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Introduction

pH governs most, if not all, processes of life. In fungi, ambient pH acts as a potent regulator of

growth and development [1]. Studies conducted primarily in the 2 model organisms Saccharo-
myces cerevisiae and Aspergillus nidulans have cemented our understanding of how fungi sense

and respond to pH. More recently, pH has emerged as a key player in the control of fungal

pathogenicity. Infections caused by fungi are often associated with a pH shift in the surround-

ing host tissue [2–4]. Extracellular alkalinization contributes to fungal virulence, but the

underlying mechanisms are not fully understood. Recent studies have revealed new and unex-

pected ways by which fungi induce host alkalinization to increase their infectious potential.

Here, we provide a brief overview of the mechanisms that govern pH signaling in fungi and

highlight how recent findings have advanced our understanding of pathogen-induced alkalini-

zation and its role during infection. We also discuss the emerging view that intracellular pH

(pHi) acts as a master switch to govern fungal development and pathogenicity.

Alkaline pH sensing and adaptation

High pH imposes severe stress on the fungal cell, including difficulties in the acquisition of

nutrients or reduced availability of essential elements, such as iron or copper [5]. Fungi

respond to alkaline pH through the dedicated Pal/Rim signaling pathway, which is widely con-

served among ascomycetes and basidiomycetes and essential for growth at high pH [1, 6]. Sig-

naling upon a shift to alkaline pH is initiated by the 7-transmembrane domain receptor PalH/

Rim21. How exactly PalH/Rim21 senses changes in pH is not fully understood. Recent work

in S. cerevisiae suggests that the C-terminal cytosolic domain detects altered lipid asymmetry

of the plasma membrane as a result of alkaline-induced depolarization [7]. At high pH, PalH/

Rim21 mediates ubiquitination and phosphorylation of its interaction partner, the α-arrestin

PalF/Rim8, resulting in endocytosis of the receptor complex and recruitment of the endosomal

sorting complexes required for transport (ESCRT) scaffold to plasma membrane-associated

foci [1]. Ultimately, this leads to processing and activation of the zinc finger transcription fac-

tor PacC/Rim101. In A. nidulans, PacC is cleaved from the full-length 72-kDa to the 27-kDa

active form by 2 successive C-terminal proteolytic cleavages, the first of which is carried out by

the signaling protease PalB. Processed PacC protein functions both as an activator of alkaline-

expressed genes and a repressor of acidic-expressed genes, thereby orchestrating the cellular

response to alkaline pH [6].

Ambient pH adaptation ensures the expression of the adequate set of genes at a given pH.

This is crucial during fungal infection to ensure, for example, the correct deployment of viru-

lence factors that function at a specific pH [2, 8, 9]. The Pal/Rim pathway was shown to be

essential for infection in a number of fungal pathogens of humans, such as Candida albicans,
Fusarium oxysporum, and A. fumigatus [8, 10, 11]. In plant pathogenic fungi, PacC contributes
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to virulence in necrotrophic or postharvest pathogens [12–14] but is dispensable in others,

such as the hemibiotrophic root-infecting fungus F. oxysporum [15]. These results reveal con-

trasting roles of PacC, most likely associated with distinct modes of host infection of the differ-

ent phytopathogens.

Alkalinization mechanisms

Fungal pathogens have been known for decades to adjust the extracellular pH in order to

increase their infectious potential [3, 16]. Alkalinization of the plant host was first reported in

a number of fruit-infecting species, such as Colletotrichum spp. and Alternaria alternata [3,

17], and more recently in the root-infecting fungus F. oxysporum [18]. These fungi are able to

trigger an increase of more than 2 units in the pH of the surrounding fruit tissue or the rhizo-

sphere, respectively. Similarly, the human pathogen C. albicans raises the pH in host macro-

phages by several units, resulting in neutralization of the normally acidic phagosome [19, 20].

