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A B S T R A C T

Deciphering the effect of evolutionary mutations of viruses and predicting future mutations is crucial for
designing long-lasting and effective drugs. While understanding the impact of current mutations on protein drug
targets is feasible, predicting future mutations due to natural evolution of viruses and environmental pressures
remains challenging. Here, we leveraged existing mutation data during the evolution of the SARS-CoV-2 protein
drug target main protease (Mpro) to test the predictive power of dynamic residue network (DRN) analysis in
identifying mutation cold and hot spots. We conducted molecular dynamics simulations on the Mpro of SARS-
CoV-2 (Wuhan strain) and calculated eight DRN metrics (averaged BC, CC, DC, EC, ECC, KC, L, PR), each of
which identifies a unique network feature within the protein. The sets of residues with the highest and lowest
values for each metric, comprising potential cold and hot spots, were compared to published biochemical ana-
lyses and per residue mutation frequencies observed across five SARS-CoV-2 lineages, encompassing a total of
191,878 sequences. Individual DRN metrics displayed only modest power to predict the mutation frequency of
individual residues. However, integrating the eight DRN metrics with additional structural and sequence-derived
metrics allowed us to develop machine learning models which significantly improved the prediction of residue
mutation frequency. While further refinements should enhance accuracy, we demonstrated a robust method to
understand pathogen evolution. This approach can also guide the development of long-lasting drugs by targeting
functional residues located in and near active site, and allosteric sites, that are less prone to mutations.

1. Introduction

Understanding the effects of known mutations and predicting the
evolution of future mutations, along with their potential impacts on the
protein drug targets of viruses, is crucial in designing effective and long-
lasting antivirals [1]. This also applies to the design of new immuno-
therapies or vaccines that target conserved regions of viral proteins that
are less likely to mutate [2–4]. However, this is a highly challenging task
due to the complexity of proteins and the nature of virus evolution.
Selective pressure for effective replication in a given host can trigger
systematic changes in viral protein structure and dynamics, favouring
specific patterns of amino acid substitution and leading to the

emergence of new variants, as we observed with SARS-CoV-2 [5–7].
Distinct mutations can yield proteins with similar physical properties,
which might not be evident from the sequence alone, but for variants to
retain fitness, the critical properties of each protein must be conserved
[8,9]. Mutations may impact the overall dynamics and structure of a
protein [10–12], and modifications at or near the active site of enzymes
are especially important since they can modify both catalysis and
protein-substrate interactions [13,14]. For example, mutations that
strengthen side chain interactions within the active site may limit the
dynamics of catalytic residues and inhibit function [12]. Structural dy-
namics is essential for enzyme catalysis [15], and several studies have
delineated long-range effects of residue substitution, implying that
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catalytically efficient alterations might transpire across the entire pro-
tein [16–19].

Recent studies have explored the impact of known missense muta-
tions and predicted future changes on proteins from various computa-
tional perspectives, ranging from graph theory to machine learning
(ML). For example, Miotto et al. [20] applied graph theory through the
representation of proteins as network graphs, to identify thermostable
proteins by using energetically weighted links. Prabantu et al. [21] used
network representation of proteins to study the changes in residue
contacts (networks) as a consequence of mutations. Additionally, mu-
tation effect prediction tools such as mcSM-PPI2 [22] use graph-based
structural signatures to model variations in inter-residue interaction
networks. DynaMut, a protein stability prediction tool, integrates
graph-based signatures with normal mode dynamics to model muta-
tional effects on protein stability [23]. Similar tools, like PolyPhen-2
[24] and SIFT [25], also focus on assessing the impact of existing mu-
tations on protein stability. In contrast, FoldX [26] predicts the struc-
tural and energetic impact of mutations on proteins, estimating the
effects based on protein stability rather than mutation likelihood.
Alternatively, a number of studies have applied ML based algorithms to
predict mutation effects using methods such as support vector machines
(SVM) [27–29], neural networks [30,31], and multiple regression and
classification techniques [32]. Additionally, some computational ap-
proaches for predicting the likelihood and functional effects of muta-
tions mainly rely on human genetic data. Combined
Annotation-Dependent Depletion (CADD) [33] and MutPred [34], for
instance, use machine learning models trained on human variants and
evolutionary conservation to infer mutation likelihood. Similarly, Mut-
SigCV [35] and SigProfilerAssignment [36] analyse background muta-
tion rates and mutational signatures from human cancer genomes to
identify regions more prone to mutations, particularly in cancer.
OncoKB [37] emphasizes protein function and conservation, utilizing
human cancer data to identify likely driver mutations.

