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Abstract

Original Article

Introduction

Cancer radiomics is an emerging field in medical imaging and 
refers to the process of converting routine radiological images 
that are typically qualitatively interpreted to quantifiable 
descriptions of the tumor phenotypes such as size (volume), 
shape (sphericity, compactness), texture (voxel heterogeneity, 
coarseness, contrast) and tumoral intensity  (uniformity, 
entropy), and when combined with statistical analytics can 
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improve the accuracy of clinical outcome prediction models. 
Radiomics operates under the assumption that these image 
features are linked to the tumor gene‑protein signatures or 
the tumor phenotype.[1,2] Unlike tissue biopsies, radiomics 
accounts for the whole 3D tumor and its heterogeneity and 
can noninvasively characterize it. This information from 
routine clinical images obtained before and during the course 
of treatment with no additional scans or added dose burden 
to the patients makes it an economical approach toward 
personalization of treatment. Furthermore, prediction of 
outcome using pretreatment imaging can help plan treatment 
strategies and augment the clinical decision‑making process, 
thus preparing clinicians and patients for the appropriate course 
of treatment.

Researchers have identified and quantified several radiomic 
features and showed that these imaging descriptors can 
monitor treatment and predict outcomes in different cancer 
types.[3,4] Combining the data from radiomics, genomics 
and clinical assays improved outcome prediction accuracy 
over that of individual assays.[5] Given the number of studies 
showing the efficacy of integrating radiomics features for 
differentiating tumor types (benign or malignant, responders 
or nonresponders to treatment regimen) or predicting 
treatment outcomes  (toxicity, survival, recurrence),[3,4,6] 
incorporating them into decision support systems are on the 
precipice of clinical translation, which will have a significant 
impact on personalization of cancer treatment, especially in 
resource‑limited settings like India. However, radiomics is 
not yet deployed in routine clinical settings in India and is 
limited to a few research investigations.[7‑9] To understand the 
radiomic features and their correlation to molecular changes 
in the tumour, first, there is a need for the development of 
robust image analysis methods, software tools and statistical 
prediction models. These lacunae were the motivation for 
this study, and an attempt is made to develop a pipeline that 
can speed the translation of the radiomics research in low and 
middle income countries (LMIC).

In this study, we focussed on head‑and‑neck cancers (HNC) 
since it contributes about 25%–30% of all cancers in India as 
opposed to 3%–4% in the Western world[10‑12] and with >20,000 
new cases being reported yearly since 2018.[13] These cancers 
are different with respect to the patient characteristics, disease 
presentation, and etiological differences compared to the West. 
Some of the differences include that Indian patients often 
present themselves at a very advanced stage of disease, lower 
incidence of HPV related cancers affecting the oropharynx, 
unusual presentations of HNC due to oral/chewable tobacco 
consumption with increased risk due to poor oral hygiene 
among certain sections  (individuals with low educational 
status, farmers or manual labourers) and higher incidence 
in younger patients (<40 years) compared to the West (55–
60 years).[11,14] These tumours are often challenging to treat due 
to many factors but not limited to complex regional anatomy, 
high intra‑tumoural heterogeneity, close proximity of critical 
structures and major changes to the anatomy related to tumor 

response. Risk stratification is important for an oncologist to 
predict early in treatment whether the tumor is likely to respond 
to a particular therapy. The important outcome parameters 
that are used for clinical decision‑making in HNC are 
loco‑regional failure at 1 year; 2) distant failure and 3) 5‑year 
overall survival. Studies have shown that 1‑year disease‑free 
survival strongly correlates to overall survival.[15] With the 
local recurrence rate in advanced HNC ranging from 15% to 
50%[16] more accurate predictors of early disease failure are 
imperative as treatment could be modified to intensify therapy 
individualized to the high‑risk patients.

The aim of this study is to report a framework for machine 
learning‑based radiomic intensity, shape, and texture features 
extracted from computed tomography  (CT) and positron 
emission tomography  (PET) imaging from head‑and‑neck 
patients as a foundational step towards future independent 
testing and validation.

