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Pathology images of histopathology can be acquired from camera-mounted microscopes or whole-slide scanners. Uti-
lizing similarity calculations to match patients based on these images holds significant potential in research and clin-
ical contexts. Recent advancements in search technologies allow for implicit quantification of tissue morphology
across diverse primary sites, facilitating comparisons, and enabling inferences about diagnosis, and potentially progno-
sis, and predictions for new patients when compared against a curated database of diagnosed and treated cases. In this
article, we comprehensively review the latest developments in image search technologies for histopathology, offering
a concise overview tailored for computational pathology researchers seeking effective, fast, and efficient image search
methods in their work.
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Introduction

Thefield of “content-based image retrieval” (CBIR) is greater than three
decades old.1,35 CBIR is about finding images in a database without meta-
data by relying on the “content” of the image itself, i.e., the pixels and
sh).
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their spatial relationships, and not by using “metadata” such as keywords
and descriptive phrases.38 CBIR technology has slowly found its way into
computational pathology, especially after the emergence of digital pathol-
ogy. However, to date, there has been no concise overview of the scope of
image search and algorithms available for pathology. In this paper, we
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offer a survey and analysis of different search techniques to thereby help
pathologists and other researchers select appropriate CBIR methods to
advance their work and innovations.

Why image search?

Visual examination of the “content” of tissue samples using a micro-
scope or digital image displayed on a monitor is a task usually relegated
to pathologists or computational biologists. Interpretation of such content
encompasses some or all of the following steps:

● Observing cellular morphology (includes cellular structures and their
characteristics, architecture based on the arrangement of cells, and back-
ground extracellular material).

● Identifying cell types (subtypes of cells, including normal or abnormal).
● Noting cellular abnormalities (involving their size, shape, color, and
organization).

● Tissue integrity (including preservation of cells and structure, as well as
tissue damage or necrosis).

● Examining inflammatory response (presence of acute and/or chronic
host immune reaction).

● Analyzing tumor characteristics (includes tumor subtype, growth,
margins, invasion into adjacent tissues, grade, and stage)

● Using special stains and biomarker analysis (stains or in-situ hybrid-
ization highlight specific cell types, proteins, proliferation index, or other
molecules).

It is assumed that “semantic gap” between human experts and com-
puters can be closed if a (properly designed and trained) deep network is
employed to extract relevant features in histopathology images.6,18,57

Hence, one can assume that the aforementioned tasks can be reasonably
performed by deep networks if we acquire so-called deep embeddings for a
tissue image (Fig. 1). The semantic gap generally refers to the disparity be-
tween low-level image features (such as pixel values, edges, and colors) that
deep learning—as well as handcrafted features—extract from unprocessed
tissue pixels, and the high-level concepts (such as tissue types and cellular
patterns) that pathologists perceive from microscopic images.41,44,55 For
deep learning to close this gap, it must accurately capture the visual content
of tissue images in a way that is interpretable by the pathologist.23,60 Learn-
ing tissue representation is a major step toward closing this gap.21,47 Addi-
tionally, employing multimodal domain data, such as pathology reports,
can help deep learning attach “context” to its otherwise black-box behav-
Fig. 1. Small image patches (or tiles) of high-resolution whole-slide images are fed i
“embedding”. The output of the network is then neglected. The embedding layer is ofte
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iors when it comes to hierarchical tissue representation in their connection-
ist topologies.15,26

Applications in histopathology

CBIR has many applications in histopathology, where it can assist
pathologists in analyzing andmanaging large volumes of pathology images
to enhance diagnosis, collaboration, education, research, and decision-
making processes. In particular, matching images may help perform quality
assurance. CBIR can contribute to the diagnosis of diseases by comparing a
query image with a database of histopathological images of known cases.
By searching and locating visually similar images with known diagnoses,
pathologists have more information to identify disease patterns. The same
logic applies to treatment planning. Cases with similar diagnostic morphol-
ogy may provide information to use similar treatment.

CBIR also supports remote consultation and collaboration between pa-
thologists. Retrieving similar cases for/in a remote database, a new tool
in telepathology, pathologists can discuss and share knowledge, enabling
second opinions and enhancing consultation and/or consensus to resolve
challenging cases.52Moreover,finding and analyzing similar tissue patterns
can be a teaching tool in histopathology education, because it allows trainees
to study and compare various histological patterns and diseases, sometimes
even using rare, archived cases.

