 2 groups (7), which means that
cHR > 1 does not necessarily imply CIF1 > CIF0; that is,
even if the hazard due to a main cause in a control group is
always higher than that in a treatment group, the risk of the
main cause in the control group is not necessarily always
higher than that in the treated group. Although the sHR can
affect the comparison of CIFs—that is, sHR > 1 can indicate
that CIF1 > CIF0 and vice versa—it reflects the relative
change in the instantaneous rates of occurrence of a given
type of event in subjects who have not yet experienced that
event between 2 groups. Researchers may find it difficult to
interpret the results when individuals who had a competing
event are retained in the risk set (8). Second, both the cause-
specific Cox model and the Fine-Gray model depend on an
assumption of the proportionality of the CSH and the SDH;
as a consequence, researchers in many published survival
analyses report only a single cHR or sHR, which is an
average of specific HRs at different time points. However,
if the above assumption is violated, a single HR is difficult
to interpret because the true HR varies over time. Third,
because of the semiparametric nature of the 2 regression
models, the “relative” hazard rates cHR and sHR are not
interchangeable with the “absolute” hazard rate without
baseline hazards, which may make their clinical interpreta-
tion difficult to conceptualize.

Considering the above limitations, especially the problem
of clinical interpretation, some researchers recommended
an alternative statistic (9–11): restricted mean time lost
(RMTL). RMTL can be estimated as the area under the CIF
curve up to a specified time point and interpreted as the
mean amount of time lost due to a specific cause during a
predefined time window. Thus, compared with that of HRs,
the clinical interpretation of the RMTL, which is based on
a time scale, can easily be understood by physicians and
patients (12–14). The difference in RMTL (RMTLd) is used
to qualify the treatment effect and is also directly associated
with comparisons of CIFs.

Although Anderson (9) and Zhao et al. (10) introduced
the concept of RMTL, neither of them discussed the cor-
responding estimation and hypothetical test based on the
RMTLd. Lyu et al. (11) presented a statistical inference
framework and sample-size estimator based on the RMTLd,
but it seemed to be relatively conservative on the basis of
simulations. Therefore, in this article, we introduce a new
RMTLd-based statistical inference framework and sample-
size formula and demonstrate its performance through sim-
ulation and illustrative examples.

METHODS

Without loss of generality, only 1 event of interest ( j = 1)
and 1 competing event ( j = 2) are assumed. T is de-

fined as the observed time (time to event or censoring
time).

Estimation of the RMTLd

The nonparametric estimation of the CIF is

F̂j(t) =
∑

ti

(
dij/Y(ti)

)
Ŝ(ti−1),

where ti is the ith ordered event time, dij is the number of
events of cause j that occur at time ti, Y(ti) is the number of
subjects at risk at time ti, and S(t) is the event-free survival
probability. Tau (τ) is the chosen time point, and τ ≤ T. For
simplicity, we denote the RMTL of the event of interest to
be μ = ∫ τ

0F1(t)dt; then, the nonparametric estimation of μ
is given by

μ̂ =
∫ τ

0
F̂1(t)dt =

∑
ti≤τ

(di1/Y(ti)) Ŝ(ti−1) (ti − ti−1) ,

which can be interpreted as the mean amount of time lost
due to a specific cause within the τ year window. The
variance in μ̂ can be estimated based on the derivation of
the martingale approximation (15) (for the detailed process,
see Web Appendix 1, available at https://doi.org/10.1093/
aje/kwab235):

Var
(
μ̂

)

=
∫ τ

0

{
(τ − t)

1 − F̂2(t)

Y(t)
− 1

Y(t)

∫ τ

t
F̂1(u)du

}2
Y(t)

Ŝ(t)
dF̂1(t)

+
∫ τ

0

{
(τ − t)

F̂1(t)

Y(t)
− 1

Y(t)

∫ τ

t
F̂1(u)du

}2
Y(t)

Ŝ(t)
dF̂2(t).

Let μk(τ) be the RMTL of the event of interest in group
k (k = 0, 1); then, μ̂k(τ) denotes the estimated RMTL, and
Var(μ̂k(τ)) corresponds to the variance in μ̂k(τ). Then, the
RMTLd between 2 groups is �̂ = μ̂1(τ) − μ̂0(τ), and
the corresponding variance is Var(�̂) = Var(μ̂1(τ)) +
Var(μ̂0(τ)). In large samples, the 100(1 − α)% confidence
interval (CI) of the RMTLd is estimated as

�̂ ± zα/2

√
Var

(
�̂

)
,

where zα is the upper 100α% quantile of the standard normal
distribution.