The integration of graph-based methods, which provide a robust
framework for modelling complex network interactions, with the pre-
dictive power of efficient ML algorithms could dramatically enhance our
understanding of the intricate relationship between protein sequence,
structure, and biological function [38,39]. This study builds upon our
previous research using dynamic residue network (DRN) analysis to
decipher the effects of missense mutations [40–43]. We previously
proposed that the different DRN metrics provide distinct, complemen-
tary information on protein dynamics, and that holistic analysis of these
DRN metrics could be used to identify the regions prone to changes (hot
spots) or resilient to mutations (cold spots) within proteins [42,43]. Our
goal in this study is to evaluate the mutation prediction capability of
DRN, both alone and in combination with ML approaches. For this
purpose, we used the SARS-CoV-2 main protease (Mpro) as a case study,
primarily due to the availability of a vast amount of evolutionary mu-
tation data since the initial SARS-CoV-2 strain was identified in Wuhan
[44,45]. Additionally, Mpro is one of the key SARS-CoV-2 antiviral drug
targets [46–48], and its constant evolution due to mutations under se-
lective pressure could impair the future efficacy of drugs that target this
protease. A systematic and comprehensive computational analysis to
monitor existing and emergent mutations in Mpro could predict both
fast-evolving regions and residues that are unlikely to mutate, thereby
highlighting regions of the protein that could be targeted by therapeu-
tics where there would be a high intrinsic barrier to the evolution of drug
resistance.

Our start point was Mpro protein from the SARS-CoV-2 virus (Wuhan
strain). We performed six molecular dynamics simulations (MD) and
calculated eight DRN metrics for each simulation (averaged BC, CC, DC,
EC, ECC, L, PR, KC), the values of which were then averaged across the
six simulations. We evaluated the predictive power of these averaged
network analysis metrics to identify residues likely to have low or high
tolerance of mutations (cold spots and hot spots, respectively). These
predictions were compared to per-residue mutation rates obtained from

population-scale SARS-CoV-2 sequencing and in vitro investigations of
Mpro activity. The integration of these eight DRNmetrics with additional
protein features within an ML framework significantly improved our
ability to predict whether a residue would mutate. DRN analysis com-
bined withML, thus, offers a novel and effective technique for predicting
future protein mutations. The method proposed here holds significant
potential for drug discovery against evolving pathogens, facilitating the
design of inhibitors that target residues less prone to mutation and thus
with a higher barrier to the evolution of drug resistance.

2. Methods

2.1. Data retrieval

The complete human SARS-CoV-2 Mpro variant of concern (VOC)
sequences (Alpha, Beta, Delta, Gamma and Omicron) of high coverage
and with patient status were retrieved from the Global Initiative on
Sharing Avian Influenza Data (GISAID; https://gisaid.org/) [49] for
dates between 1st December 2019 and 24th February 2024. Retrieved
sequences were submitted to the GISAID CoVsurver tool [50] (https
://gisaid.org/database-features/covsurver-mutations-app) for muta-
tion identification: deletion, insertion, and single nucleotide variations
(SNV). SNVs specific to the Mpro protein were then filtered from the
CoVsurver output (.tsv files) using an in-house Python script which also
computed the mutation frequency of unique SNVs in each VOC dataset,
highlighting the most prevalent mutations.

Function scores for Mpro activity were obtained from published deep
scanning mutagenesis data [51] by taking an average of the functional
scores obtained from FRET, transcription factor inactivation and growth
assays for each residue (excluding stop mutations). Scores were sorted to
obtain the set of residues that are least mutation tolerant (functional
scores < 0.3) or most mutation tolerant (functional scores ≈ 1).

2.2. Molecular dynamic simulations

The dimeric form of theMpro reference structure (fromWuhan strain)
was prepared in our previous study [43] using the crystal structure (PDB
ID: 5RFV [52]). The structure was then protonated at a pH of 7.0 using
the PROPKA tool from PDB2QR [53] before the MD simulations.

GROMACS software v2021.1 [54] was employed for the system
simulations using Amber03 force fields [55]. The systems were simu-
lated in a triclinic box of 1.5 nm clearance and filled with single point
charge 216 (SPC216) water model [56]. The charge in the box was
neutralized using NaCl ions at 0.15 M concentration. Prior to equili-
bration, systems were minimized using the steepest descent algorithm
until a minimum energy of 1000.0 kJ/mol/nm was achieved within a
maximum of 50000 steps. The NVT (constant number of particles, vol-
ume, and temperature) temperature equilibration ensemble was ach-
ieved using V-rescale at 310 K for 0.1 ns, whereas the NPT (constant
number of particles, pressure and temperature) pressure ensemble was
achieved using the C-rescale at 1 atm and 310 K, both for 0.1 ns. Pro-
duction simulations of 100 ns with a time step of 2 fs followed, where
hydrogen bonds were constrained using the LINCS algorithm [57]. For
the long-range electrostatics calculations, Particle Mesh Ewald (PME)
electrostatics were used with a Fourier spacing of 0.16 nm. For the
short-range Coulomb and van der Waals interactions, a cut-off distance
of 1.1 nm was used. Six independent 100 ns MD simulations were
performed.