Image search is a crucial tool in research, allowing the exploration of large
histopathological image archives to discover and identify novel patterns,
trends, and correlations among diseases and their histological characteristics.
By leveraging this approach, newassociations, biomarkers, andpredictive fac-
tors can be discovered in collaboration with other data mining technologies.

Divide and conquer: How AI can digest whole-slide images

In computer science, “Divide and Conquer” (D&C) (see Fig. 2) is a gen-
eral problem-solving idea that proposes to break down a complex problem
into smaller, more manageable subproblems that can be solved indepen-
dently; combining these individual solutions in order to solve the original
“unsolvable” problem. Whenever we talk about a solution for complex
problems, a reasonable computation time is implied. However, nobody
can wait a prohibitively long time for a computer to calculate the solution
for a difficult problem.

Example: Sorting numbers—If we have one number, no sorting is
necessary. In fact, every single isolated number is sorted by itself. However,
what happens if we get two numbers?Well, we can keep them as they are if
nto properly trained deep networks to extract a feature vector commonly called
n positioned before the classification layers at the output of the network.



Fig. 2.Divide&Conquer (D&C). Sorting a long list of numbers, the architecture of convolutional neural networks (CNNs), and stages of comparingwhole-slide images (WSIs)
represent different examples for applying D&C when we are dealing with an extremely difficult problem. Although the general D&C concept does not involve any pre-
processing of data, in image search we often add pre-processing (e.g., tissue segmentation).
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they appear in the right order, or rearrange them if they do not. Sorting
small lists of numbers is not a difficult problem. But what happens if the
list of numbers is extremely long and contains millions of numbers? In
this case, we can begin by swapping numbers by looking at the adjacent
pair of numbers. Even after reaching the end of the list and having under-
takenmillions of swaps, the list may still not be fully sorted. Fig. 3 illustrates
a simple example for sorting.

● Divide: The list is recursively (i.e. repeatedly in a self-similar manner) di-
vided into smaller sublists. This step involves breaking down the problem
into manageable parts, until the subproblems become simple enough to
be solved directly (i.e., this yields a list with only few numbers).

● Conquer: Each sublist is sorted independently. This typically involves ap-
plying the same D&C technique recursively to the sublists until they can
be easily sorted or when reaching a “base case” where a straightforward
solution is obvious (e.g., one single number that is automatically sorted).

● Combine: The sorted sublists are combined to obtain a final list where all
numbers appear in the right order. This step involves merging sublists to
assemble the sorted list, (i.e., the solution).
Fig. 3. Sorting a list of unsorted numbers through D&C paradigm. In complex problems
stage.

3

For one million numbers, a method that does not use D&C and sorts the
list by swapping adjacent pairs would take approximately “one million by
one million = one billion” swaps. This would take a prohibitively long
waiting time for the user. Instead, if a method that does use D&C would
take approximately “one million by logarithm of (one million) = six
million” swaps. Now, instead of one million numbers, imagine we need
to classify a whole-slide image of size 50,000 by 50,000 pixels. This is
equivalent to 3 × 50,000 × 50,000 = 7.5 billion pixels. Furthermore,
when analyzing such a gigapixel file we are not just sorting numbers, but
we have to perform much difficult tasks like recognizing relationships be-
tween adjacent numbers in all directions for a plurality of variations of
different tissue types in all organs. In computer science, we call this a
“NP-Hard” problem; jargon that signifies the problem cannot be (easily)
solved via conventional approaches.

Convolutional neural networks, which enabled the revival and tremen-
dous success of AI, are an excellent implementation of the D&C concept.
Successive layers of convolutions (filtering) and pooling (breaking down
the image into smaller images) make the problem (image identification)
manageable for a simple network of a few fully connected layers (the
, conquering the problem to generate a sorted list is not possible without a “Divide”
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conquer part) such that a final layer can then combine everything into a
decision.

Searching for WSI content needs its own Divide and its own Conquer to
be both fast and memory efficient.

The “divide” in histopathology image search

Presently, even with multicore computers, ample memory, and clus-
ters of powerful GPUs, we still face serious limitations when it comes
to processing large WSI files for any purpose—whether using AI or not.
Consequently, current computers are unable to instantaneously analyze
a WSI in its entirety, determine the contents based solely on pixel data,
and accordingly provide a diagnosis or prognosis. As for image search
and many other tasks, a practical approach involves dividing WSI files
into multiple “patches” (smaller sub-images) and processing them indi-
vidually. However, due to the gigapixel scale of WSIs, patching schemes
(which embody the “divide” operation) may generate numerous patches
of any given size, typically ranging from 224 by 224 pixels up to 1024 by
1024 pixels. Consequently, GPU processing of these patches becomes
time-consuming and expensive.