Hypothetical test

The null and alternative hypotheses of the RMTLd test are
H0:�=μ1(τ) − μ0(τ)=0 and H1:� = μ1(τ) − μ0(τ) �=0,
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Figure 1. Scenarios considered in a simulation study comparing the statistical performance of the Gray test and the RMTLd test. A) No
difference in the event of interest between groups; B) a proportional subdistribution hazard function with a small difference; C) a proportional
subdistribution hazard function with a large difference; D) an early difference; E) a late difference with a large difference; F) a late difference with
a small difference. RMTLd, difference in restricted mean time lost.

respectively. Under the null hypothesis H0, the RMTLd test
statistic can be computed as

Zd = �̂√
Var

(
�̂

) ,

which asymptotically follows a standard normal distribution.

Sample size

Suppose n0 and n1 are the required sample sizes in the
control group and the treatment group, respectively, and that
r = n1/n0 is the ratio of sample sizes. Assume we test the
null hypothesis with statistical power 1 − β at a 2-sided
significance level α. Under alternative hypothesis H1, we
then have

1 − β = �

⎧⎨
⎩

⎡
⎣ �√

σ2
0/n0 + σ2

1/n1

⎤
⎦ − z1−α/2

⎫⎬
⎭ .

Hence, the total sample size (for the detailed derivation,
see Web Appendix 2) is

n = (1 + r)
(
z1−β + z1−2/α

)2

�2/
(
σ2

0 + σ2
1r−1

) ,

zp = �−1(p) is the inverse standard normal distribution
function at probability p, and the population variance σ2

k of
group k can be estimated as σ̂2

k = n∗
kVar∗(μ̂k(τ)), where n∗

k
and Var∗(μ̂k(τ)) can be obtained through a pilot study or
previous study.

Simulation setup

In the simulation setup, we assessed the performance of
the estimation of the RMTLd, the RMTLd test, and the
RMTLd-based sample size under 6 different scenarios:
1) no difference between groups (Figure 1A); 2) a propor-
tional SDH with sHR ≈ 0.905 (Figure 1B); 3) a proportional
SDH with sHR ≈ 0.741 (Figure 1C); 4) an early difference
between groups (Figure 1D); 5) a late difference with curves
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Table 1. Estimation of the Difference in Restricted Mean Time Lost Under the Proportional Subdistribution Hazard Function

Scenario

Scenario A Scenario B Scenario C(n0, n1)a and
CR, %

Biasb

(×10−2)
RMSE RSEc Coveraged MRBb

(×10−2)
RMSE RSEc Coveraged MRBb

(×10−2)
RMSE RSEc Coveraged

(300, 300)

0 −0.0437 0.1289 1.0012 0.9503 0.2837 0.1324 0.9887 0.9441 −0.1210 0.1291 1.0023 0.9509

15 0.1275 0.1372 0.9945 0.9487 −0.2349 0.1378 1.0004 0.9526 0.0310 0.1365 0.9959 0.9469

30 −0.1657 0.1543 0.9819 0.9456 −1.4239 0.1543 0.9852 0.9471 −2.6107 0.1502 0.9927 0.9476

(500, 500)

0 −0.1462 0.1003 0.9977 0.9477 −0.2314 0.1018 0.9969 0.9469 −0.1333 0.1020 0.9837 0.9432

15 0.1584 0.1049 1.0080 0.9537 −0.2476 0.1064 1.0044 0.9519 −0.4303 0.1059 0.9954 0.9482

30 −0.0464 0.1180 0.9985 0.9503 −1.9034 0.1196 0.9894 0.9508 −2.0862 0.1186 0.9763 0.9462

(1,000, 1,000)

0 0.0463 0.0718 0.9865 0.9484 0.1519 0.0716 1.0029 0.9493 0.0659 0.0708 1.0030 0.9540

15 −0.0825 0.0744 1.0055 0.9499 −0.6177 0.0746 1.0140 0.9516 −0.4003 0.0738 1.0108 0.9491

30 0.1286 0.0850 0.9846 0.9449 −1.3734 0.0855 0.9820 0.9459 −1.7447 0.0827 0.9949 0.9470

(300, 500)

0 0.2184 0.1162 0.9943 0.9499 −0.4228 0.1164 1.0036 0.9501 −0.4984 0.1159 0.9989 0.9475