Following production simulations, the periodic boundary conditions
(PBC) were removed for each simulation, and the trajectories analysed
using the GROMACs gmx rms, gmx rmsf, and gmx gyrate functions for root
mean square deviation (RMSD), root mean square fluctuation (RMSF)
and radius of gyration (Rg). RMSD, RMSF and Rg analyses showed the
MD simulation to be reproducible. Additionally, each simulation ach-
ieved equilibration within 100 ns. The RMSD line and violin plots
(Fig. S1A and B) displayed closely clustered mean squared deviations
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and unimodal distributions, respectively. Furthermore, local residue
fluctuation remained consistent across all simulations, and the systems
maintained a consistent degree of compaction throughout the simula-
tions (Fig. S1C and D).

2.3. Dynamic residue network analysis

DRN capitalizes on the principals of network analysis in graph theory
to compute the average network properties per residue within a protein
structure across anMD trajectory [40,41]. In a DRN, protein residues (Cα
and Cβ atoms) are the nodes/vertices and connections between nodes
within a Euclidian distance of ≤ 6.7 Å are treated as an edge [40,58].
This distance is optimal as previously shown [58]. However, we also
demonstrated that adjusting the distance between the nodes may
slightly alter the metric values without impacting the overall data trend
[59].

With the graph representation of proteins, various network metric
values can be computed to address different aspects of the protein res-
idue networks [42,43]. Here, we calculated eight metric values per MD
run, namely averaged betweenness centrality (BC), closeness centrality
(CC), degree of centrality (DC), eigenvector centrality (EC), eccentricity
(ECC), katz centrality (KC), shortest path (L) and pagerank (PR). The
metrics were computed for each frame of the MD trajectory and then
averaged across the entire trajectory to obtain a single averaged metric
value per residue, using the formulas shown in Table 1. This process was
repeated for all six MD simulations, and the average of these six simu-
lations was used for further analysis.

Each DRN metric provides specific insights into the protein network
characteristics. Averaged BC, for instance, measures the extent to which
a node/residue lies on the shortest paths between other nodes within the

network. Residues with high BC values are considered important in
controlling the information flow (gatekeepers) in a network [40,41].
Averaged CC measures the closeness of a given residue to all other resi-
dues in the network. Interface and protein core residues are associated
with high CC values [42,43]. Residues with high CC are considered good
disseminators of information. Averaged DC describes the local connec-
tivity of a node/residue in network through measuring the number of
incident edges to the node in question, whereas averaged EC describes
the influence of a residue in the network based on the centrality of both
the high and low scoring neighbors [60]. Residues with high DC have
values have a high local influence. Averaged ECC is the measure of the
longest path from a node to any other node in a network [40,41]. Much
like averaged EC, averaged KC assesses the relative impact of a node
within a network by iteratively gauging node centrality through the
centrality of its neighboring nodes. KC assigns centrality via adjacency
damping coefficient α and a basal adjacency β of a node’s immediate
connectivity. L measures the shortest paths of a node from all the other
nodes in a network. L is measured by the sum of the geodesic distance
(di) to every other node (u) divided by the number of nodes less by one
[40,59] (Table 1). In essence, signals from residues with high L values
travel longer distance to reach other residues. Averaged PR is an adjusted
version of KC that iteratively assigns importance/influence on a node
based on of its connected neighboring nodes. The centrality of each
neighbor is normalized by its own degree, D, for each iteration. As in KC,
PR also includes a damping factor α and a constant β [40,41] (Table 1).

The DRN calculations were performed using the calc_network.py tool
(https://github.com/RUBi-ZA/MD-TASK/tree/mdm-task-web/src)
from the MDM-TASK suite [40,41]. This tool computed the eight DRN
metric values for each of the six wild type (WT) systems. Complete
100 ns MD trajectories (xtc, periodicity completed) and theWT topology
file (pdb) were used as input for network calculations, with a step size of
5 and a Euclidian threshold of 6.7 Å. Thus, we calculated DRN for each
MD trajectory, in which residue interaction networks are constructed for
every 5th frame of the trajectory using 10 ps time intervals. We also
repeated the DRN calculations with a step size 10 to check if this in-
troduces significant changes. We assessed the DRN values per metric per
residue using a Mann-Whitney U test. The p-value for each averaged
metric was BC: 0.974, CC: 0.919; DC: 0.995; EC: 0.830; ECC: 0.934; KC:
0.974; L: 0.909; PR: 0.976. As the results are highly similar, we pro-
ceeded using the step size 5 results.