The main mechanism of host alkalinization reported in these fungal species is the release of

ammonia, which acts as a weak base [17, 19]. Concentrations of up to 5 mM ammonia have

been measured in colonized fruit tissue [21]. The exact mechanism that leads to extracellular

accumulation of ammonia remains to be elucidated. Work in S. cerevisiae, C. albicans, and Col-
letotrichum gloeosporioides showed that this process requires the regulated uptake of amino

acids via amino acid permeases or their mobilization from vacuolar stores, followed by catabo-

lism through different routes involving steps of deamination [19, 22, 23]. In C. gloeosporioides,
the transformation of glutamate to α-ketoglutarate and ammonium was shown to be carried

out by the NAD+-specific glutamate dehydrogenase Gdh2 [22]. A second requirement for

ammonia-mediated alkalinization is carbon deprivation. Presumably, a lack of carbon pre-

vents the efficient use of ammonia for biosynthesis of amino acids and nucleotides, favoring its

accumulation [19, 23]. To protect the cell from the toxic effects, ammonia is released either by

passive diffusion or through the action of transporters, such as the members of the Ato protein

family [19, 24, 25]. The precise mechanisms of ammonia extrusion during alkalinization

remain to be determined.

Phytopathogens have been traditionally classified into acidifiers and alkalinizers based on

their strategy to either decrease or increase the pH of the surrounding host tissue during infec-

tion [3]. However, this distinction might be less clear-cut than previously assumed. A recent

study involving different fruit-infecting fungi revealed that each of them could induce either

alkalinization or acidification of the environment, depending on the availability of carbon.

Carbon limitation triggered extracellular accumulation of ammonia and alkalinization,

whereas an excess of carbon induced acidification through the release of gluconic acid [23].

These findings are of biological relevance because pathogens are likely to encounter different

levels of carbon availability, depending on the host niche or the stage of infection (biotrophic

or necrotrophic). For example, a postharvest pathogen will be exposed to gradually increasing

sugar levels as the fruit ripens and therefore may undergo a switch from alkalinization to acidi-

fication during the infection process.

To efficiently alkalinize the plant tissue through the release of ammonia, fungal pathogens

must first build up a significant amount of hyphal biomass. How, then, is alkalinization

achieved during early stages of infection when only a low number of hyphae are present in the

host? To overcome this limitation, some biotrophic and hemibiotrophic pathogens have co-

opted a pH regulatory mechanism that is naturally present in the plant host. F. oxysporum was

recently shown to secrete a functional homologue of Rapid ALkalinizing Factor (RALF), a fam-

ily of conserved plant regulatory peptides [26]. Similar to plant RALFs, the Fusarium RALF

(F-RALF) peptide triggers rapid alkalinization of the apoplast [18]. Isogenic F. oxysporum
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mutants lacking functional F-RALF failed to induce root alkalinization and showed markedly

reduced virulence in tomato plants. Intriguingly, these strains also provoked a strong host

immune response. F-RALF appears to target the plant receptor-like kinase FERONIA, which

also mediates responses to endogenous plant RALF peptides. An Arabidopsis mutant defective

in FERONIA failed to respond to fungal F-RALF and displayed enhanced resistance against

F. oxysporum [18]. While the details on the mode of action of F-RALF remain to be elucidated,

it was recently shown that endogenous RALF–FERONIA signaling leads to inactivation of the

plasma membrane H+-ATPase AHA2 and inhibition of plant cell elongation [27]. Moreover,

FERONIA integrates signals from other plant hormones, such as auxin and abscisic acid [28].

Intriguingly, fungal RALF homologues are found in phylogenetically distant species, spanning

both ascomycetes and basidiomycetes as well as hemibiotrophs and biotrophs [18, 29]. This

taxonomically discontinuous distribution suggests that co-option of FERONIA by fungal

RALF peptides was acquired multiple times during evolution. In summary, these studies illus-

trate how fungal pathogens have evolved multiple ways to manipulate host pH during different

stages of infection (Fig 1).