15 −0.0496 0.1229 0.9923 0.9472 −0.2165 0.1236 0.9952 0.9495 −0.1835 0.1220 0.9982 0.9490

30 0.4669 0.1366 0.9935 0.9477 −1.7534 0.1380 0.9861 0.9455 −2.4770 0.1376 0.9750 0.9439

(500, 1,000)

0 −0.0903 0.0861 1.0072 0.9505 0.0500 0.0866 1.0107 0.9503 0.2498 0.0872 0.9952 0.9451

15 −0.0614 0.0904 1.0133 0.9527 −0.4181 0.0931 0.9914 0.9493 −0.4221 0.0911 1.0038 0.9506

30 0.1896 0.1043 0.9799 0.9467 −1.7623 0.1029 0.9960 0.9480 −2.1686 0.1023 0.9897 0.9444

Abbreviations: CR, censoring rate, MRB, mean relative bias; RMSE, root mean squared error; RMTLd, difference in restricted mean time
lost; RSE, relative standard error.

a n0 and n1 are the required sample sizes in the control group and the treatment group, respectively.
b Mean bias relative to the true RMTLd. The true RMTLd’s under scenarios A–C were 0.00004, −0.3935, and − 0.5141 years during 4 years,

respectively.
c Average model standard error/empirical standard error.
d The reasonable coverage (0.9457, 0.9543) was based on (0.95 ± 1.96

√
0.95(1 − 0.95)/10, 000) (20).

separated at t = 1 year (Figure 1E); and 6) a late difference
with curves separated at t = 2 years (Figure 1F).

Let the type of interest and competing events be generated
through the binomial distributions B(N, p1) and B(N, 1−p1),
where N is defined as the sample size of each group and p1
is the maximum cumulative incidence of events of interest,
which is set to p1 = 0.7. The parameter settings of failure
time Tj ( j = 1, 2) correspond to the event of interest and
the competing event, respectively, under different situations
(shown in Web Table 1), and the censoring times of the 2
groups are based on the uniform distributions U(0, a) and
U(0, b), respectively. Next, define the observed time T =
min(Tj, C) and the event indicator δj = I(Tj > C). The
censoring rates are required to be similar between the 2
groups and can be set at approximately 0%, 15%, 30%, or
45% by changing the settings of a and b. For the sample
size, we consider both a balanced design (n0 = n1 = 300,
500, 1,000) and an unbalanced design (n0 = 300, n1 = 500;
n0 = 500, n1 = 1,000). For all scenarios, a nominal level
α = 0.05 is applied, and the specific time point τ is selected
as the minimum of the maximum follow-up time of the 2
groups (16). All simulations are performed using 10,000
replications.

To evaluate the performance of the RMTLd estimation,
we determined the true RMTLd at τ = 4 years with a total
sample size of n = 1,000,000 (n0 = n1 = 500,000) under the
different scenarios. The true RMTLd’s between groups for
the event of interest under the 6 scenarios shown in Figure 1
(scenarios A–F) are 0.00004, −0.3935, −0.5141, −0.2986,
−0.3517, and −0.1729 years, respectively, over a period of
4 years. Then, according to the above settings, we sampled
from this large sample to calculate the mean relative bias, the
root mean squared error, the relative standard error, and the
coverage of the RMTLd (17) to measure the performance of
the estimation of the RMTLd.

Meanwhile, we compared the type I error and statistical
power of the Gray test and proposed the RMTLd test to
evaluate the performance of the RMTLd test. To evaluate
the type I error rate, the CIFs of the events of interest and
competing events were assumed to be F1(t) = p1{1 −
exp(−t)} and F2(t) = (1−p1){1−exp(−t)}, respectively, so
the failure time in both groups was generated from Pr(Tj ≤
t|J = j) = Fj(t)/ Pr(J = j), given the event type J = j( j =
1, 2), as shown in Figure 1A.

To assess the statistical power, we considered several sit-
uations (Figures 1B–1F). In the first situation, the proportional
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Table 2. Estimation of the Difference in Restricted Mean Time Lost Under the Nonproportional Subdistribution Hazard Function

Scenario

Scenario D Scenario E Scenario F(n0, n1)a and
CR, %

MRBb

(×10−2)
RMSE RSEc Coveraged MRBb

(×10−2)
RMSE RSEc Coveraged MRBb

(×10−2)
RMSE RSEc Coveraged

(300, 300)

0 0.2004 0.1032 1.0206 0.9528 −0.4009 0.1062 1.0071 0.9523 −0.0479 0.1085 0.9898 0.9444