The “Divide” of WSIs can be performed in two ways: (1) sub-setting,
or (2) patching (see Table 1 and Fig. 4). Sub-setting approaches attempt
to find one large portion of aWSI that contains the region or abnormality
of interest.5 This approach, while potentially effective in reducing the
processing of excessive patches, lacks popularity due to its requirement
for supervision. Like other supervised methods, it restricts the “Divide”
process to the specific primary site and diagnosis for which it has been
trained. In addition, due to the large number of tissues and heterogeneity
of diseases, and possible presence of multiple concomitant abnormali-
ties, sub-setting may fail in many scenarios. Hence, most papers that
have implemented any notion of “Divide” for any type of WSI processing
have employed patching.

The “Divide” of a WSI, i.e., the patching procedure for search purposes,
must satisfy the following requirements to be practical in digital pathology:

1. Universality: It must be unsupervised (a Divide approach subject to
training will limit usability).

2. Tissue size/Shape independence: It must process the image of all
types of specimens, including core biopsies and excisions (different
shapes and sizes of tissue should be handled automatically).

3. Diagnostic inclusion: It should not miss any diagnostically relevant tis-
sue part (even small but unique patches should be extracted for
indexing).

4. High speed: It should extract patches in a timely manner (brute force
methods based on expensive operations like deep feature extraction
will not be feasible).

5. Storage efficiency: It should aim to extract a minimal number of
patches. Additionally, the encoding process should not demand exces-
sive storage (the necessity for low storage of deep embeddings and
any encoding method is crucial in the context of digital pathology).
Table 1
Comparison of sub-setting and patching for dividing WSIS.

Divide via sub-setting Divide via patching

Learning Supervised Unsupervised
Primary site Needs customization Agnostic
Abnormality inclusion One Multiple
Risk of missing a second
abnormality

Very high Low

Risk of missing a small
abnormality

Very high Low

Works best for… One large tissue sample
containing one connected
segment of abnormality if you
have sufficient delineated cases

Any tissue sample as
long as the
abnormality is not too
small

4

Any new image search strategy must put forward a new patching para-
digm that ideally satisfies all of these aforementioned conditions.

“Conquering” the patches

The “Conquer” part of image search in histopathology has mainly two
parts: (1) to get feature vectors for each patch, and (2) encode the feature
vector for efficient storage and processing. Using deep embeddings as fea-
tures for digital images has been under intensive investigation in recent
years.7,16,46,54 It is generally assumed that deep learning has closed the
semantic gap between subjective image assessment and computerized pro-
cessing of digital images.13,42 Training a suitable topology from scratch,
fine-tuning a pre-trained network, or simply using zero-shot features from
a backbone network are all possible venues to conquer the patches of a
WSI. As we will see, different search strategies have explored all of these
possibilities. However, conquering WSI patches that come from the Divide
solely through deep feature extraction is not possible for practical deploy-
ment. Going fully digital, a natural prerequisite for image search, requires
high-performance storage that is a considerable investment formany clinics
and hospitals.14,17

Encoding is another indispensable part of conquering WSIs. Here, we
understand encoding rather in its original information-theoretical meaning
related to coding theory involving data compression. We cannot simply
save all of the feature vectors of all patches of all WSIs. To store a vector
of say 1024 real-valued numbers between -10 and +10, we would need
1024 numbers * 4 bytes/number = 4096 bytes if we use single-precision
floating-point numbers. For double precision, the storage of one vector in-
creases to 8192 bytes. If we manage to extract 100 representative patches
on average from each WSI, we would need at least 400 kilobytes to
“index” the WSI. In contrast, a binary feature vector would need
100*1024 elements * 1 bit/element = 100,024 bits = 12 kilobytes.
Hence, binary encoding would reduce storage by 97%. The higher process-
ing speed and diminished GPU demand are other advantages of encoding.

Archive size

It has been assumed, for unknown reasons, that digitized histopathol-
ogy archives to be searched are very large. Whereas the number of biopsy
cases per year, and average number of glass slides per patient, to be scanned
in a typical pathology laboratory do indeed lead to emergence of large ar-
chives, we do not have to search these large archives (and as of 2023,
large digital histopathology archives are rather the exception). It can very
well be that designing and validating matching algorithms in small, but
well-curated collections is much more feasible and beneficial. As large het-
erogeneous pathology archives remain to be widely established, it may not
make sense to talk about them in abstraction.