Subjects and Methods

Patient selection
Study participants were retrospectively recruited from 
patients treated between February 2017 and March 2018, 
if they had baseline CT and PET scans and evaluation 
scans within 10  weeks posttreatment. All patients were 
diagnosed with histologically confirmed locally advanced 
HNC of the oropharynx, hypopharynx, laryngopharynx or 
oral cavity. Patients with recurrent HNC or with metastases 
at presentation, received any prior radiation, and patients 
on palliative treatment were excluded from the study. The 
median follow‑up period of the cohort was 110 months (range: 
70–166). Imaging was performed as per standard clinical 
routine. The study was conducted in full accordance with 
ethical principles, including the World Medical Association 
Declaration of Helsinki  (version  2002). The use of the 
anonymized retrospective data without additional need for 
informed consent was approved by the Institutional Review 
Board of the study institution.

Treatment details
Patients included in this study were treated with concurrent 
chemo‑radiation or definitive radiotherapy alone. The 
radiotherapy regimen was planned with volumetric modulated 
arc radiotherapy. In most cases  (18/31), the concurrent 
chemotherapy was cisplatin 40 mg/m2 IV every week; others 
were given Nimotuzumab (5/31) 200 mg IV once a week. The 
radiomics worflow is depicted in Figure 1.

Image acquisition
The imaging data consisted of baseline PET/CT that was 
used for treatment planning. The 3‑month posttreatment 
PET/CT were included to extract delta features to assess the 
stability of the radiomic features and was excluded for all 
further analyses. All imaging data were acquired on Siemens 
Biograph  6 PET‑CT scanner  (Siemens Medical Solutions, 
USA) with immobilization in radiation treatment position. The 
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CT images were first acquired at 130 kVp, and 500–700 mm 
field‑of‑view  (FOV). The CT images were reconstructed 
with a transaxial plane resolution of 0.97–1.36 mm and slice 
thickness of 3–5 mm per slice; the image size was 512 × 512 
pixels. The PET images were acquired with 500–700‑mm 
FOV and reconstructed using attenuation weighted ordered 
subset expectation maximization reconstruction (3 iterations, 
21 subsets, and 4‑mm FWHM Gaussian filter). During the 
reconstruction, corrections for point spread function (TrueX), 
attenuation, and scatter were performed. The sinogram data 
were decay, dead time, and random corrected. The CT images 
were used for the attenuation correction. The resultant PET 
image size was 168 × 168 pixels and the in‑plane resolution 
were 4.07 mm × 4.07 mm with slice thickness ranging between 
3 and 5  mm. Pre‑and post‑treatment PET/CT scans were 
registered using rigid registration on to a common grid.

Tumor delineation
To reduce the inter‑observer variability in the tumor definition, 
the gross/metabolic tumor volume  (MTV) was delineated 
using an adaptive threshold segmentation followed by a 
gradient segmentation. As the first step, the MTV defining 
the extent of the metabolic uptake was delineated on the 
pretreatment PET. Approximate location of the primary tumor 
was identified and a fiducial was placed. A sphere ROI was 
drawn around the fiducial and the maximum standard uptake 
value (SUVmax) within the ROI was found. The color scale 
was changed to cold‑to‑hot and the range of the color scale 
was adjusted from 0 to SUVmax which helped identify the 
tumour and its margins clearly. Additional three fiducials 
were placed around the tumor to represent the background 
region that lie close to the tumor. The SUV values from 
each of the background fiducial were averaged to obtain 
the local background SUVmean. The initial threshold value 
for segmentation was calculated from the SUVmax and the 
mean background value. An initial tumour delineation was 
performed using the initial threshold value. If the segmented 
region extended beyond the tumor into any adjacent regions, 
the adjoined regions were manually erased to disconnect 
them. The tumor island was retained while discarding the 
adjacent segmented regions. The initial volume of the tumor 
was calculated from the initial threshold segmentation region. 
The final threshold value was calculated using the Growcut 
algorithm as described in the article by Thomas et al.[17] The 
PET contour was propagated to the planning CT. Minor 
edits were made if required to include any of the regions not 
included in the PET to generate the gross tumor volume (GTV), 
which is the extent of the tumor as seen on the CT. The 
display protocol was a fixed window/level setting for the 
CT scan (brain window). All the above‑mentioned steps for 
tumor delineation has been customized as python‑script based 
software and operated as a module within 3D Slicer, an imaging 
platform that is free, open‑source and easily downloadable for 
imaging‑related research.[18] The MTV and GTV contours were 
verified by a radiation oncologist with 12 years of experience 
in treating HNC. Example delineations are shown in Figure 