15 0.6546 0.1120 0.9962 0.9477 −0.2764 0.1119 0.9967 0.9487 0.7193 0.1112 1.0107 0.9512

30 0.2601 0.1182 1.0034 0.9512 −0.4848 0.1170 1.0055 0.9519 −0.4682 0.1182 1.0061 0.9486

(500, 500)

0 −0.2143 0.0818 0.9985 0.9493 0.0281 0.0835 0.9931 0.9485 0.1572 0.0836 0.9954 0.9488

15 0.6183 0.0861 1.0050 0.9517 −0.2761 0.0857 1.0089 0.9516 0.2146 0.0865 1.0068 0.9513

30 0.7100 0.0928 0.9910 0.9471 −0.0503 0.0912 0.9992 0.9499 0.6477 0.0930 0.9912 0.9479

(1,000, 1,000)

0 −0.0850 0.0576 1.0033 0.9511 −0.0996 0.0591 0.9915 0.9453 −0.0263 0.0588 1.0011 0.9502

15 0.0271 0.0610 1.0038 0.9527 −0.2364 0.0612 0.9999 0.9526 0.1664 0.0617 0.9985 0.9483

30 0.4661 0.0655 0.9927 0.9486 0.2138 0.0645 1.0000 0.9483 0.0847 0.0656 0.9946 0.9493

(300, 500)

0 −0.3262 0.0968 1.0032 0.9490 −0.0204 0.0953 0.9964 0.9480 0.3601 0.0959 0.9937 0.9492

15 −0.0674 0.1018 1.0084 0.9505 −0.5680 0.0988 1.0065 0.9521 0.0784 0.1001 0.9986 0.9502

30 −0.2966 0.1096 0.9932 0.9467 0.9197 0.1063 0.9905 0.9462 1.3494 0.1063 0.9980 0.9498

(500, 1,000)

0 0.0673 0.0737 0.9992 0.9510 0.1859 0.0705 1.0091 0.9498 −0.3422 0.0712 1.0010 0.9494

15 0.3837 0.0791 0.9824 0.9463 −0.5905 0.0751 0.9924 0.9489 0.5657 0.0749 0.9992 0.9490

30 0.4481 0.0822 1.0033 0.9487 0.2771 0.0787 1.0031 0.9507 0.4813 0.0793 1.0029 0.9518

Abbreviations: CR, censoring rate; MRB, mean relative bias; RMSE, root mean squared error; RMTLd, difference in restricted mean time
lost; RSE, relative standard error.

a n0 and n1 are the required sample sizes in the control group and the treatment group, respectively.
b Mean bias relative to the true RMTLd. The true RMTLd’s under scenarios D–F were −0.2986, −0.3517, and − 0.1729 years during 4 years,

respectively.
c Average model standard error/empirical standard error.
d The reasonable coverage (0.9457, 0.9543) was based on (0.95 ± 1.96

√
0.95(1 − 0.95)/10, 000) (20).

SDH assumption was met: Failure times were generated
from the CIFs (18) F1(t|Z) = 1 − [1− p1(1− e−t)]exp(θZ)

and F2(t|Z) = (1 − p1)
exp(θZ)(1 − e−t exp(θZ)), where Z

is the group indicator (Z = 0 and Z = 1 for the control
group and the treatment group, respectively). Meanwhile,
we considered 2 scenarios, sHR ≈ 0.905 and sHR ≈ 0.741,
corresponding to Figure 1B and Figure 1C, respectively.
In the second situation, the proportional SDH assumption
was violated: Both the early difference (Figure 1D) and
the late difference (Figures 1E and 1F) in the CIFs were
considered. The failure time was generated on the basis of
CIFs with piecewise Weibull distributions W(λ, κ) (where
λ and κ are the scale parameter and the shape parameter,
respectively): F1(t) = p1(1 − exp(−(t/λ)κ)) and F2(t) =
(1 − p1)(1 − exp(−(t/λ)κ)) (19). The specific parameter
settings of all scenarios are presented in Web Table 1.

To evaluate the performance of the proposed sample-size
estimation, we set α = 0.05 and β = 0.20 (the targeted
power was 80%) and generated the necessary parameters by
averaging over each simulation to calculate the RMTLd-
based sample sizes under different situations (Figures 1B–
1F). Next, we simulated the observed power of the Gray test
and the RMTLd test based on the calculated sample sizes
through 10,000 simulations.