Performance metrics

Evaluating the performance of image search algorithms is more
challenging than image classification algorithms. As a classification model
provides specific and distinct output as a decision, its evaluation in terms
of accuracy is rather straightforward (i.e., true and false). Although the out-
puts of image searchmay be looked at as true/false as well (e.g., in terms of
primary diagnosis), search cannot be comprehensively evaluated like clas-
sification as it provides a set of results (i.e., search results). In the literature,
several performancemetrics1 are used to evaluate the effectiveness of CBIR
systems.8,39,63

Below is the list of most used performance measures. As per literature,
precision and recall, and their harmonic average, F1 score, are de facto
1 A metric space, mathematically speaking, is a set together with a notion of distance be-
tween its elements. The distance ismeasured by a function called ametric or distance function.
A metric space has some mathematical properties11 that may not be satisfied by all evaluation
methods discussed here. Hence, we use the word metric in a generic, less strict sense.



Fig. 4. The “Divide” of aWSI can be performed either as a sub-setting problem (top) or a patching problem (bottom). [Image source: TCGA, Case UUID b8a44fdf-9cb9-4123-
9ab0-4bc198921fee, breast invasive carcinoma, file: TCGA-OL-A5RU-01Z-00-DX1.A48CAF2D-9310-4611-B27D-400F3A324607.svs].
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standard for most retrieval tasks as they build on sensitivity and specificity8

(see Fig. 5).

Performance per class/subtype

● F1 Score is the harmonic mean of precision (how many of the retrieved
images are actually relevant to the query, i.e., low false-positive rate)
and recall (how many of the relevant images were actually retrieved,
i.e., low false-negative rate), providing a balanced measure of both met-
rics. For detailed analysis, one may provide the values of precision and
recall as well.

● Precision-recall curve plots the precision values against different recall
levels. A high area under the curve represents both high recall and high
precision.

● P@K andR@Kmay also be reported tomeasure the precision and recall
for the top K retrieved images, respectively.

● Majority@Kmeasures the accuracy of image search for the top K search
results. In contrast to the “top K” accuracy in computer vision (search
function would be successful if at least one of the retrieved images was
relevant/correct). The majority@K considers the search successful only
if at least 51% of the retrieved images were relevant/correct. This
Fig. 5. Precision and recall (derive from true/false positives and true/false negatives) are
average of precision and recall is an aggregated measure of both.

5

measure was first used to evaluate search results in histopathology in
the Yottixel paper.27

● Relevance feedback/judgements, in contrast to all other previous
metrics and measures, evaluates the performance of image retrieval
based on user feedback, i.e., the pathologists’ judgements. Image re-
trieval based on relevance feedback has shown considerable perfor-
mance increase.62

● Mean opinion score (MOS) is “a numerical measure of the human-
judged overall quality of an event or experience” and is extensively
used in the telecommunication industry.25 It was first used to evaluate
the correlation between pathologists’ feedback and search results.27

Overall performance

● Mean average precision (mAP) calculates the average precision at dif-
ferent recall levels and then takes the mean of those average precisions.
mAP provides a measure of the overall effectiveness of the search.

● Mean average precision at K (mAP@K) focuses on the precision at a
specific value of K (e.g., mAP@5). It measures the average precision of
the top K retrieved images.
the base for precision (consistency) and recall (accuracy). F1-score, as the harmonic
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● Normalized discounted cumulative gain (NDCG) evaluates the rank-
ing quality of retrieved images. It is often used to measure performance
of web search engine algorithms. NDCG considers both relevance and
rank position, giving higher weight to relevant images that are ranked
higher.

● Macro- and micro-averaging of any metric are used mainly for
multiclass classification. Macro-averaging treats the contributions of all
classes equally to the final averaged metric. Micro-averaging treats the
contributions of all samples equally to the final averaged metric. If you
have an imbalanced dataset (which is often the case in histopathology),
micro-averaging generally provides higher values thanmacro-averaging.
It is recommended to avoid micro-averaging for imbalance datasets.40

● Average normalized modified retrieval rank (ANMRR) is a normal-
ized ranking method. The NMRR score ranges from 0 to 1, where 0 indi-
cates perfect retrieval.

