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Abstract

Neural variability, or variation in brain signals, facilitates dynamic brain responses to ongoing

demands. This flexibility is important during development from childhood to young adulthood, a period

characterized by rapid changes in experience. However, little is known about how variability in the

engagement of recurring brain states changes during development. Such investigations would require the

continuous assessment of multiple brain states concurrently. Here, we leverage a new computational

framework to study state engagement variability (SEV) during development. A consistent pattern of SEV

changing with age was identified across cross-sectional and longitudinal datasets (N>3000). SEV

developmental trajectories stabilize around mid-adolescence, with timing varying by sex and brain state.

SEV successfully predicts executive function (EF) in youths from an independent dataset. Worse EF is

further linked to alterations in SEV development. These converging findings suggest SEV changes over

development, allowing individuals to flexibly recruit various brain states to meet evolving needs.
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Introduction

Neural variability describes variation in brain signals (1). Using a range of neuroimaging

modalities, studies have characterized neural variability in several ways. These include variability in

dynamic functional connectivity and trial-to-trial brain BOLD signals (2,3). Once considered a source of

measurement noise, neural variability is now appreciated for its ability to support executive functions

(EF;2). Specifically, increased neural variability allows the exploration of different brain network

combinations before adopting the most optimal one for the task at hand (2). Elevated neural variability

has been consistently linked to better performance in EF tasks (1,4–6).

Given the significant neurodevelopment and EF improvement during adolescence (7–10), the role

of neural variability is particularly crucial to consider during this critical life period. Perseverative

behavioral patterns observed in younger children give way to the more flexible responses seen in older

individuals across adolescent development (11,12). Adolescence is additionally characterized by rapid

changes in experiences and increased independence (13). These changes can translate into a higher

demand for flexibility to meet evolving needs. Development in neural variability may help meet these

unique challenges. Indeed, previous literature has reported brain signal variability increasing with age

during development (4,14). Age-related increases in functional connectivity pattern variability have been

observed in developmental populations (6,15,16). However, much remains unknown about variability

regarding brain states (i.e., activation or connectivity patterns recurring across time and task conditions),

an increasingly popular concept in neuroimaging research (17), in the developmental population.

Recent work has examined variability in brain states by studying how adolescents transitioned

from one brain state to another (5). However, it is unclear how variability in the continuous,

moment-to-moment engagement of any one given brain state changes with age and supports behavioral

maturation. Examining each brain state individually is important, as the developmental trajectory and

behavioral relevance of their engagement variability may vary. Answering these questions would require

the continuous tracking of multiple brain states simultaneously. As many brain dynamic methods tend to

characterize each time unit with only the dominant brain state, they do not permit temporal overlap in

brain state engagement. Thus, a moment-to-moment quantification of engagement for each brain state is

unavailable, making it challenging to assess its continuous engagement. As a result, the developmental

trajectory and behavioral relevance of brain state engagement variability (SEV) remain unknown.

We investigated these questions by capitalizing on a new multivariate computational framework

(18) that circumvents earlier limitations. Utilizing non-negative least squares regression, this approach not

only provides state engagement information at the resolution of individual time points, but also allows

temporal overlap in brain state recruitment. We leveraged this framework to estimate SEV in resting-state,

naturalistic, and task-based functional magnetic resonance imaging (fMRI) from two cross-sectional and

two longitudinal datasets. We began by investigating whether age-related changes in SEV appear and

generalize across paradigms. Sex differences in neurodevelopment exist (19). Using self-reported sex

information, we explored sex-by-age interactions in SEV. Next, we examined the relationship between
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SEV and EF in youth. To this end, predictive models of individual differences in EF based on SEV were

created using machine learning. Mediation models further tested the hypothesis that SEV would change

with age to support EF. Lastly, we studied whether larger alterations (i.e., the squared difference between

chronological and brain age) from typical SEV development were associated with differences in EF.
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Results

We first investigated SEV in two publicly available cross-sectional datasets, the Philadelphia

Neurodevelopmental Cohort (PNC; 20) and the Healthy Brain Network (HBN; 21). Resting-state fMRI

data from both datasets (PNC: N=1208, 658 females; HBN: N=1275, 491 females) were analyzed. We

additionally included HBN’s naturalistic fMRI data (N=1313, 505 females), which were collected while

participants watched a clip from the movie Despicable Me.