RESULTS

Estimation of the RMTLd

The results for the performance criterion of the estimation
of the RMTLd are summarized in Table 1 and Table 2. Con-
sidering that the true RMTLd in scenario A is approximately
equal to 0, we replaced the mean relative bias with bias to
assess the performance (20). In summary, the estimation of
RMTLd has a small bias (or mean relative bias) under all
scenarios, and the root mean squared error decreases with
increasing sample size and decreasing censoring. Mean-
while, the relative standard error is approximately equal to
1, and the coverage falls within a reasonable range.

Hypothetical test

For each of the 6 hypothetical scenarios shown in Figure 1,
the type I error rate and statistical power results are summa-
rized in Table 3. The type I error rates in Table 3 show that
both the proposed RMTLd test and the Gray test have well-
controlled error rates. Under the proportional SDH assump-
tion (scenarios B and C), the RMTLd test has power similar
to that of the Gray test. In the early difference scenario
(scenario D), the RMTLd test provides significantly greater
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Table 3. Type I Error and Statistical Power of the Gray Test and the RMTLd Test in a Simulation of Statistical Performance

Scenario

Type I Errorb Statistical Power

Scenario A Scenario B Scenario C Scenario D Scenario E Scenario F
(n0, n1)a and

CR, %

Gray
Test

RMTLd
Test

Gray
Test

RMTLd
Test

Gray
Test

RMTLd
Test

Gray
Test

RMTLd
Test

Gray
Test

RMTLd
Test

Gray
Test

RMTLd
Test

(300, 300)

0 0.0497 0.0500 0.2343 0.2482 0.9468 0.9609 0.2236 0.6842 0.8706 0.9326 0.4714 0.4575

15 0.0538 0.0531 0.2413 0.2366 0.9528 0.9486 0.3770 0.6812 0.8698 0.9039 0.4207 0.4056

30 0.0501 0.0505 0.2226 0.2187 0.9412 0.9398 0.5604 0.6960 0.8487 0.8541 0.3487 0.3372

45 0.0506 0.0504 0.1954 0.1969 0.9065 0.9074 0.7910 0.8464 0.7376 0.7281 0.1892 0.1952

(500, 500)

0 0.0504 0.0500 0.3497 0.3700 0.9945 0.9965 0.3374 0.8340 0.9441 0.9931 0.6222 0.6807

15 0.0532 0.0525 0.3636 0.3472 0.9967 0.9961 0.5574 0.8344 0.9625 0.9870 0.5830 0.6224

30 0.0477 0.0487 0.3453 0.3381 0.9959 0.9952 0.7739 0.8507 0.9677 0.9776 0.4963 0.5293

45 0.0505 0.0510 0.3057 0.3039 0.9864 0.9867 0.9466 0.9674 0.9166 0.9218 0.2934 0.3249

(1,000, 1,000)

0 0.0490 0.0505 0.6009 0.6087 1.0000 1.0000 0.5820 0.9694 0.9775 1.0000 0.8172 0.9411

15 0.0474 0.0485 0.6185 0.5901 1.0000 1.0000 0.8459 0.9681 0.9922 0.9999 0.8221 0.9109

30 0.0542 0.0528 0.6036 0.5866 1.0000 1.0000 0.9690 0.9731 0.9991 0.9999 0.7786 0.8488

45 0.0477 0.0482 0.5353 0.5336 1.0000 1.0000 0.9989 0.9995 0.9972 0.9981 0.5136 0.5950

(300, 500)

0 0.0500 0.0513 0.2889 0.2957 0.9769 0.9837 0.2788 0.7277 0.8917 0.9697 0.5390 0.5509

15 0.0515 0.0518 0.2954 0.2823 0.9839 0.9820 0.4642 0.7295 0.9096 0.9521 0.4853 0.4811

30 0.0491 0.0523 0.2841 0.2715 0.9767 0.9753 0.6658 0.7444 0.9071 0.9171 0.3947 0.3963

45 0.0501 0.0524 0.2461 0.2390 0.9567 0.9539 0.8825 0.8982 0.8133 0.8150 0.2167 0.2345

(500, 1,000)

0 0.0511 0.0527 0.4577 0.4645 0.9996 0.9997 0.4374 0.8891 0.9373 0.9990 0.7010 0.8115

15 0.0469 0.0478 0.4684 0.4406 0.9997 0.9996 0.6877 0.8822 0.9733 0.9982 0.6841 0.7533

30 0.0526 0.0530 0.4517 0.4346 0.9995 0.9993 0.8794 0.9018 0.9904 0.9959 0.5912 0.6491