The averaged DRNmetric results for each residue were then averaged
over the six WT simulations to mitigate variability introduced by
randomness of MD simulation seeds and initial velocities.

Density plots were calculated for each DRN metric per chain, and
chain A and B were compared for their similarity (Fig. S2 A–H). Addi-
tionally, the Mann-Whitney U test [61], a non-parametric test used to
determine whether there is a significant difference between two inde-
pendent distributions, was utilized to compared the distributions of each
metric between Chain A and Chain B (Fig. S2 A–H). The p-values for
each are all well above the typical significance threshold (p < 0.05).
This suggests that there is no statistically significant difference between
the distributions of Chain A and Chain B across all centrality metrics.
These p-values strongly support the hypothesis that the distributions of
these metrics for both chains are similar. Thus, only the DRN values for
chain A were used for subsequent analysis.

2.4. Machine learning (ML)

Several ML predictors were built independently via Artificial Neural
Network (ANN) and Random Forest (RF) algorithms using both regres-
sion and classification models, so enabling cross-checking between the
models. In each case, a number of models were built and the models with
the best performance (as described later) are presented in Section 3.4.
This is common practice because the error regarded as a function of the
internal model parameters has many local minima, and a training run
may converge to a value well above the global minimum (e.g., see [62]).

Table 1
Formulas for the DRN centrality metrics (adopted from [40,41]).

Centrality
metric

Formula Note

Averaged
BC

BC(v) =

1
m

∑m
i=1

∑

s,t∈V
σ(si, ti|vi)
σ(si, ti)

V is the complete set of nodes; m is
the number of frames; σ(s, t) is the
number of shortest paths
connecting nodes s and t; σ(s, t|v) is
the number of these paths passing
another node v; and i is the frame
number.

Averaged
CC

CC(v) =

n − 1
m

∑m
i=1

∑n− 1
u=1

1
di(v, u)

d(v, u) is the shortest-path distance
between v and u, and n is the
number of nodes in the graph.

Averaged
DC

DC(i) =

1
m(n − 1)

∑m
k=1

∑n
j=1,j∕=i

Aijk

n is the number of nodes; Aijk is the
jkth adjacency for the ith frame.

Averaged
EC

A⋅ EC̅→ = λ⋅EC̅→ (a)

EC(i) =
1
m
∑m

k=1
ECik (b)

(a) EC is the eigenvector, and
lambda is the eigenvalue for the
eigen decomposition of adjacency
matrix A. In NetworkX, this is
obtained by power iteration. (b)
Averaged EC is computed for ith

residue by computing the vector
for each MD frame and averaging.

Average
ECC

ECC(j) =
1
m
∑m

i=1
maxi,k ϵvdi(j,

k)

ECC is the measure of the longest
path from a node to any other node
in a network

Averaged
KC

KC(i) = α
∑n

j=1
AijKCj +β (a)

KC(i) =
1
m
∑m

k=1
KCik (b)

KC is a modification of EC that
employs a dampening coefficient
and a constant in order to
influence adjacency values.

Averaged L L(v) =

1
m(n − 1)

∑m
i=1

∑n− 1
u=1

di

v is a node at a time i; di is the
geodesic distance to every node u.

Averaged
PR

PR(i) = α
∑n

j=1

Aij

Dj
PRj +β (a)

PR(i) =
1
m
∑m

k=1
PRik (b)

PR is an adjusted version of KC
where centrality is assigned based
on that of the neighbors while still
applying the dampening factor
and a constant.
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The software packages utilized were MATLAB [63] (version 2023b)
Deep Learning Toolbox, and Python version 3.10.13 [64] together with
Keras version 3.0.5 [65] (https://github.com/fchollet/keras), Tensor-
Flow version 2.15.0 [66] and the Scikit-learn library version 0.24.2
[67]. In all cases we used data for each of the 304 residues in chain A of
the Mpro structure. For each residue, the predictor data comprised the
eight DRN metric values for averaged BC, CC, DC, EC, ECC, KC, L and PR,
the BLOSUM62 matrix values of the Mpro structure (20 values), and
RMSF. SASA and atomic displacements parameters (“B-factors”) were
calculated using GROMACS v2021.1 and included in the prediction
data. Specifically, the B-factor for each residue was determined using the
rmsf commandwith the -oq option, selecting the Cα atoms. The SASAwas
computed using the gmx sasa command, also selecting the Cα atoms to
ensure calculations were performed on a residue basis. Each predictor
data was averaged over six MD simulations. Consequently, the predictor
data was a matrix of size 304 × 32. The target data was, for each res-
idue, calculated from the mutation frequencies, i.e., the number of se-
quences that contained a mutation at that residue, and was obtained as
described in Section 2.1. The set of data points was randomly divided
into 3 subsets, training (70 %), validation (15 %) and testing (15 %).
The validation set was used during model training to fine tune the
hyperparameters and prevent overfitting, while the testing set was used
after training was completed to provide an unbiased evaluation of the
model’s performance on unseen data.