As both datasets were cross-sectional, we further validated our findings in two longitudinal

datasets, the IMAGEN study (22,23) and the Michigan Longitudinal Study (MLS; 24,25). Task-based fMRI

data collected during a cognitive control paradigm were analyzed (IMAGEN: Stop Signal; MLS:

Go/NoGo). For the IMAGEN cohort, longitudinal fMRI data were collected from 530 participants (319

females) at 14, 19, and 22 years old. Two different MLS cohorts were used: one including 103 participants

(40 females) aged 7.6 to 21.7 years with 479 total visits (MLS cohort 1), and the other comprising 150

participants (56 females) between 16.1 to 28.5 years of age with 639 total visits (MLS cohort 2).

To assess SEV, we first implemented our established pipeline to identify four canonical brain

states using nonlinear manifold learning and task-based fMRI data from the Human Connectome Project

(HCP) dataset (26,27). We used fMRI data from six tasks (motor, working memory, social, emotional,

relational, and gambling). As this dataset included tasks ranging from motor to cognitive and affective

paradigms, it has the potential to reveal brain states underlying a diverse set of cognitive processes.

Additionally, identifying brain states in another dataset avoids circular analysis and overfitting. Based on

their associated task conditions and demands, we labeled the identified brain states as fixation,

high-cognition, low-cognition, and cue/transition (Supplementary Material). The fixation state mostly
contained time points from the fixation condition. The high-cognition state included time points from

complex cognitive paradigms such as working memory, emotion, relational, gambling and social. The

low-cognition state included a large number of time points from the motor task. Finally, the cue/transition

state consisted mostly of time points from the cue condition. The activation of canonical functional brain

networks also followed what cognitive processes were associated with each state. For instance, the

high-cognition state showed frontoparietal network activation and default mode network deactivation

(Supplementary Material).
The continuous engagement of these four brain states was evaluated in the PNC, HBN, IMAGEN,

and MLS cohorts (Figure 1; for details, see 18). SEV was operationalized as the standard deviation of

moment-to-moment engagement across time.
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Figure 1. Study pipeline. We identified four recurring brain states using task-based fMRI data from the
HCP. These four brain states were then extended to the PNC, HBN, IMAGEN, and MLS datasets using a
previously established pipeline shown in B. To summarize, the representative time points from all four
states were regressed from each time point from the PNC, HBN, IMAGEN, and MLS datasets using
non-negative least squares regression. This step returned a beta coefficient for each state, indicating its
engagement at that time point. State engagement variability was computed as each participant's standard
deviation of beta coefficients across time. HCP, Human Connectome Project; PNC, Philadelphia
Neurodevelopmental Cohort; HBN, Healthy Brain Network; MLS, Michigan Longitudinal Study.

SEV increased with age across fMRI paradigms

In both PNC and HBN, we observed a positive association between age and SEV during

resting-state and movie-watching (MANOVA; PNC rest: F(4,1201)=20.793, p<0.001; HBN rest:

F(4,1268)=36.482, p<0.001; HBN movie: F(4,1305)=55.959, p<0.001). Post-hoc correlations highlighted

that this positive association can be found across states and cohorts (Figure 2). Nevertheless, these
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effect sizes demonstrated variations. Stronger effects were observed in HBN compared to PNC and in

movie compared to rest. The high-cognition and fixation states showed the greatest effects out of all brain

states examined.

Figure 2. State engagement variability increased with age in PNC and HBN. A shows the activation
patterns associated with the fixation, high-cognition, low-cognition, and cue/transition brain states. Across
all four brain states, we observed a positive association between age and state engagement variability in
PNC rest (B), HBN rest (C), and HBN movie (D). Results from Pearson correlation between state
engagement variability and age are also reported here.

Longitudinal changes in SEV

As cross-sectional data might not be sensitive to subtle developmental changes, we investigated

longitudinal changes in SEV by applying linear mixed-effects (LME) models to longitudinal fMRI data.

Data were collected at ages 14, 19 and 22 in the IMAGEN dataset. Fixation and high-cognition SEV was

greater at ages 19 and 22 compared to age 14 (Figure 3; Supplementary Table 3). Interestingly, no
significant age difference was found for low-cognition or cue/transition SEV (Figure 3; Supplementary
Table 3). SEV additionally did not differ between age 19 and 22 across all four states (Supplementary
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Table 3). These results extended our previous cross-sectional results, suggesting that SEV does not

increase with age indefinitely, but rather stabilizes around mid-adolescence. Importantly, the timing of this

asymptote may be brain state dependent.