When searching histopathology digital images, the most conservative
performance evaluations are majority@K. Relevance feedback from user,
i.e., pathologist, is obviously crucial but as image search in histopathology
does not seem to have been implemented for clinical utility, there are no
user studies or statistics available in this regard. The F1 score stands out
as a more comprehensivemeasure for search to summarize majority@K be-
cause it effectively quantifies both precision (minimizing false positives)
and recall (minimizing false negatives) and is based on parametrized F
measure.22 Whereas majority@K goes beyond classification and top-k met-
rics, and rigorously requires the majority of retrieved images to be correct/
relevant (see Fig. 6), the relevance feedback is the ultimate evaluation
representing practical implementation of the Turing Test.
Existing image search engines

There are many search techniques that have been applied to histopa-
thology images.45,49,61 Based on our background review, six of them may
be of relevance for today’s needs. We look at hashing-based image retrieval
as described in Zhang et al59 (we call it short HBIR), visual dictionary (or
bag of visual words, BoVW64), Similar Medical Images Like Yours,
SMILY,20 Yottixel,27 Self-supervised Image Search for Histology, SISH,12

and Retrieval with Clustering-guided Contrastive Learning, RetCCL.58
Fig. 6.Aquery of certain class (here green circles) is matched to all instances in an archiv
similar at the top of the sorted list). The n similar cases at the top of the list will be retrieve
‘green’ because at least one retrieved circle, among five, is green. However, the ‘majorit
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These are the most recent and most relevant search approaches to histopa-
thology images regarding the current needs and state of technology.

Architectural design of search methods

Based on previous considerations, we look atfive stages of image search
pre-processing, dividing the WSI, conquering the search task (consisting of
a network for feature extraction, and encoding), matching, and optional
post-processing. Table 2 provides an overview of the selected search
schemes and their structures.

Pre-processing—The most common pre-processing is segmentation of
tissue region. Not having segmentation is an indication that there is no Di-
vide. HBIR and SMILY do not have segmentation, hence do not offer anyDi-
vide. Such methods are based on manual or exhaustive patch selection and
are generally inefficient.

Divide—Patching is the pivotal stage for image search. Without
patching, there is no proper indexing and hence no search. HBIR and
SMILY, as mentioned, offer no Divide. BoVW samples visual words in
both deterministic and stochasticways. However, the literature has ignored
the potentials of BoVW for histopathology and we could not find many pa-
pers that employed a visual dictionary. Yottixel is the only method that of-
fers a newDivide, unsupervised, to get a “mosaic” of patches. SISH borrows
the Yottixel’s mosaic. RetCCL also uses Yottixel’s mosaic, but instead of
employing a color histogram for clustering it uses deep features, an ap-
proach that makes the indexing very slow.

Conquer (Network)—HBIR did not use deep features at all. BoVWmay
use any type of features. SMILY and RetCCL used custom-trained networks.
SISH uses two networks, a DenseNet like Yottixel and a custom-trained
autoencoder, but performs poorly. Yottixel uses DenseNet. Assuming that
one custom-trained networkwill be suitable for analyzing an entire histopa-
thology database appears to be a rather restrictive factor and not an
advantage.

Conquer (Encoding)—This entails additional measures to make pro-
cessing and matching of features more effective and/or efficient. HBIR
uses hashing, a well-established set of algorithms to convert real-valued
numbers into a series of zeros and ones. Visual dictionaries use counting
of visual words as a type of encoding to create a compact histogram.
Yottixel introduced the novel concept of “barcoding” feature vectors
through one-dimensional derivatives (i.e., encoding the changes of deep
e by distance calculation. The distance vales are then sorted in ascending order (most
d as the output. Then, the “top n” accuracy as common in computer visionwill assign
y n’ scheme assigns ‘red’ to the query because three out of five retrievals are red.



Table 2
Structure of the most recent strategies for searching digital histopathology archives. Not having tissue segmentation leads to lack of Divide, a major
drawback of HBIR and SMILY (black cells). Not using encoding is a disadvantage as well (gray cells). Both SISH and RetCCL use Yottixel’s mosaic
for Divide. SISH uses the complete Yottixel processing chain and adds an autoencoder and a tree (yellow cells). Ranking search results appears to com-
pensate for inferior search results but adds computation overhead, eliminates the possibility of WSI-to-WSI matching, and reduces search to classifi-
cation (red cells).

Pre-Proc. Divide Conquer
Network              Encoding

Combine Post-Proc.