45 0.0516 0.0507 0.3901 0.3795 0.9990 0.9985 0.9838 0.9845 0.9647 0.9732 0.3430 0.4128

Abbreviations: CR, censoring rate; RMTLd, difference in restricted mean time lost.
a n0 and n1 are the required sample sizes in the control group and the treatment group, respectively.
b The reasonable range (0.0457, 0.0543) was based on the formula (0.05 ± 1.96

√
0.05(1 − 0.05)/10, 000) (26).

power than the Gray test. Meanwhile, as the censoring rate
increases, the power of the 2 tests increases. This tendency
may be interpreted as follows: Because of high censoring,
the number of patients in the later part of the CIF curve may
be small, resulting in increased variability in the shape of the
curve. The results for the late difference situations (scenarios
E and F) show that the power of the 2 tests increases as the
sample size increases and when the difference is larger and
that the RMTLd test provides higher (or much higher) values
than the Gray test. According to the above findings, the
RMTLd test has relatively robust performance in different
situations.

Sample size

For each scenario (Figures 1B–1F), 10,000 simulations
were performed to evaluate the observed power of the Gray
test and the RMTLd test under the RMTLd-based sample
size; the results are shown in Table 4. Under the proportional
subdistribution hazards scenarios (scenarios B and C), the
power of the RMTLd test and the Gray test is approximately
equal to the predefined level of 80%. In the early difference

scenario (scenario D), the power of the RMTLd test is
larger than the prespecified level, while that of the Gray test
is much lower than 80%. In the late difference scenarios
(scenarios E and F), the observed power of the RMTLd test is
close to 80% but that of the Gray test has an obvious decrease
with a smaller difference (scenario F).

In summary, the sample size based on the RMTLd can
obtain a nominal power of approximately 80%, except in
the early difference scenario. Therefore, the validity of the
RMTLd-based sample size should be acceptable.

Illustrative examples

Example 1. Data on 599 Chinese-American patients with
cervical cancer diagnosed between 1988 and 2008 were
obtained from the Surveillance, Epidemiology, and End
Results (SEER) database of the US National Cancer Institute
to assess the association between surgical factors and sur-
vival. In our analysis, death from cervical cancer was defined
as the event of interest, while death from other causes was
defined as a competing event (21, 22). The rate of the event
of interest in the nonsurgery group (n = 101) was 29.70%,
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Table 4. Observed Statistical Power of the Gray-Based and RMTLd-Based Sample-Size Formulas Based on the Same Sample Setting in a
Simulationa

Scenario

Scenario B Scenario C Scenario D Scenario E Scenario F
CR, %

No. Gray
Test

RMTLd
Test

No. Gray
Test

RMTLd
Test

No. Gray
Test

RMTLd
Test

No. Gray
Test

RMTLd
Test

No. Gray
Test

RMTLd
Test

0 3,180 0.7903 0.7885 370 0.7976 0.8380 1,074 0.3567 0.8453 400 0.7470 0.7966 1,308 0.7001 0.8009

15 3,258 0.8282 0.7958 376 0.8238 0.8226 1,060 0.5827 0.8472 438 0.7648 0.7808 1,444 0.7174 0.7898

30 3,348 0.8251 0.8102 372 0.7987 0.7943 980 0.7639 0.8477 496 0.7867 0.7778 1720 0.7114 0.7832

45 3,600 0.7818 0.7798 428 0.7825 0.7833 566 0.7667 0.8300 650 0.7650 0.7618 3,286 0.7134 0.8125

Abbreviations: CR, censoring rate; RMTLd, difference in restricted mean time lost.
a Sample sizes were calculated on the basis of the RMTLd test. The chosen time point τ was the shortest maximum follow-up time of the 2

groups, and the prespecified power was 80%.

while the rate was 5.82% in the surgery group (n = 498). The
corresponding censoring rates were 38.61% and 81.73%,
respectively. Figure 2A shows the CIF curve of the event of
interest, and Table 5 shows the statistical results of different
tests.

The CSH-based results suggested a positive association
between surgery and death from cervical cancer (cHR = 0.132,
95% CI: 0.079, 0.220), and the assumption of the proportion-
ality of the CSH was satisfied (P = 0.596). Meanwhile, the
SDH-based method showed a positive association between
surgery and the event of interest (sHR = 0.158, 95% CI:
0.095, 0.262). A test of the proportional SDH assumption
yielded a result of P = 0.230. Because of the semiparametric
nature of the regression model, neither the CSH nor the SDH
could be obtained in any group, resulting in empty cells in
Table 5.