2. The pretreatment MTV and GTV were propagated to the 
corresponding posttreatment evaluation scans using rigid 
registration to allow us to extract features from the same ROIs.

Labeling
When the lesion volume decrease between the pretreatment 
CT and PET and evaluation scan 3  months posttreatment 
were  <25% and presence of new disease or recurrence 
confirmed following imaging and clinical examination was 
found, the patient was classified as having a loco‑regional 
failure. This failure status of the patients at their first follow‑up 
visit following radiotherapy were the labels that was used for 
the model fitting.

Feature extraction
Before feature extraction, the pre/post‑treatment CT and 
PET scans were resampled to an isotropic 1 mm and 4 mm 
resolution, respectively using cubic B‑spline interpolation. 
From the MTV and GTV lesion ROIs, 110 features were 
extracted using Pyradiomics toolbox (v 2.1) made available in 
3D Slicer with fixed bin count gray level discretization (CT: 
128, PET: 64).[18,19] The feature space included 19 intensity 
and first‑order features, 16 shape and size‑based features 
and 75 textural features representing the spatial distribution 
of voxel intensities derived from GLCM, GLDM, GLRLM, 
GLSZM and NGTDM. Compactness 2 and Gray Level 
NonUniformity‑HLH were independently extracted on the CT 
to compare with the Radiomics features by Vallières et al.[20] 
Those two features were not part of the feature selection and 
model building approach. The entire list and mathematical 
definition of these features are made available by Van 
Griethuysen et al.[19] Most features are in compliance with the 
Imaging Biomarker Standardization Initiative and are reported 
by Zwanenburg et al.[21]

Dimensionality reduction
Although 110 features were extracted for each patient 
per image set, all features did not contribute equally to 
discriminating loco‑regional failure. The features with low 
discriminative power or those that are highly correlated 
with each other tend to overfit the classifiers leading to a 
poor outcome. To avoid this, rigorous feature selection with 
dimensionality reduction was performed to find a set of 
candidate features with excellent discrimination capabilities 
and significant differences before the outcome prediction. As 
a first step, all features were scaled via Z‑score normalization 
to improve stability and speed of optimization algorithms. Two 
methods were implemented for dimensionality reduction and 
model sensitivity perturbation: Method 1  (M1) included (i) 
inter‑patient variance inflation, (ii) pre/post‑treatment variance 
inflation, (iii) co‑linearity reduction, (iv) bootstrap iterations 
of least absolute shrinkage and selection operator (LASSO). 
These filtering steps were to exclude features that did not vary 
across patients or did not vary between pre‑and post‑treatment 
imaging time points, and those that were strongly correlated 
to other features, thus ensuring minimal information loss. In 
M1, the variance of pretreatment features between patients was 
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computed and the features with inter‑patient variance (range/
median) >10% and  <100% were retained. Following this 
step 95 features remained. The delta features were calculated 
from the ratio of pre‑and post‑CT and PET and features that 
varied  >10%  (range/median) were retained. After this step 
85 features remained. In M1(iii) the highly correlated feature 
pairs (Spearman correlation coefficient ρ >0.95), the feature 
with the least variance from M1 (i) and M1 (ii) were dropped. 
Following M1  (iii) 69 features remained. Finally, M1  (iv) 
the LASSO with bootstrapping was applied for 60 iterations 
and the nonzero weighted features were tallied. A frequency 
distribution of the nonzero weighted features was constructed 
and the top‑ranked 5 features were retained for the prediction 
model building. Method 2 (M2) included only M1 (iv), i.e. the 
LASSO based feature selection over 60 bootstrapped iterations. 
All 110 features were included, and a frequency distribution 
table was constructed for the nonzero weighted features at 
the end of each iteration and tallied. The top 5 features were 
retained for the prediction model building.