HBIR None None None Hashing Hashcode 
matching

None

BoVW Segment Visual word 
sampling 

Any feature 
extraction method

Counting Histogram 
matching

None

SMILY None None Custom None Feature 
matching 

None

Yottixel Segment Mosaic DenseNet Barcoding Barcode 
matching

None

SISH Segment Yottixel’s 
mosaic

DanseNet Yottixel’s 
barcoding

Barcode 
matching

Ranking

Autoencoder Tree matching

RetCCL Segment Yottixel’s 
mosaic 

Custom None Feature 
matching

Ranking
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features).32,51 SISH also uses Yottixel’s barcoding although it does not cite
the original works. RetCCL does not use any encoding.

Combine—In terms of search and matching, the Combine approach is
favored for match.

Post-processing—HBIR, BoVW, SMILY and Yottixel do not use any
post-processing. SISH used a multistage ranking approach to rearrange
search results. RetCCL used the same ranking algorithm as SISH. Although
any domain knowledge or unsupervised method may be used to improve
search results, ranking search results (which have been already ranked by
the search engine) appears to be ill-motivated. The primary concern in
questioning the value of ranking, especially in the context of SISH's utiliza-
tion, as a post-processing task in histopathology is that it eliminates the pos-
sibility of comprehensive WSI-to-WSI matching. Matching patients
becomes challenging, as single patches in twoWSIsmay exhibit similarities
or dissimilarities. To enable thorough tissue comparison between two pa-
tients, extensive comparisons of all representative patches in the respective
Table 3
Strengths and weaknesses of the search schemes.

Search
scheme

Strength

HBIR ● Hashing (fast processing)

BoVW ● No patching, no sub-setting
● Unsupervised

SMILY ● Custom network training

Yottixel ● Novel divide
● Novel binary encoding
● Patch and WSI matching
● Validated with majority@k
● Validated by three pathologists

SISH ● Using a tree for implementation

RetCCL ● Custom network training

7

WSIs are necessary. The SISH ranking reduces search to classification.
After search, all patches are again processed and ranked outside the search
engine.
Strengths and weaknesses of search methods

The strengths and weaknesses of the aforementioned six search strate-
gies were analyzed (Table 3). As Yottixel is the only complete search engine
with its own Divide& Conquer, most strengths are assigned to it. HBIR and
SMILY do not have any Divide (they cannot indexWSIs), and both SISH and
RetCCL use Yottixel’s. HBIR is certainly superior to SMILY for patch search
as it uses hashing (binarization of features). SISH is a re-implementation of
Yottixel as it borrows the entire Yottixel chain, mainly both Divide (mosaic)
and encoding in Conquer (barcoding via MinMax algorithm).48 RetCCL ap-
pears to only propose a trained network and use simple matching. RetCCL,
Weakness

● No divide (no WSI processing)
● No deep features
● Requires custom setting (size of visual words, size of dictionary)
● Requires training of custom topology
● No divide (no WSI processing)
● No encoding
● Mosaic needs configuration (number of clusters and sampling rate)
● Requires network selection
● Commercially patented56

● No new Divide (uses Yottixel’s mosaic)
● Autoencoder does not contribute to accuracy
● No thorough WSI matching
● Tree indexing needs a lot of storage
● Search perhaps slow due to integer indexing
● Commercially patented56 (due to using Yottixel’s barcoding)
● No Divide (uses Yottixel’s divide)
● Expensive Divide (uses deep features instead of color histogram)
● No encoding
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like SISH, uses Yottixel’s mosaic but it makes it very expensive by replacing
color histograms with deep features.

Validation of search methods

Yottixel, SISH, and RetCCL use TCGA (The Cancer Genome Atlas) for
training. Yottixel has not used any of TCGA for training and employs the en-
tire TCGA database (both diagnostic slides and frozen section) for
validation.28 As such, the validation of Yottixel is the most trustable
method. SISH and RetCCL use part of TCGA (diagnostic slides only) both
for training and testing. We could not verify the data hygiene for SISH
and RetCCL (i.e., strict separation between training and testing data).