Next, we let τ1 = 25.667 years, which corresponds to the
shortest maximum follow-up time between the 2 groups.
Table 5 shows that the RMTL of the nonsurgery group was
7.485 years, while that of the surgery group was 1.346
years. The results can be interpreted as follows: During

25.667 (τ1) years of follow-up, the mean years of life lost
due to death from cervical cancer among patients in the
nonsurgery and surgery groups was 7.485 years and 1.346
years, respectively. The RMTLd test results also favored
the surgery group (RMTLd = −6.139, 95% CI: −8.400,
−3.878), and the RMTLd of −6.139 years (the RMTL of
the surgery group minus the RMTL of the nonsurgery group)
indicated that the patients without surgery lost an additional
6.139 years of life due to cervical cancer within 25.667 (τ1)
years of follow-up. Thus, the RMTLd-based results provided
a more acceptable conception of the time scale.

Example 2. The cases of 2,279 patients with acute lym-
phocytic leukemia who received allogeneic bone transplants
from a human leukocyte antigen (HLA)-identical sibling
donor were recorded by the European Group for Blood and
Marrow Transplantation (23). We studied the association
between donor-recipient sex match and survival, so a total of
2,279 patients were grouped into sex-mismatched (n = 545)
and sex-matched (n = 1,734) groups. Death after transplan-
tation was documented as the event of interest, and relapse

Figure 2. Cumulative incidence function of the event of interest in example 1 (A) and example 2 (B). The restricted time point was chosen as
25.667 years in example 1 and 16.238 years in example 2.
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from transplantation was a competing event. The proportions
of the event of interest in the mismatched and matched
groups were 26.61% and 22.38%, and the censoring rates
were 56.88% and 61.48%, respectively.

The results based on the CSH showed no significant dif-
ference between the 2 groups (cHR = 0.828, 95% CI: 0.684,
1.002), and the proportional CSH assumption was violated
(P = 0.001). The result based on the SDH also indicated
no statistically significant difference (sHR = 0.835, 95%
CI: 0.692, 1.008), and the proportional SDH assumption
was not satisfied (P = 0.004). Regarding the above results,
the true cHR and sHR may vary with time rather than be
constant (cHR = 0.828 and sHR = 0.835), which makes
clinical interpretation difficult.

Unlike the above CSH-based and SDH-based tests, the
RMTLd test detected a difference between the 2 groups and
showed a positive association in the matched group over
τ2 = 16.238 years of follow-up (RMTLd = −1.023, 95%
CI: −1.755, −0.291), and the RMTLd indicated that the
sex-mismatched patients lost an additional 1.023 years of
life on average during the 16.238 years. This significant
result of the RMTL test was not unexpected, because this
example (Figure 2B) corresponds to simulation scenario F
(Figure 1F), and it demonstrated that the RMTLd test had
higher power than the Gray test, as shown in Table 3.

Example 3. Adaptive COVID-19 Treatment Trial 1 is a
placebo-controlled trial designed to assess remdesivir use in
patients hospitalized with COVID-19 (2, 24). The data were
reconstructed (for the detailed process, see Web Appendix
3) because the original data were not publicly available
(2); the event of interest was defined as recovery, and the
corresponding competing event was death. In the trial, 541
patients were assigned to the remdesivir group and 521
were assigned to the placebo group. The proportions of
recovered patients in the remdesivir and control groups were
70.98% and 63.92%, respectively, and the censoring rates
were 17.56% and 20.92%, respectively. Figure 3A shows the
CIF curve of recovery between groups.

The results based on the CSH and SDH (Table 5) showed
significant differences, and the proportional CSH assump-
tion was satisfied (P = 0.056), while the SDH assumption
was violated (P = 0.002). In regard to the RMTL, we note
that different from the event of interest in example 1 (in
which death from cervical cancer was a negative outcome),
the event of interest in this example (i.e., recovery) was a
positive outcome. Thus, a larger RMTL indicated better ther-
apy. From Table 5, the RMTLs of the placebo and remdesivir
groups were 10.859 days and 13.286 days, respectively,
which can be interpreted to indicate that over the 28 (τ3)
days of follow-up, the patients in the placebo group had
10.859 postrecovery days, on average, while the patients
in the remdesivir group had 13.286 days. In other words,
the patients in the placebo and remdesivir groups had been
recovered for an average of 10.859 days and 13.286 days by
day 28, respectively. The RMTLd of 2.427 days (95% CI:
1.242, 3.612) favored the remdesivir group and showed that
the patients in the remdesivir group recovered 2.427 days
earlier than those in the placebo group during the 28-day
period.
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Figure 3. Cumulative incidence function of the event of interest in example 3 (A) and sample sizes based on the subdistribution hazard ratio
(sHR) and the difference in restricted mean time lost (RMTLd) (B). The restricted time points were chosen from 14–28 days when calculating
RMTLd-based sample sizes.