Figure 3. State engagement variability in the IMAGEN dataset plotted by visit and sex. Data were
collected at ages 14, 19 and 22. Ages 19 and 22 showed greater fixation and high-cognition state
engagement variability than those aged 14. However, no significant age difference was observed for
low-cognition and cue/transition state engagement variability. Ages 19 and 22 did not differ significantly in
state engagement variability for any brain states examined.

This possibility was further explored in MLS, which included multiple visits from some participants

and allowed for the investigation of smoother trajectories. In the younger sample (MLS cohort 1; ages

7.6-21.7 years), SEV increased with age across all four states (fixation: beta=0.028, t-value(470.8)=5.07,

p<0.001; high-cognition: beta=1.916e-02, t-value(470.7)=5.321, p<0.001; low-cognition: beta=1.972e-03,

t-value(460.3)=2.002, p=0.046; cue/transition: beta=0.012, t-value(468.9)=3.670, p<0.001;

Supplementary Table 4 for other covariates; Supplementary Figure 1). However, consistent with our
prior observations in IMAGEN, SEV did not change significantly with age in the older sample (MLS cohort

2; 16.1-28.5 years; LME; fixation: beta=-0.001, t-value(584.6)=-0.246, p=0.806; high-cognition

(beta=0.0006, t-value(580.3)=0.191, p=0.849; low-cognition: beta=-0.0007, t-value(590.4)=-0.771,

p=0.441; cue/transition: beta: -0.002, t-value(587.793)=-0.514, p=0.607; Supplementary Table 5 for
other covariates). To visualize this developmental trajectory, we combined both MLS cohorts. These

trajectories (Figure 4) suggest that SEV follows a nonlinear trajectory. Observations across four

independent datasets aligned to suggest a general pattern of SEV first increasing with age before

stabilizing around mid-adolescence. However, specific timings of stabilization may vary by brain state.
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Figure 4. State engagement variability trajectories plotted by sex using data from the MLS datasets. The
smoothed curve was generated using the Locally Weighted Least Square Regression technique in R’s
ggplot2 package. Activation patterns associated with each brain state are again shown above the
trajectories. Across all four brain states, state engagement variability increased with age before reaching
its peak in adolescence. Plotting trajectories by group additionally indicated that female participants
appeared to reach a stabilization point before male participants.

Timing of SEV stabilization varied by self-reported sex

As previous work has noted sex differences in brain development, we further probed sex effects

on SEV using self-reported sex information. A significant age-by-sex interaction was found in PNC

(MANOVA; F(4,1201)=3.838, p=0.004; Supplementary Table 6) but not in HBN (MANOVA; rest:

F(4,1268)=0.54, p=0.706; movie: F(4,1305)=0.394, p=0.813; Supplementary Table 6). However, age
differences between the two datasets likely contributed to this discrepancy (two-sample t-tests: p<0.001;

PNC age: 14.688±3.321; HBN rest age: 11.693±3.39; HBN movie: 11.361±3.606). Compared to HBN, the

PNC cohort included more participants in late adolescence. The age-by-sex interaction in PNC likely

reflects potential group differences occurring later in development, perhaps when individuals reach the

stabilization point previously noted in our longitudinal results (Figure 4).
In support of this hypothesis, we observed a significant interaction between sex and later visit on

SEV across all four states in IMAGEN (LME; interaction between sex and visit at 22 years old; fixation:

beta=5.390e-02, t(1056)=3.429, p<0.001; high-cognition: beta=3.741e-02, t(1056)=3.609, p<0.001;

low-cognition: beta=1.190e-02, t(1056)=3.928, p<0.001; cue/transition: beta=3.425e-02, t(1056)=3.496,

p<0.001; see Supplementary Table 7 for interaction between sex and visit at 19 years old). These
results provide further evidence of potential sex differences occurring in late adolescence.

To further probe whether there were sex differences in the timing of when SEV peaked, we

performed post-hoc analysis in the MLS dataset, which included dense sampling across various ages.

The peak age was first identified for each sex (implemented using segmented.lme in R; Table 1), and the
difference between the two sexes was calculated. Next, the peak age difference was recalculated 500

times after shuffling self-reported sex across participants. We subsequently determined the p-value by

counting the number of permutation tests yielding a larger difference than the observed value.