Model performance evaluation
Following dimensionality reduction, multivariate logistic 
regression models with LASSO and Ridge regularization were 
constructed to predict the incidence of 1‑year loco‑regional 
failure in HNC patients. The true error estimate bias was 
minimized by applying the stratified 5‑fold cross‑validation, 
where “stratified” refers to the different class levels in each 
fold being represented in identical proportion as that in the full 
dataset. The benefit of using stratified cross‑validation has been 
highlighted in Witten et al.[22] The evaluation metric for the 
models was the area under the receiver operating characteristic 
curve  (AUC) of the binary outcomes, i.e.  “loco‑regional 
failure” “no loco‑regional failure.” The averages AUCs of the 
testing runs were reported. The best model for predicting 1 year 
loco‑regional disease failure was determined by maximizing 
the 5‑fold cross‑validated AUCs. The DeLong’s test[23] was 
used for estimating the confidence interval of the difference 
of AUC values between the models generated using features 
selected on our data and using Aerts’ signature features.

For statistical analysis, visualization, model building and 
testing Orange, an open‑source Python‑based data mining 
software[24] was used.

The radiomics analysis was performed on a MacBook Pro 
2.6Ghz Quad‑Core Intel Core i7 Processor with 16 GB 
memory, and NVIDIA GeForce GT 650 M I TB graphics card.

Results

Patient demographics
The clinical information of the patients and tumor characteristics 
in this study are summarized in Table 1.

The training cohort included 31  patients  (28 men and 3 
women). All patients included were of Indian origin. The 
median follow‑up period was 92 days (range 70–187 days); the 
median age of this population was 55 years, and the majority of 

the patients (90%) were men. Only one patient was classified as 
M1, and the others were classified as M0 in the TNM staging. 
Six of the 31 patients had loco‑regional failure at their first 
follow‑up postradiation treatment.

Feature selection and model building
Following robust and rigorous feature selection both 
methods (M1 and M2) selected three features from 75% to 
84% of bootstrapped LASSO iterations for predicting local 
disease failure in (6/31) patients. The features were namely 
MCC (GLCM) SumEntropy (GLCM) and Sphericity (Shape). 
However, none of the PET features was selected by the LASSO 
algorithm as they did not appear consistently in the 60 iterative 
runs. MCC had the highest odds ratio per standard deviation 
increase in L1 and L2 models followed by sum entropy 
and sphericity. The L1 and L2 models achieved a 5‑fold 
cross‑validation classification performance of AUC  =  0.73 
and 0.79 respectively [Table 2].

The selected radiomic features  (MCC, SumEntropy and 
Sphericity) were compared to the 4 features  (Energy, 
Compactness, GrayLevelNonUniformity and Wavelet 
of GrayLevelNonUniformity) of the radiomics signature 
developed by Aerts et al.[25] The odds ratios of these features are 

Table 1: Head‑and‑neck cancer patients’ information and 
tumor characteristics in the study

Characteristic Type Number of 
patients, n (%)

Gender Male 28 (90)
Female 3 (10)

Age (years) Range 30‑80
Mean±SD 57±10

Tumor type Oropharynx 9 (29)
HPV positive 4
HPV negative 2
Not available 3

Hypopharynx 9 (29)
Larynx 8 (26)
Oral cavity 4 (13)
Unknown 1 (3)