Lahr et al. have conducted a large-scale analysis and validation of
BoVW, Yottixel, SISH, and RetCCL using internal and external data.33

They report that BoVW and Yottixel offer advanced search solutions with
a blend of high speed and efficient storage, presenting valuable capabilities.
However, achieving enhanced accuracy requires integration with a well-
trained backbone network and adjustments to the primary site. Yottixel,
being a commercial product, allows researchers more freedom to explore
various BoVWvariants.Manual settings in Yottixel's mosaic, particularly re-
garding cluster number and sampling percentage, could benefit from auto-
mation. A logarithmic barcode comparison approach could further boost
the speed of median-of-minimum Hamming distance calculations in
Yottixel. Lahr et al. also conclude that SISH, as a Yottixel variant, departs
from Occam's Razor principles, introducing speed and scalability
challenges due to unnecessary complexity. SISH's reliance on vEB trees
with exponential space requirements renders it impractical for large
datasets, hindering loading and processing of terabytes of data. RetCCL,
though labeled a search engine, primarily focuses on the CCL network, lack-
ing expressive embeddings for tissuemorphology and, therefore, struggling
to qualify as an effective search engine. Lahr et al. provide a ranking of
some variations of these search methods (see Table 4).

Multimodal search in histopathology

Multimodal information retrieval is not as old as image retrieval but has
been investigated extensively.19,50 Combining images with other modali-
ties is less mature.10,31 Indeed, studying multimodal retrieval in conjunc-
tion with medical images is a newer field.9,30 Only a few works have
gone beyond image search and integrated other modalities into search.
For instance, textual metadata has been combined with histopathology im-
ages in a cross-modal learning framework.37 Also, molecular data such as
RNA sequences have shown promise to increase search accuracy when
combined withWSIs.4 It is hard to argue for the usefulness of image search
ifWSIs, patches, ormicroscopic snapshots are only accompaniedwith a pri-
mary diagnosis. The value of image search degrades into a fancy classifier
that cannot even match the accuracy of a classifier. The real value of
CBIR arises when combining tissue images with diagnostic reports, clinical
notes, patient demographics, laboratory test values, molecular data, radiol-
ogy images, and patient outcomes. As of today, there is no multimodal
search for pathology.
Table 4
Lahr et al. ranked the performance of different search engines based on their accuracy (F
time, failures, and storage (performance ranking between 1 (best) and 6 (worst)).

Top-1 MV@3 MV@5 Indexing time

Yottixela 3 2 1 2
Yottixel-KR1 2 1 2 2
Yottixel-K2 1 3 4 2
BoVW 6 6 6 1
SISHa 4 4 3 3
SISH-N3 5 5 5 3
RetCCL-N3 8 8 7 4
RetCCLa 7 7 8 4

a As originally proposed. 1 DenseNet replaced by KimiaNet, and using ranking after s
4 RetCCL with no ranking after search.
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Image search and foundation models

The domain of search and retrieval may initially seem distinct from ar-
tificial neural networks. However, one may argue that this distinction is
only superficial. Traditional search engines typically function through
look-up tables, which are generated using specific functions and algorithms
to locate desired information. This implies that while we partially construct
these tables, but we do explicitly utilize tables to locate information. On the
contrary, neural networks—whether shallow or deep—can be likened to
soft tables. Within these networks, the network structure itself or intricate
pathways within it assist in locating and delivering the desired information
(see Fig. 7).

A foundation model (FM), mostly based on transformer architectures,
generally refers to a large language model (LLM) or a large vision-
language models (LVLM) that serves as the basis for various downstream
tasks concerning text and or images. Many specialized models can be de-
rived from a foundation model. An FM is trained on an extremely large
body of data, mostly using unsupervised learning (e.g., self-supervised
learning). An FM captures patterns, relationships, and semantic representa-
tions within the data such that it can generate new data, which is the most
fascinating (and most ethically sensitive) aspect of FMs. For instance, in
contrast to previous language models, LLMs as text-specialized FMs can
generate meaningful and context-aware responses, yielding suggestions
that can be exploited for many downstream tasks such as summarization.
FMs, such as OpenAI's chatGPT, have demonstrated significant advance-
ments in the field of NLP and have enabled the development of various
novel applications, chatbots, language assistants, and intelligent systems
that can understand and generate human-like text. Other examples of
FMs include GPT-3 (Generative Pre-trained Transformer 3), and BERT (Bi-
directional Encoder Representations from Transformers). As for images,
alone or in conjunction with text, one maymention FMs like CLIP (Contras-
tive Language-Image Pretraining) and SAM (Semantic Alignment through
Multimodal Contrastive Learning).