Meanwhile, because of the clinical significance of COVID-
19 research, we set τ3 equal to 28 days and reestimated that
the sample sizes based on the sHR (25) and the RMTLd
were 658 and 517, respectively. Moreover, based on different
time points, we calculated the RMTLd-based sample sizes.
As Figure 3B shows, the RMTLd-based sample sizes were
always smaller than the sHR-based sample sizes.

DISCUSSION

The presence of competing risks makes treatment effect
assessment in clinical trials and epidemiologic studies with
time-to-event endpoints more cumbersome. The commonly
reported quantitative measures are the cHR and sHR, where
the former might be used to study the etiology of diseases
from biological mechanisms and the latter might be more
suitable for predicting an individual’s risk of a specific
outcome (7).

However, based on our examples, there are still some
limitations to the above 2 indicators based on the HR. First,
as a “relative” measure, HRs (both the cHR and the sHR)
cannot be easily understood when a baseline hazard (e.g.,
of a control group) is lacking, even though the proportional
CSH and SDH assumptions were satisfied in example 1.
Moreover, the cHR = 0.132 and sHR = 0.158 in example
1 cannot be directly interpreted, as the “risk” of death from
cervical cancer decreased by 86.8% or 84.2%, respectively,
for the surgery group; rather, this result should be understood
as an 86.8% or 84.2% decrease, respectively, in the “hazard”
of death from cervical cancer, which is difficult to inter-
pret clinically (2, 6). Furthermore, because the proportional
hazards assumptions were violated in example 2, the CSH
and SDH curves of the 2 groups in Web Figure 1 (obtained
through the nonparametric technique) have a late difference,
showing that the cHRs and sHRs may vary over time.

Therefore, a weighted average HR alone may fail to quantify
and interpret the treatment effect.

As an alternative statistic, some researchers (9–11) devel-
oped the RMTL, which corresponds to the area under the
CIF curve. Thus, the RMTL can easily be implemented and
interpreted on a time scale. Meanwhile, as an “absolute”
measure, the RMTLd can be used to supplement the cHR and
sHR to evaluate the treatment effect. Moreover, the RMTLd-
based test does not require any model assumptions.

Based on the RMTLd, we introduced a new statistical
inference framework and sample-size estimator. From our
simulation results, the performance of the estimation of
the RMTLd and the RMTLd test is acceptable and robust.
However, notably, the simulation results of 45% censoring
are not shown in Table 1 and Table 2 because we set the
true RMTLd at t = 4 years; that is, the final follow-up time
should be equal to or greater than 4 years for the generation
of survival data, which is violated with 45% censoring (for
more discussion, see Web Table 2, Web Table 3, and Web
Figure 2). In summary, the proposed RMTLd is accurate, and
the RMTLd test has well-controlled type I error rates and has
power similar to (or even larger than) that of the Gray test.
Meanwhile, the results of the sample-size simulation showed
that the power of the RMTLd-based sample size can approx-
imately achieve the predefined level of power, and we also
calculated the RMTLd-based and sHR-based sample sizes
in examples 1 and 2 (regardless of the clinical significance,
shown in Web Figure 3), which also indicates that the pro-
posed sample-size formula is effective and suitable. Thus,
for clinical trials and epidemiologic studies, the RMTLd test
may be the most robust approach for competing risks.

However, there were still some limitations in this study:
1) the time point τ was simply restricted to be the shortest
maximum follow-up time of the 2 groups, whereas from a
practical perspective, τ can be chosen according to scientific
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clinical or epidemiologic knowledge (e.g., 28 days based on
COVID-19 studies); and 2) the results of the statistical tests
in the examples were applied to illustrate the analysis and
interpret the outcomes, but they did not offer any clinically
relevant conclusions.

In summary, in competing-risks analysis, we recommend
the RMTLd as a supplement to the cHR or sHR in the mea-
surement of treatment effects when the proportional hazard
assumptions are satisfied. When the assumptions are vio-
lated, the RMTLd could be selected as an alternative statistic
for summarizing and interpreting the treatment effect.
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