For the regression models, since some of the mutation frequencies
are very large (up to 67,139), we found that the accuracy of the pre-
dictors was improved when using a target of log10 (1 + mutation fre-
quency) rather than the raw mutation frequency. Model performance
was evaluated by comparing the predicted and target values and then
producing a scatterplot and calculating the correlation or regression “R”
value and its associated “p-value’. The R value indicates the extent to
which the two datasets are linearly related: it has a value of 1 for a
perfect predictor and if the predictions are made using a random number
generator, then R will be close to 0. (Note that R can also be 0 for certain
nonlinear relationships between the two datasets). The p-value is the
probability of the null hypothesis that the predicted and target values
are not linearly related, and normally the R value is regarded as statis-
tically significant provided p < 0.05. Further details are given in many
texts on statistics (e.g. Sec. 12.4 of [68]).

For the classification models, the target was adjusted to be 1 for
mutation frequencies larger than the cut-off value (set at 20), and 0 for
frequencies less than or equal to the cut-off value. The performance of
the model was evaluated by calculating the confusion matrix, as well as
the receiver operating characteristic (ROC) curve and the area under the
curve (AUC), which is 1 when the predictor is perfect and 0.5 when it is
equivalent to using random numbers. Note that the ROC curve (and thus
the AUC) is a plot in which the cut-off value is varied, and thus it
measures the performance of the ML algorithm; the confusion matrix
shows the accuracy of the classifier for the specific value used for the
cut-off.

2.4.1. Artificial neural networks
The first step in the construction of an ANN is to determine the

network structure, and specifically the number of nodes in the hidden
layer. As the number of nodes is increased the accuracy of the model
increases, but at some stage the problem of overfitting will occur with
the model losing generalizability and the accuracy of the model on the
independent testing set will deteriorate when compared to the accuracy
on the training set. After some trial and error, it was found that optimal
performance occurred with 10 nodes, which is often used as the default
number.

Regression models were constructed using a default network ar-
chitecture comprising of a hidden layer of 10 nodes using the sigmoid
activation function, while the linear activation function was chosen for
the single node in the output layer. Training the ANN involved adjusting
the weights and biases in the network to minimize the mean squared

error (MSE); built-in algorithms; namely Levenberg-Marquardt in
MATLAB and Adams optimization in Keras were used for this purpose.

The regression ANN models were re-purposed into classification
models by mapping the predicted mutation frequency to 1 if it was
greater than the cut-off value, and to 0 if it was smaller or equal to the
cutoff.

2.4.2. Random Forest
Random Forest is a supervised ensemble ML method that utilizes a

combination of tree predictors, or decision trees, to solve both classifi-
cation and regression problems. Under RF, the model constructs a forest
of decision trees and aggregates their predictions to yield a more robust
and accurate ensemble model [69]. RF models take labelled data (pre-
dictor and targets) to develop, train and test for model efficiency and
accuracy.

RF in MATLAB is performed using TreeBagger [70], a class specif-
ically designed for building ensembles of decision trees. The number of
trees in the forest was set to 100, and otherwise default parameters were
used. The regression and classification models were constructed
independently.

Using the Python Scikit-learn tool [67], model parameters were
optimized using the RandomizedSearchCVmodule in Scikit-learn and the
model run on both the class balanced and imbalanced dataset. This was
done to address the effect of imbalanced data classes in the data. The
classification model was initiated using the Scikit-learn Random-
ForestClassifier with a random seed 42, 100 estimators, a minimum
sample split of 2, a sample leaf of 2 and log2 for maximum features with
no maximum depth. The regression model was run with a minimum
sample split of 13, minimum sample leaf of 1, 100 estimators, no
maximum depth, and a random state of 1 as identified by the random-
ized parameter search.