T‑stage T0 1 (3)
T1 1 (3)
T2 10 (32)
T3 12 (39)
T4 7 (23)

N‑stage N0 14 (45)
N1 6 (19)
N2 11 (36)

TNM stage Stage‑II 5 (16)
Stage‑III 14 (45)
Stage‑IV 12 (39)

Treatment Radiation only 8 (26)
Chemo‑radiation 23 (74)

Outcome Loco‑regional recurrence 6 (19)
SD: Standard deviation, TNM: Tumor‑node‑metastasis, HPV: Human 
papillomavirus
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tabulated in Table 3. The shape feature (Sphericity) from our 
model was the only similar feature to the Aerts’ model where 
Compactness is defined as the cube of sphericity. The Aerts’ 
features based model could not achieve a clear separation 
between patients with and without loco‑regional failure in both 
L1 (AUC = 0.51) and L2–AUC = 0.53) regression models.

The receiver‑operating curves for the different models, both 
trained using our data and generated using the Aerts’ features 
are shown in Figure 3. The difference between the AUCs for 
the ROCs for these paired models as per Delong’s test was not 
found to be significant (z scores − 0.18 to − 1.53, P > 0.05).

Discussion

Risk stratification is becoming an important strategy to guide 
treatment decisions in oncology. Molecular studies can assess 
certain tumor mutations that contribute to treatment failure. The 
early results for the International Cancer Genome Consortium 
study on oral squamous cell carcinoma in Indian populations 
revealed molecular subtypes with distinctive mutational 
profiles such as patients predominantly harboring mutations 
in CASP8 with or without mutations in FAT1 with the mean 
duration of disease‑free survival being significantly elevated 
in some molecular subgroups.[26] However, the molecular tests 
are not a viable option for all patients in India and other LMIC 

owing to their high cost. On the other hand, all HNC patients 
would routinely undergo radiological imaging such as CT, 
magnetic resonance and PET[27] as part of their treatment which 
includes combinations of surgery, radiation and chemotherapy. 
Radiomics‑based prediction models also have a potential 
for universal implementation as a cost‑effective surrogate 
to genomics‑based biomarkers. Risk stratification that rely 
solely on clinical models may improve with quantitative 
imaging‑based biomarkers (radiomic signatures) in predicting 
outcome.[4]

However, to understand the radiomic features and their 
correlation to molecular changes in the tumor, there is a 
need for the development of robust image analysis methods, 
software tools and statistical prediction models. It will translate 
radiomic signatures into routine cancer care to support 
clinical decision‑making. Most of these radiomics analysis 
pipelines have been in practice in developed countries and 
their implementation in LMIC is almost absent. Results of a 
PubMed search of publications with keyword “Radiomics” in 
the last 5 years is shown in Figure 4. The figure clearly shows 
that dissemination of radiomics research to LMIC is currently 
limited. Radiomics research publications from the African 
continent, Mexico and the rest of Europe and Asia are <1% 
in the last 5 years and is shown as a pictorial representation 
in Figure 4.

The novelty of this work is that we have put together a 
radiomics framework that can be easily adopted to many 
radiation oncology centers. In this study, radiomics pipeline 
is presented that uses open‑source platforms end‑to‑end 
from tumour segmentation and feature extraction  (3D 
Slicer, Pyradiomics) to radiomics based model building and 
validation (Orange Data mining). The bespoke hybrid tumor 
delineation software has been developed in Python and it can 
be easily operated as a module within 3D Slicer. Pyradiomics 
follow feature definitions prescribed by the Imaging Biomarker 
Standardization that allows comparison and sharing of reported 
models.[19] The Orange data mining software[24] is simple with 
an easy to use interface which makes it be easily adoptable 
for both single institutional research and multi‑institutional 
collaborative work.[28] This study has evaluated the radiomic 
features in HNC in the Indian population for the first time in 
its history and compare it the radiomics signature that has been 
widely validated in other cohorts.[19,29,30]