The connection between image search and foundationmodels canman-
ifest in two general scenarios: one involves extracting deep features using a
foundation model and utilizing them to index images for search.3,43 Prop-
erly trained foundation models can offer expressive features, significantly
enhancing search and retrieval capabilities. A second scenario involves
the integration of search and deep models, where foundation models rely
on Retrieval-Augmented Generation (RAG).34 Among other applications,
search and retrieval mechanisms can aid foundation models in tasks such
as “source attribution”29 and fact-checking results by providing relevant in-
formation from small or large datasets, thereby reinforcing the foundation
model's robustness. RAG has the potential to address the “black box” disad-
vantage inherent in deep models, a limitation that persists in various forms
even for foundation models.

Recently, some researchers have collected online images (e.g., from
Twitter and PubMed) to re-train CLIP for histopathology.24,36 The general
wisdom is that employing online images is not a suitable venue: Gargabe
in, Garage out. Validations with high-quality clinical data have clearly
shown these models will not provide any value in pathology.2 When
1-score for top-1, majority of top-3, and majority of top-5), indexing time, searching

Searching time Failures Storage Total ranking

1 1 2 1.71
1 2 2 1.71
1 2 2 2.14
2 2 1 3.43
3 4 4 3.57
3 4 4 4.14
4 3 3 5.28
4 3 3 5.43

earch. 2 DenseNet replaced by KimiaNet. 3 SISH with no ranking after search.



Fig. 7.Hard versus soft look-up tables for search. In conventional search a query “Lung tissue” is passed through “function” (a mathematical function of some sort) to find the
location of the right item “LUAD” (lung adenocarcinoma) associate with “Lung tissue”. A network can be understood as soft look-up table, whereas the function is
implemented in network itself and in a complex trajectory in the weight space of the network (concepts are oversimplified to illustrate the connection between explicit
and implicit search).

Table 5
Comparison of “information retrieval” versus “foundation models” as two technologies that may be used to assist pathologists in decision making.53

Information retrieval (IR) Foundation models (FMs)

Model size Small Very large
Size of dataset needed Small Very large
Computational footprint Small Very large
Strength Convinces through retrieving evidence Convince through knowledgeable conversations
Disease type suitability All diseases including rare cases with only a few examples Mainly common diseases with a lot of data available
Information processing type Explicit information retrieval Implicit information retrieval
Source attribution for responses to query Visible; Accessible; Explainable Invisible; Not accessible; Not easily explainable
Maintenance • Low dependency on hardware updates

• Cases can be added/deleted easily.
• Re-indexing has moderate computational costs

• High dependency on hardware updates
• High efforts for prompting to customize for specific tasks
• Expensive re-training cycles may be necessary
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designing and training FMs for pathologywith high-quality data, one has to
redefine the requirements for image search. In this case, the tasks will be in-
trinsically multimodal and the Divide & Conquer tasks will need to be im-
plemented within the pathology-aware FM. A new type of search will
then perhaps be part of a FM-derived question and answering. The most
crucial concern in this regard will be the “generative” aspect of FMs
which is undesired in medicine when it degenerates into hallucinations.
It's essential to note that foundationmodelswith conversational capabilities
are closely tied to search, serving as implicit information retrieval. Table 5
offers a comparison between search and foundation models.

Summary and conclusions

There has been minimal innovation in the area of “Divide” for efficient
and reliable processing of WSIs. HBIR and SMILY lack this feature. Yottixel
is the only search engine with a novel and unsupervised Divide, namely the
mosaic. SISH and RetCCL rely on Yottixel. BoVWoffers a different approach
to Divide and deserves more attention. Clearly, there is an urgent need for
new Divide strategies for patching WSIs that satisfy the following condi-
tions: universality, biopsy independence, diagnostic inclusion, high-speed,
and efficiency. Similarly, there has been little progress in the field of
“encoding”, which involves converting deep features into a more compact
and less storage-hungry search engine like Yottixel’s binary vectors
(barcodes). It would be beneficial to develop a solution that eliminates
the need for feature binarization altogether, although this task may prove
more challenging than devising novel binarization methods not patented
by industry, as is the case for Yottixel’s barcodes. Multimodal search
schemes are sorely lacking, highlighting a significant deficiency in the
9

research community. While WSIs are valuable, their retrieval potential is
limited as a single modality. The future lies in searching more comprehen-
sively for patient data, and patient representation requires the integration
of multiple modalities. Lastly, the pathology community should strive to
develop foundation models based on large-scale, high-quality multimodal
data. Such models would not replace the need for search but open new
horizons for search capabilities in laboratory medicine and pathology.
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