3. Results and discussion

3.1. Uncovering cold spots: dynamic residue network analysis supported
by literature insights

Previously, we defined the protein cold spots as regions where mu-
tations are not tolerated and are thus rare or not observed in the pop-
ulation [42,43]. Identifying residues in and near the active site that are
less prone to mutations is crucial for designing drugs with high resis-
tance barriers. We proposed that these residues can be identified by DRN
analysis, where the centrality hubs (residues) with the highest metric
values, representing key roles within the network, would be the cold
spots. Furthermore, we showed how combining information from each
metrics brings deeper insights, as each identifies a unique network
feature within the protein [18,42,43]. For each metric, we identified 15
residues (i.e., 5 %) with the highest metric values. The selection of 5 %
reflects a common practice [18,42,43] ensuring equal set sizes across the
different metrics. However, alternative selection strategies, such as
using two standard deviations from the mean, can be applied if the
distribution is Gaussian. In our case, most metrics did not follow a
Gaussian distribution (see Fig. S2 A–H). Further, please note that cold
spots for averaged L (as defined in Table 1) are residues with the lowest,
rather than highest, metric values.

The residues identified by one or more of the metrics are presented in
Table 2, as are the prevalence of mutations at these residues across the
analysed SARS-CoV-2 sequences. Among these, only one residue, L115,
was consistently identified by all eight metrics, and we call it a persistent
hub [42,43]. Additionally, S10was highlighted by six metrics, while A7,
S113 and V125 were recognized by five metrics (Table 2). Notably, 25
residues, including S10, S113 and L115, had no mutations across five
lineages. The remaining residues showed mutation frequencies ranging
from 5.2 × 10− 6 (F3, M6, C117 and A206) to 6.5 × 10− 4 (M17) across
all SARS-CoV-2 sequences. Furthermore, in our previous study [43], we
identified communication paths between an allosteric pocket and the
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Table 2
Cold spots as predicted by DRN metrics – residues with the highest metric values (top 5 %). The second and third columns list the residue mutation(s) and their
locations within the Mpro structure. The tick indicates that the residue falls within the top 5 % of the DRNmetric (for ECC and L it is the residues with the lowest metric
values). The table also provides mutation rates for each residue across different lineages (Alpha, Beta, Gamma, Delta and Omicron) and the total mutation rate across
all lineages. The numbers given in each lineage column-heading specify the number of unique Mpro sequences per that lineage, and the “Total” is for all the sequences
analysed in this study. Light grey marks the residues with no mutations.
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active site in the presence of potential allosteric modulators. These
pathways traversed the interface residues of domain I and II and were
identified by combining averaged EC hubs. The involved residues
include 7, 9-11, 13, 14, 17, 28, 29, 38, 113, 115-117, 122, 124, 125,
146-150, many of which are also listed in Table 2. Please note that the
residues identified as cold or hot spots in this study by DRN metrics are
shown in bold, and residues not identified as hot or cold spots are bold
and underlined.

Identifying residues in and near the active site that are less prone to
mutations is crucial for designing drugs with high resistance barriers.
Visual inspection of the top 5 %metric hubs for each of the four the most
commonly used metrics (BC, CC, DC, EC) mapped onto the Mpro struc-
ture revealed that these hubs are located in key functional and core
regions of the protein, including in the vicinity of the active site, the
dimerization region and a previously identified allosteric pocket [10]
(Fig. 1A–D). In the rest of this section, we report the evidence from
literature on the function of these residues and consequences of their
mutation for protein stability and catalysis.

N-finger residue R4 promotes dimerization SARS-CoV-1 Mpro, with
mutation of this residue destabilizing the active dimer conformation and
reducing enzymatic activity to a variable extent. Chen et al. demon-
strated that R4A substitution of a SARS-CoV-1 Mpro resulted in a 20 %
decrease in dimerization and the enzyme retained only 10 % of its ac-
tivity [71,72]. Conversely, another study found that mutating R4 in
SARS-CoV-1 Mpro did not affect the activity of the enzyme but reduced
the dimerization efficacy by 80 % relative to the wild type [73]. Muta-
tional studies combined with computational analysis on SARS-CoV-2
identified R4 as a minor player in dimerization, as evidenced by mass
photometry measurements, crystallographic structure determination
and MD data [74]. Another study demonstrated that substituting this
residue likely disrupts the salt-bridge between R4 and E290 of domain
III, resulting in decreased catalytic efficiency while maintaining an
inactive dimeric state [75].