Permutation testing revealed that female participants arrived at the peak age earlier for the fixation brain
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state (p<0.001) but not for the other brain states (high-cognition: p=0.82; low-cognition: p>0.999;

cue/transition: p=0.154). It is important to note here that the two groups showed more overlap in

variations around the peak age for the high-cognition, low-cognition, and cue/transition brain states

(Figure 4), potentially contributing to the lack of sex differences observed.

Table 1. Age at transition point in state engagement variability trajectory by sex (MLS)

Fixation High-cognition Low-cognition Cue/transition

Male 17.5764 15.8559 13.6781 17.4534

Female 16.0619 15.8555 13.6784 16.4343

SEV predicts EF in development

Our findings revealed a remarkably consistent pattern of SEV changing with age. As development

is characterized by dramatic changes in experiences, one follow-up question is whether variations in SEV

have any behavioral implications. We investigated the association between SEV and EF in the two

cross-sectional datasets. EF was evaluated using the NIH Toolbox and the Penn Computerized

Neurocognitive Battery (CNB) in HBN and PNC, respectively. A summary EF score was extracted using

Principal Component Analysis (PCA) on scores from the different EF tasks (see Methods;
Supplementary Figure 2). In the PNC dataset, the 1st EF component accounted for 48.166% of the

variance. The 1st EF component accounted for 65.379% and 68.205% of the variance in the HBN rest

and movie cohorts, respectively.

First, we examined whether SEV can predict EF in previously unseen individuals from an

independent dataset. A linear model was trained to predict EF using SEV in either dataset before being

applied to the other dataset. To keep the fMRI paradigm consistent in both the training and testing

datasets, we analyzed the PNC and HBN rest cohorts. Predicted EF showed a significant positive

correlation with observed EF (Pearson correlation; model tested in PNC: r=0.160, p<0.001; model tested

in HBN: r=0.202, p<0.001). We successfully predicted EF with relatively few features included in the

models (see model parameters in Supplementary Table 8), suggesting that SEV closely supports EF

performance. Importantly, these consistent results were obtained from two unharmonized datasets

evaluating EF utilizing different tools.

SEV mediates the association between age and EF

As EF performance tends to improve with age in development, we next tested whether SEV

mediated the relationship between age and EF (28). For this analysis, an overall SEV measure was

extracted by performing PCA on the four SEV measures. The 1st SEV PCA component accounted for

92.786%, 91.657%, and 94.212% of the variance for PNC rest, HBN rest, and HBN movie, respectively.

Pearson correlations were performed between variables before they were entered into a mediation model.
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In line with previous literature (10,29), EF scores increased with age (PNC: r=0.498, p<0.001; HBN rest:

r=0.631, p<0.001; HBN movie: r=0.685, p<0.001). Overall SEV positively correlated with EF when

controlling for age (PNC: r=0.089, p=0.002; HBN rest: r=0.071, p=0.015; HBN movie: r=0.12, p<0.001).

Mediation models revealed that overall SEV partially mediated the relationship between EF and age

across cohorts (PNC: beta=0.01, p-value=0.001; HBN rest: beta=0.13, p-value=0.018; HBN movie:

beta=0.29, p-value=0.0003; direct effect reported in Figure 5).

Figure 5. Overall state engagement variability partially mediated the relationship between age and EF in
the PNC rest A), HBN rest B) and HBN movie C) cohorts. a: age’s effect on state engagement variability;
b: state engagement’s effect on EF; c’: the direct effect; a*b: the indirect effect. Mediation analysis was
performed using the Mediation Toolbox (27).

Increased brain age alteration was linked to lower EF performance

The previous analyses presented reliable evidence demonstrating that SEV changed with age

and supported EF development. SEV’s robust developmental trajectory allowed us to investigate whether

alterations from typical SEV development related to individual differences in EF. We measured alteration

from typical development by the squared difference between chronological age and brain age estimated

from SEV. Larger alterations were interpreted as appearing younger (i.e., delayed development) or older

(i.e., accelerated development) compared to one’s peers regarding each individual’s SEV profile. Like the

previous analysis, linear models were trained to predict age with SEV measures in the PNC and HBN rest

cohorts (Supplementary Table 9). Brain age correlated significantly with actual age (tested in PNC:
r=0.204, p<0.001; tested in HBN: r=0.269, p<0.001; Figure 6A). Both datasets exhibited a significant
negative correlation between brain age alteration and EF (tested in PNC: r=-0.242, p<0.001; tested in