How alkalinization controls pathogenicity

One of the key questions is how an increase in host pH induced by the pathogen promotes

infection. Different mechanisms have been proposed, based either on the host or the fungal

cell machinery. For example, ammonium secretion by Colletotrichum coccodes was shown to

Fig 1. Host alkalinization drives virulence in fungal pathogens. During infection, fungal pathogens induce alkalinization of the surrounding host

tissue through regulated release of ammonia and, in certain phytopathogens, by secreting small regulatory peptides that mimic plant RALFs (left

panel). The resulting increase in extracellular pH activates the fungal IG MAPK cascade, likely via modulation of pHi, to trigger phosphorylation of the

IG MAPK and morphogenetic transition towards infectious growth (right panel). Yellow color denotes acidic pH, while purple denotes neutral to

alkaline pH. IG, invasive growth; MAPK, mitogen-activated protein kinase; pHi, intracellular pH; RALF, Rapid ALkalinizing Factor.

https://doi.org/10.1371/journal.ppat.1006621.g001
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activate plant NADPH oxidases and to enhance host cell death [30]. On the other hand, alka-

line pH triggers PacC/Rim101-mediated expression of fungal genes encoding virulence factors,

such as the cell wall–degrading enzymes pectate lyase and endoglucanase from C. gloeospor-
ioides, which display maximum activity at alkaline pH typically observed in decaying fruit tis-

sue [2]. C. albicans PHR1, a gene encoding a cell wall remodeling β(1,3)-glucanosyltransferase,

which is fundamental for host tissue adhesion and invasion, is up-regulated at alkaline pH via

Rim101 [31].

Alkalinization has also been associated with infection-related morphogenetic changes.

Ammonia release during germination of C. gloeosporioides conidia led to enhanced formation

of specialized infection structures called apressoria [21]. In C. albicans, an upshift in pH pro-

motes the transition from the unicellular yeast to the filamentous hyphal form [4, 8, 19]. This

morphogenetic switch, which is critical for virulence in mammalian hosts, is mediated by a

number of cell signaling pathways, including the Pal/Rim route and the invasive growth (IG)

mitogen-activated protein kinase (MAPK) cascade [8, 32].

The IG MAPK pathway is broadly conserved in fungi and essential for infection in a wide

range of plant pathogens [33]. A recent study in F. oxysporum revealed that extracellular

alkalinization triggers rapid phosphorylation of the IG MAPK, leading to enhanced IG and vir-

ulence in tomato plants (Fig 1) [18]. Collectively, these studies show that alkalinization pro-

motes infection-related fungal development and morphogenesis through conserved signaling

pathways, such as the Pal/Rim or the IG MAPK cascade, although the cellular mechanisms

linking the pH shift to MAPK activity remain to be elucidated.

pHi: A master switch for pathogenicity?

In contrast to ambient pH, pHi tends to be constant and tightly regulated [34]. Nevertheless,

rapid changes in pHi can occur in response to different stimuli, such as shifts in extracellular

pH or nutrient status [35]. For example, a rapid and transitory decrease of pHi upon extracel-

lular acidification was detected in an Aspergillus niger strain, expressing the pH-sensitive green

fluorescent protein (GFP) variant pHluorin [36]. It is increasingly appreciated that pHi acts as

a general regulator of cellular functions, such as growth and proliferation [37], life span [38],

and nutrient response [39]. So far, the role of pHi in fungal infection has not been examined in

detail, but it is conceivable that it could act as a signal linking extracellular alkalinization to

activation of the IG MAPK and pathogenicity (Fig 1).