Another crucial residue, P9, interacts with residues P122 and S123
of the adjacent protomer. Residues S10, K12, and E14 are in a one-turn
α-helix at the end of the N-finger, which forms a contact point at the
dimer interface [75]. S10 is involved in a hydrogen bond, where the

backbone NH of S10may interact with the hydroxyl group of S10 on the
opposite protomer. Disruption of this bondmay trigger reduced catalytic
efficiency [75]. G11 is highly conserved in both SARS-CoV-2 and
SARS-CoV-1, and it interacts with the side chain of E14 on the opposite
monomer, forming a hydrogen bond. A Gly-to-Ala mutation at this po-
sition in SARS-CoV-1 completely disrupted dimerization and eliminated
catalytic activity [76]. Similarly, the E14A substitution in SARS-CoV-1
resulted in a 50 % reduction in dimerization and only residual (4 %)
enzymatic activity [71]. A recent mutational study of SARS-CoV-2 has
also demonstrated importance of this residue, as substituting of E14
with A/D/S/Q impaired catalytic activity, suggesting that the distance
between the N-fingers of the monomers and the polarity of the side chain
of E14 are important for catalytic activity [75].

An extensive mutational study involving deep sequence scanning
and a high-throughput fluorescent reporter assay in yeast demonstrated
that N-finger residues P9, S10, G11, E14 and subsequent domain I, II
and III residues T111, S113, G146, S147, G149, F150, and N203
exhibited lowmutation tolerance, with substitution resulting in null-like
function [51]. Another report indicated that the side chains of residues
L115 and F150 are involved in strong hydrophobic interactions with P9
of opposite protomer, and substitution with polar residues led to
reduced protease activity [77].

In the SARS-CoV-2 Mpro, S139 in domain II forms critical hydrogen
bonds with Q299 in domain III of the paired monomer, at distances of
2.9 and 3.1 Å, respectively. These bonds are essential for maintaining
the integrity of the oxyanion hole within the S1 subsite, which is crucial
for catalysis [75,78]. The S139Amutation results in substantial catalytic
impairment, reducing activity to 46 % of the wild type (Wuhan), and
causes a two to three-fold decrease in the turnover number, while still
preserving dimer formation, as observed through analytical size exclu-
sion chromatography (SEC) experiments [75]. Beyond assessing direct
contributions of SARS-CoV-2 residues to catalysis, a recent study char-
acterised the activity of mutant enzymes in the presence of antiviral
drugs (nirmatrelvir and ensitrelvir) to identify mutations that could
confer antiviral drug resistance [79]. Substitution of S139 to P/L/Q
conferred strong drug resistance, and the authors suggest that substi-
tution of S139 with proline triggers a conformational change in the

Fig. 1. Cold spot residues per DRN metric (A-D: BC, CC, DC, EC, respectively) and hot spot residues per metric (E–H: BC, CC, DC, EC, respectively). The structural
domains I (residues 10–99), II (residues 100–183) and III (residues 183–197) are coloured in pink, blue and orange, respectively. The N-finger is shown in cyan, and
the linker loop is shown in green. The catalytic residues (H41 and C145) are coloured based on their atom types, where the carbon atoms are coloured light grey,
oxygen atoms in red, nitrogen atoms in blue, sulfur atoms in yellow. The cold spots are depicted as spheres in A-D, while hot spots are depicted as spheres in E–H.
Chain B is coloured grey.
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active site that specifically disrupts the interactions with nirmatrelvir
[79].

Dimerization is critical for Mpro activity, with both residues at the
dimer interface plus residues near the substrate binding surface
contributing to dimer formation. Mutation of SARS-CoV-1 residues S139
and F140, which belong to the oxyanion hole of the S1 substrate binding
pocket, disrupts or destabilizes the dimer formation [80]. Similarly,
S147 [81] and E166 [82] are crucial for SARS-CoV-1 dimerization as
substitution of these residues with alanine disrupted dimer formation.

Both S147 and E166 are located beyond the dimerization interface and
are considered active site residues, indicating that the functions of these
two sites are inter-dependent. A recent study on SARS-CoV-2 suggested
that there is a physical interaction of residues H163, S147, L115, and
S10, which have low mutation tolerance and form a bridge from the
active site to the dimerization site. Each of these mutation-sensitive
residues is reported to be crucial for catalysis and is strongly
conserved among homologs [51]. Study of a S284A/T285A/I286A tri-
ple mutant revealed tighter dimer packing, which caused perturbations

Table 3
Hot spots – residues with the lowest metric values (bottom 5 %). The second and third columns list the residuemutation(s) and their locations within theMpro structure.
The tick indicates that the residue falls within the bottom 5 % of the DRN metric (for ECC and L it is the residues with the highest metric values). Additionally, the
mutation rates for each residue in each lineage (Alpha, Beta, Delta, Gamma and Omicron) and the total mutation rate across all lineages. The numbers given in each
lineage column heading specify the number of unique Mpro sequences per that lineage, and the “Total” is for all the sequences analysed in this study. Light grey marks
the residues with no mutations.
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of the N-finger and helix A that were transmitted to distal residues
including T111, S113, L115-Y118 and S123, leading to enhanced cat-
alytic activity [83]. These findings emphasise the importance of residues
networks in maintaining both the structural integrity and functional
efficacy of the viral protease.