In this study, a radiomics framework was tested in building 
outcome prediction models using machine learning of radiomic 
features that were derived from baseline planning CT and 
PET imaging data. The study included 31 HNC patients from 
single institution treated between 2017 and 2018 and who had 
baseline and postradiation follow up CT and PET scans. The 
tumor volumes were defined on the CT and PET images using 
the adaptive threshold segmentation method and analyzed 110 
radiomic features in each dataset, quantifying the differences 
in the tumor phenotypes based on shape, image intensity and 
texture. Only 3 CT radiomic features were selected following 

Table 2: Odds ratios  (per standard deviation increase) 
and area under the receiver operating characteristic 
curves with least absolute shrinkage and selection 
operator (L1) and ridge  (L2) logistic regression models

Radiomic features LASSO (L1) Ridge (L2)
MCC (GLCM) 3.33 3.06
SumEntropy (GLCM) 2.22 2.26
Sphericity (shape) 1.20 1.40
AUC 0.73 0.79
Classification accuracy 0.81 0.81
Precision 0.76 0.65
LASSO: Least absolute shrinkage and selection operator, AUC: Area 
under the receiver operating characteristic curve, MCC: Maximal 
correlation coefficient, GLCM: Gray level cooccurrence matrix

Table 3: Odds ratios  (per standard deviation increase) 
and area under the receiver operating characteristic 
curve with least absolute shrinkage and selection 
operator (L1) and ridge  (L2) logistic regression models 
for features from the radiomics signature by Aerts et  al.

Radiomic features LASSO (L1) Ridge (L2)
Energy (first order statistics) 1.43 1.63
Compactness (shape) 1.28 1.45
GrayLevelNonUniformity (GLRLM) 1.76 1.99
GrayLevelNonUniformity (wavelet‑HLH) 1.06 1.22
AUC 0.51 0.54
AUC: Area under the receiver operating characteristic curve, 
LASSO: Least absolute shrinkage and selection operator, 
GLRLM: Gray‑level run‑length matrix
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two LASSO based feature selection methods. None of the 
PET features was predictive of the loco‑regional failure in this 
cohort unlike the study reported by Bogowicz and Lambin.[31]

The clinical characteristics of the HNC1 and HNC2 cohorts 
from MAASTRO and VUMC included by van Griethuysen 
et  al.[19] were compared to the characteristics of patients 
in this study while validating the model. Similar to their 
study all patients included in this study had squamous cell 
carcinoma. The tumor types included by HNC1 were cancers 
of the oropharynx and larynx while HNC2 included only 
oropharyngeal tumors. In contrast, our study included more 
heterogeneity in the types of tumors. This is also representative 
of HNC seen in the Indian subcontinent. Cancers of the oral 
cavity and hypopharynx is notably more in our population 
compared to the West and this is captured in our study. The 
incidence is high due to the use of chewing tobacco.[11,13,32] 
Most of the patients (71%) were from T2–T3, unlike the two 
cohorts where there was almost equal distribution of patients 
from stages T1 to T4. No patient was included in stage I, 
16% stage II TNM grouping were included in this study in 

contrast to 19% and 8% Stage 1 and 8% and 19% Stage II in 
HNC1 in HNC2, respectively. This is indicative that patients 
present themselves at a much later stage in India compared to 
the West. Male preponderance is seen in our cohort with 90% 
being men which is truly representative of the trends seen in 
the country compared to 81% and 65% in HNC1 and HNC2, 
respectively. Only 66% of the patients had p16 testing which 
is a surrogate of HPV status unlike 100% in the other two 
cohorts. While the West has seen an increase in the prevalence 
of HPV related cancers this changing epidemiology has not 
been extensively studied in our population. Hence, this test 
is not routinely performed because the data is sparse and the 
clinical significance is currently unknown.[33,34] The treatment 
regime was the opposite of the HNC cohort where 74% of 
patients received radiation alone which is currently the standard 
practice and 26% had chemo‑radiation. In India, >65% follow 
the practice of the weekly Cisplatin regime.[33]