Two major mechanisms for pHi regulation have been reported in fungi, both based on

conserved proton-pumping ATPases. The primary determinant of cytosolic pH is Pma1, an

essential H+-ATPase and the most abundant plasma membrane protein in S. cerevisiae. Pma1

homologues are found in all fungi, as well as in plants. The second mechanism is the vacuolar

ATPase (V-ATPase), a multiprotein complex that mediates acidification of organelles, such as

vacuoles, endosomes, or the Golgi [34]. Pma1 and V-ATPase are often coregulated, for exam-

ple in response to sudden shifts in ambient pH or glucose levels. In S. cerevisiae, high glucose

levels lead to the activation of Pma1 via phosphorylation of conserved C-terminal residues and

also promote assembly of the V-ATPase complex. By contrast, glucose depletion results in

Pma1 autoinhibition and disassembly of the V-ATPase complex, concomitant with an acidifi-

cation of the cytosol [34, 39]. As a general rule, activation of these proton-pumping ATPases

leads to a pHi increase due to increased proton export, whereas their inhibition triggers intra-

cellular acidification.

Meanwhile, a link between H+-ATPases and virulence is beginning to emerge. In the 2

dimorphic fungi Histoplasma capsulatum and C. albicans, mutants defective in V-ATPase were

blocked in the yeast-hypha transition and showed attenuated virulence in a murine infection
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model [40, 41]. Likewise, a strain of the rice blast fungus Magnaporthe oryzae lacking a subunit

of the V-ATPase complex exhibited reduced vacuolar acidification and produced small, non-

functional apressoria. Interestingly, the mutant was unable to cause disease even when inocu-

lated through wounds, suggesting that V-ATPase is not only required for infection-related

morphogenesis but also for additional pathogenicity functions [42]. Recently, a paralog of

Pma1 named Pma2 was identified during 2 independent genetic screens for pathogenicity

genes in M. oryzae and Colletotrichum higginsianum [43, 44]. In contrast to pma1, which is

constitutively expressed, pma2 was up-regulated specifically during apressoria formation and

infection [43, 44]. A deletion mutant of C. higginsianum lacking pma2 failed to penetrate the

host plant, consistent with a crucial role of this H+-ATPase in fungal virulence [43]. In M. ory-
zae, pma2 expression was up-regulated by ammonia [45], suggesting that pma2 expression

during infection might be activated by pathogen-induced alkalinization. Pma2 is structurally

related to its broadly conserved paralog Pma1 but exhibits some key differences, such as the

lack of conserved phosphorylation sites at the C-terminus, which could be related to the differ-

ential regulation during infection. Interestingly, the Pma2 clade is present in many phytopath-

ogenic ascomycetes and absent in nonpathogenic species. Thus, the acquisition of a second

plasma membrane H+-ATPase, in addition to Pma1, with a specific role in virulence, appears

to represent a common strategy of ascomycete pathogens. Enhanced activity of Pma2 and

V-ATPase during infection, with the concomitant rise of pHi, could trigger conserved compo-

nents of the pathogenicity signaling machinery, such as the IG MAPK cascade.

Future challenges

While our understanding of the role of alkalinization in fungus–host interaction has advanced

considerably, important questions remain. For example, the precise mechanism mediating the

release of ammonia from the fungal cell remains to be established. Further research is also

needed to elucidate the pH-sensing processes that link extracellular alkalinization to known

pathogenicity signaling modules, such as the Pal/Rim pathway or the IG MAPK cascade.

Besides the plasma membrane protein PalH, whose precise mode of pH sensing remains to

be defined, additional pH sensors must exist. Some of these may be intracellular, in line with

the emerging role of pHi as a master regulator of fungal development and virulence. The dis-

covery of novel pH-sensing and regulatory components will likely require forward or reverse

genetic screens in fungal model organisms, such as S. cerevisiae or Neurospora crassa, which

could be based on conserved downstream readouts, including MAPK cascades. However,

these approaches might be made difficult by the essential nature of some of the pH regulatory

genes, as exemplified by the H+-ATPase Pma1. The exciting discovery that fungi highjack

plant regulatory peptides to enhance alkalinization adds yet another example to the ongoing

arms race between pathogen and host and may pave the way for further discoveries of cross-

kingdom pH regulation. Finally, the recent finding that different antifungals induce a dramatic

decrease of pHi in Candida [46, 47], combined with the broadly conserved role of alkaliniza-

tion in virulence, makes alkalinization an attractive target for the control of fungal pathogens.
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