HBN: r=-0.27, p<0.001; Figure 6B) when controlling for chronological age. These results indicate that
both accelerated and delayed SEV development are associated with lower EF performance.
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Figure 6. Age predictions using state engagement variability measures. A) Brain age predicted by state
engagement variabilities was significantly associated with chronological age. B) Individuals with state
engagement variabilities resembling someone older or younger showed worse EF performance. Age was
regressed from both EF and age alteration before plotting. Instead of the actual values, residuals from the
regressions were shown here to match our partial correlation analysis. Results from PNC and HBN were
shown in blue and green, respectively.
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Discussion

In over 3000 participants from four independent datasets, variability in the engagement of

recurring brain states followed a nonlinear trajectory characterized by an initial stage of age-related

increases before peaking in mid to late adolescence. Consistent findings generalized across resting-state,

naturalistic, and task-based fMRI paradigms, suggesting that changes in SEV characterize the developing

brain. Furthermore, SEV was closely associated with individual differences in EF, predicting EF

performance in previously unseen individuals and partially mediating the relationship between age and

EF. Furthermore, alterations from typical development of SEV were related to lower EF performance. Our

results extend previous literature by supporting how neural variability allows the brain to respond

dynamically to increasingly complex demands during development.

A ubiquitous developmental trajectory observed in SEV
Our findings echo previous work reporting increased neural variability in older adolescents and

young adults (4,11,14). While SEV increased with age in childhood and early adolescence, it stabilized

around mid-adolescence. The initial growth of SEV can provide individuals with greater cognitive flexibility

to support information processing, which is vital for increased exploration and enhanced learning about

the changing world. However, future work is needed to investigate whether elevated SEV emerges

naturally or serves as a response to the heightened variability in experiences during development.

The developmental trajectory of SEV demonstrated characteristics consistent with known

trajectories of other brain measures. Being able to track each individual brain state continuously revealed

that SEV developmental trajectory may vary by brain states. Specifically, low-cognition and cue/transition

brain states reached the stabilization point before the fixation and high-cognition brain states.

Low-cognition and cue/transition brain states mainly engaged lower-level or unimodal networks such as

the motor and visual systems (Supplementary Table 2). The fixation and high-cognition brain states
recruited higher-level networks in the association cortex, including the default mode and the frontoparietal

networks (Supplementary Table 2). Brain development follows a hierarchical axis from the sensorimotor

systems to the association cortex (30–33). The earlier maturation in the low-cognition and cue/transition

brain states coupled with relatively later development in the fixation and high-cognition brain states

dovetails with those observations.

We observed sex differences such that female participants appeared to reach the stabilization

point before male participants for the fixation brain state. This finding aligns with prior evidence of

sex-stratified developmental trajectories of both whole-brain and subcortical gray matter volume (19,33).

The later peaks in SEV in male participants also aligned with studies demonstrating similar lags in

resting-state functional connectivity stability (34), puberty emergence as well as some elements of EF

performance (e.g., impulse control; 35) in male adolescents. One interesting future research direction is to
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probe whether sex differences in peak timing affect the emergence of disorders with significant sex

differences in prevalence (36).

While the current study focused on development, future work could extend these trajectories into

adulthood. Since the samples here mainly included adolescents, it is not immediately clear whether the

trajectory follows an adolescent emergent (i.e., trajectory peaks at adolescence and stabilizes in

adulthood; 37) or adolescent-specific trajectory (i.e., trajectory peaks in adolescence and falls in

adulthood; 37). Our previous work found that SEV decreased with age in adult participants with and

without psychiatric disorders (18). These preliminary results suggest that SEV might follow an

adolescent-specific or inverted-U shape trajectory. However, additional research is needed to study SEV

across the lifespan and its implications for EF changes in aging populations.

SEV supports EF: a trait-like association
Here, we provided three lines of evidence demonstrating a close association between SEV and

EF. SEV predicted EF and partially mediated the association between EF and age. These findings are

consistent with previous studies showing a positive relationship between neural variability and faster,

more accurate, and more stable performance in a range of tasks (1,4–6,38). As these associations were

observed between behaviors collected outside the scanner and brain dynamic measures extracted from

resting-state, naturalistic and task-based fMRI, SEV likely reflects a trait characteristic with important

behavioral relevance.

A natural conclusion from these results is that increased SEV is associated with better cognition.