When the univariate analysis was performed on the clinical 
parameters none of the characteristics shown in Table  1 
showed any significant difference. Tumor volume alone 
showed significant difference between patients with and 
without loco‑regional recurrence (P = 0.003, Mann–Whitney). 
However, when a clinical model was built with volume as a 
single feature both the regression models L1 and L2 showed 
poor performance for this study cohort (AUC = 0. 3). There 
was a weak correlation between selected radiomic features 
and tumor volume  (r <  0.5, Spearman rank). When tumor 
volume was combined with the radiomics model and predictive 
performance dropped (AUC = 0.73 L1 and AUC = 0.75 L2) 
indicating that this feature was just adding more noise to the 
model.

In our study, we have used a semi‑automatic tumor volume 
delineation method using a framework developed in 3D Slicer 
and tumor volumes were verified by an expert clinician. 
Although it is not ideal, it is better than using manual 
contours that are not reproducible, which in turn affects the 
radiomic features. The feature extraction was performed 

Figure 2: Representative patient images for baseline CT  (top row) and 
PET (bottom row) with tumor defined using automated segmentation algorithm

Figure 1: Radiomics and machine learning pipeline for outcome (1‑year loco‑regional failure) prediction in head‑and‑neck cancer
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using Pyradiomics which makes it possible for comparison 
with existing radiomics signatures. For this study, the 
fixed bin width discretization of 64 and 128 for the CT and 
PET, respectively were used unlike the fixed bin size of 25 
employed similar to the study by Aerts et al.[20,25] Appropriate 
discretization of images avoids over or under binning of the 
image and help with noise reduction while doing texture 
analysis. There was no volume dependence of the selected 
radiomics features and when used in a larger validation cohort 
these features might have the potential to be independent 
predictive imaging biomarkers.

One of the several limitations of this study included large 
heterogeneity in image acquisition parameters primarily 
in the PET images, part of which was harmonized by 
resampling the data to a common voxel grid. However, 
none of the PET radiomic features was included in the 
final model as they were not highly ranked by both M1 
and M2 feature selection steps. Our sample size is small, 
because of our single‑institution retrospective study 
design. However, our single‑institution focus enabled 
us to acquire detailed information on the characteristics 
of the patients, namely, tumor stage, therapy details and 
patterns of failure. Although 1 year follow‑up may not be 
ideal, based on the study by Kissun et al.[35] the reported 
median time of recurrence in HNC was 8  months after 

the initial surgery and in majority of the patients  (90%) 
was within 2 years. Since this is only the discovery phase 
of the radiomic models we decided to include patients 
for whom outcome data were available from the first 
follow‑up visit. The results from these models will be 
tested in a larger cohort with much longer follow‑up. The 
retrospective nature of the work and the lack of external 
validation limits the generalizability of our results at this 
stage. However, this study draws attention to challenges in 
the application of imaging data science when investigating 
specific oncologic outcomes, including standardization and 
harmonization of radiomics pipelines in LMIC. Hence this 
study only provides preliminary discovery phase models 
and an external validation is necessary with a larger cohort. 
Our group has started recruiting patients on a large (>400) 
prospective observational trial to mitigate such limitations.

Conclusions

This study reported a framework for radiomics based outcome 
prediction modeling and was tested as a fundamental step 
in outcome prediction in locally advanced HNC. In this 
study, only CT‑based radiomic models were able to make 
a reasonable separation between patients with and without 
loco‑regional failure. Although the feasibility of the radiomics 
based prediction models has been demonstrated, additional 

Figure 4: Distribution of publications on radiomics in the last 5 years

Figure 3: The receiver operating curves (ROC) generated (a) for models trained using retrospective data (b) models tested using features reported 
in the Aerts’ signature for HNC

ba
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independent validation data is essential. This study’s results 
will be validated in the future prospective radiomics trial to 
develop clinical decision support tools.
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