However, the on-time development of SEV is also important, with accelerated and delayed SEV

development linked to lower EF performance scores. This Goldilocks effect was observed in two

independent datasets with external validation. One interesting consideration here is what contributes to

alterations from typical development. Accelerated and delayed development in brain structure and

functional connectivity have been associated with various risk factors, including parental deprivation, low

socioeconomic status, preterm birth, childhood abuse, and stress (39–43). Factors such as social

structure, community violence, and marginalization, that can be harder to measure, can also play a role in

brain development (44). Delineating how SEV relates to environmental factors and how these risk factors

influence neural variability remains an important future direction.

It is also important to acknowledge that alterations from typical development may be adaptive in

ways not captured by the EF tasks. Such alterations may be a manifestation of an adaptive response

developed in the context of adversity exposure (45,46). For instance, youth may establish accelerated

SEV to cope with the demands of stress or trauma exposure. Future research will be important to better

understand the function of alterations in the pace of developmental timing of SEV. In the case of

accelerated development, while higher variability may increase noise and hinder the distinction between

meaningful and irrelevant stimuli during an EF task, it may also facilitate more rapid responding in

unpredictable contexts. Notably, recovery from stress-related functional network alterations has been
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observed after stress removal (47). As increased plasticity during development confers substantial

potential for change (44), alterations in SEV development and their behavioral implications will likely vary

as adolescents continue to be exposed to new experiences.

Limitations and future directions
The current study provides new insight into how neural variability changes with age and supports

EF, but several limitations should be considered. What causal factors underlie the change and peak in

SEV is unclear. Stabilization in SEV may accompany other important biological events like puberty.

Further work using longitudinal datasets with Tanner staging information is needed to better understand

the observed sex differences.

Furthermore, we identified recurring brain states in the HCP dataset. It was selected for its

potential to uncover brain states underpinning a range of processes, as it included paradigms spanning

low-level to high-level functioning. However, as the HCP dataset mainly recruited adolescents and adult

participants, it did not share much age overlap, especially with participants in the PNC and HBN datasets.

Age-related changes in SEV could simply reflect adolescents’ brain states becoming more adult-like (48).

If true, our results suggest that the developmental timing of when this occurs has behavioral relevance

and may vary across networks. As densely sampled neuroimaging data become available, identifying

brain states within each individual and extracting a personalized measure of variability may become a

possibility for future research. Such studies will also allow the investigations of whether the neural

variability characteristics reported here may be observed in other brain states.

In the current study, we did not explicitly exclude individuals who were at high risk or reported a

clinical diagnosis. We aimed to understand SEV better by including a more diverse set of participants.

Our sensitivity analysis additionally provided preliminary evidence that our result remained consistent

even when clinical diagnosis was included in the model (Supplementary Materials). However, since
many developmental and psychiatric disorders emerge during adolescence (49), it remains an interesting

research direction to explore whether alterations from typical developmental trajectories of SEV might

co-occur with symptom onset.

We leveraged a new computational framework to investigate variability in moment-to-moment

state engagement during development. Across four independent datasets, we obtained reliable findings

demonstrating that SEV changed with age. Its developmental trajectory followed the

sensorimotor-to-association-cortex developmental axis and demonstrated sex differences. SEV

additionally has important behavioral relevance. Notably, alterations from a typical developmental

trajectory of SEV were linked to lower EF scores. These findings offer a new perspective on how

variations in neural variability during development can contribute to behavioral changes.
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Methods:

Datasets and participants

This study analyzed two cross-sectional (PNC and HBN) datasets and two longitudinal (MLS and

IMAGEN) neurodevelopmental datasets. PNC releases 1–2 and HBN releases 1–10 were included. Since

two resting-state runs were available from HBN, we selected the one with the lower mean framewise

displacement (MFD). Multiple runs of Go/No-Go were collected for MLS. However, only the first run was

analyzed here to retain as many visits as possible while keeping the run number consistent across

participants. For the IMAGEN cohort, we only included participants with all three visits and used all of

their available Stop Signal data. No additional selection was performed for PNC rest and HBN Despicable

Me movie data (only one run of data was collected).

FMRI data preprocessing

The acquisition parameters for PNC, HBN, MLS, and IMAGEN have been detailed elsewhere

(20,22–25,33). We applied the same standard preprocessing procedures described in previous work to

the structural and functional data from all datasets (50). Structural data was nonlinearly registered to the

standard MNI-152 space following brain extraction with OptiBet. We then performed slice time (in PNC

and MLS only) and motion correction on the fMRI data using SPM8 before linearly aligning it to the

structural data. Additional data cleaning was carried out in BioImage Suite. This included the regression

of covariates of no interest, including linear and quadratic drift, a 24-parameter model of motion, and

mean white matter, cerebrospinal fluid, and gray matter signals. We additionally temporally smoothed

(cutoff frequency approximately at 0.12Hz) and extracted time series data using the Shen-268 atlas.

Additional quality control criteria are summarized in the Supplementary Material. Different motion

thresholds were adapted to mitigate artifacts across datasets. For resting-state analysis, time points with

over 0.45 framewise displacement were censored. Participants with over 20% of their time points

scrubbed due to motion were excluded from further analysis. For the HBN movie, MLS Go/No-Go, and

IMAGEN Stop Signal fMRI data, we avoided scrubbing to preserve the continuous nature of the

paradigms. Individuals with MFD over 0.25 were excluded from the HBN movie and IMAGEN Stop Signal

cohorts. Participants with MFD over 0.2 were removed from the MLS Go/NoGo cohort. Children and

adolescents often showed higher levels of motion. Obtaining consistent results with different motion

exclusion criteria suggests that our findings are likely to be robust to motion-induced artifacts.

After these exclusion criteria, 1208 PNC participants (female: 658; age: 14.688±3.321; age range:

8-21), 1275 HBN resting-state participants (female: 491; age: 11.693±3.39; age range: 5.96-22.07), 1312

HBN movie participants (female: 505, age: 11.361±3.606; age range: 5.13-22.07), 103 MLS cohort 1

participants (female: 40; ages 7.6-21.7 years), 150 MLS cohort 2 participants (female: 56; 16.1-28.5

years), and 530 IMAGEN participants (female: 319; data collected at 14, 19 and 22 years old) were

included in our analyses.
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Variability in state engagement

A previously established approach identified a set of canonical brain states (27). Nonlinear

manifold learning was used to reduce and project task-based fMRI data from the HCP into a

lower-dimensional space. Time points showing similar activation patterns were located closer to each

other. We then identified four brain states with distinct activation patterns using K-means clustering.

These brain states reappeared across various task conditions and time points. Based on the dominant

task conditions associated with time points from each brain state, we characterized them as fixation,

high-cognition, low-cognition, and cue/transition. Overall, the brain networks linked to each brain state

aligned with its associated cognitive processes (Supplementary Material).
State engagement variability was then evaluated using a recently introduced framework (18;

Figure 1). This approach allows brain states to overlap spatially and temporally to provide a continuous,
moment-to-moment measure of brain state engagement. Using this approach, the recurring brain states

identified earlier were extended to PNC, HBN, MLS, and IMAGEN with non-negative least squares

regression. Specifically, each brain state’s representative time point was regressed from each time point

of interest from the three datasets. This step returned a beta coefficient for each state at each time point,

indicating its engagement at that moment. Continuous engagement assessment allows us to examine

variability in engagement for each brain state. State engagement variability was operationalized as the

standard deviation of each state’s beta coefficients over time.

We used this approach to extract state engagement variability measures from all datasets

analyzed here. MANOVA was used to investigate main age, sex, and age-by-sex interaction in PNC and

HBN, whereas LME was used for the longitudinal MLS and IMAGEN cohorts. We included age and sex

as fixed effects and participants as random effects.

Mediation analysis with EF

To understand the behavioral implications of state engagement variability changing across

development, we studied its association with EF. CNB tasks focusing on the complex cognition and

executive control domains were analyzed here (see Supplementary Material for the specific tasks
included). An efficiency score was computed for each task based on previous literature (51). Response

and accuracy scores were first standardized across participants. We then multiplied the response score

by -1 before summing it with the accuracy score. For HBN, the standardized scores from the Card Sort,

Flanker, List Sorting Working Memory, and Pattern Comparison Process Speed paradigms were used.

After removing individuals with missing behavioral data, 1161 PNC, 1189 HBN rest, and 1229 HBN movie

participants were included in the EF and state engagement variability analysis.

We performed PCA on the EF scores within each cohort to extract a summary measure. An

additional PCA was run on the four state engagement variability measures to estimate overall state

engagement variability. We then utilized partial correlation analysis to investigate whether EF was
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associated with overall state engagement variability, controlling for age. The mediation model

(implemented with the Mediation Toolbox; 28) explored whether overall state engagement variability

mediated the changes in EF with age.
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