Collectively, as shown here and in our previous work [18,42,43],
DRNmetrics can effectively identify key residues in functional regions of
proteins, including Mpro of SARS-CoV-2. We extracted top 5 % residues
with the highest metric values, and thus we considered them as potential
cold spots. Many of these residues have been demonstrated in other
studies to support Mpro dimerization and/or catalytic activity.

3.2. Revealing hot spots: dynamic residue network analysis supported by
prior literature studies

With the rapid emergence of SARS-CoV-2 variants, it is important to
identify not only cold spot residues that may have core functions in
maintaining enzyme activity, but also hot spot residues that could alter
protein dynamics, modify enzyme activity or confer resistance to Mpro

inhibitors. We applied a similar approach as described above to extract
the potential hot spots, using the eight DRN metrics to identify a total of
46 hub residues (Table 3). These residues have the lowest metric values,
representing the bottom 5 % per metric, except for Lwhere we extracted
the top 5 %. We did not identify any persistent hubs, but there were four
residues identified by six metrics (E47, I59, H64, A191) and three res-
idues recognized by five metrics (S46, L50, N51) (Table 3). Eight of the
hot spot residues exhibited no mutations across five SARS-CoV-2 line-
ages. 80.4 % of the hot spot residues across these metrics underwent
mutation in at least one SARS-CoV-2 lineage, with mutation frequencies
ranging from 5.2 × 10− 6 (N51 and H64) to 1.1 × 10− 3 (A191)
(Table 3).

We also selected the 5 % of residues that are most frequently mutated
in Mpro sequences, focusing on their metric specific positions (Table 4),
to evaluate the accuracy of the DRN in identifying potential mutational
hot spots. Among the 15 most frequently mutated residues analysed
(Table 4), only three (P96, P184 and A191) were identified by the DRN
metrics as being in the bottom 5 %. P96 and P184 were detected by BC,
DC, KC and PR metrics, while A191 was identified by six metrics.
Interestingly, the DRN metrics also identified eight residues neigh-
bouring the most frequently mutated residues, including residues D92,
A191,Q244,Q107,R76,N72, T190,Q244 and T24 that are adjacent to
K90, A193, P241, P108, L75, V73, A191, H246 and T21 (listed in
descending order of mutation frequency). The most frequently mutated
residue in Mpro during the evolution of SARS-CoV-2 was P132, followed
by K90 and A193 (Table 4), none of which ranked within the bottom
5 % of the eight DRN metrics analysed. P132 was best detected by the
averaged EC metric at position 218, ranking in the 28.29th percentile
from the bottom. K90 was most effectively identified by the averaged BC
and averaged L metrics. A193 was best selected by the averaged DC and
KC metrics at position 274, corresponding to the bottom 9.87 %
percentile in both metrics (Table 4).

Visual inspection of the bottom 5 % metric hubs mapped onto the
Mpro structure for each of the four commonly used metrics revealed that
these hubs are predominantly located in the loops and peripheral re-
gions of the protein, particularly within domains I and III, and are
distant from the N finger region and dimerization interface (Fig. 1E-H).
This observation suggests that the DRN metrics have the capability to
identify potential hot spot regions that are relatively distant from
structurally and functionally critical areas of the protein. Sequence
analysis revealed that there are 12 key residue substitutions between
SARS-CoV-1 and SARS-CoV-2. Most of the substitutions are found in the
β-strand rich domains I and II, while 4 substitutions were found in
domain III [84]. Among the hot spot residues identified in our study the
residue S46 was substituted from alanine in SARS CoV-1. Among the
different variants identified in previous studies and strains, the most
concerning ones are those residing at or in the vicinity of the active site,

among which L50F, E47K, E47N, and S46F, are identified as occurring
at hot spot residues (Table 3). The variant E47N is a prominent mutation
that appeared with high prevalence in the SARS-CoV-2 Alpha VOC [85].
Available experimental reports state that the two variant of the residue
E47, E47N and E47K, have significantly different consequences on the
protease activity. Substitution of this glutamic acid with asparagine
causes modest changes in the conformations of multiple
substrate-binding residues, leading to a two-fold decrease in substrate
binding affinity, whereas substitution with the positively charged res-
idue lysine significantly increases substrate binding efficacy, possibly
due to dramatic change in charge around the S3′ binding site [85]. A
recent study identified that L50F, which is a part of an ‘active site
gateway’, had a lower KM value and slightly elevated kcat, which
resulted in 1.6-fold higher proteolytic efficiency as determined by
FRET-based cleavage assays [85]. An independent study reported
1.7-fold increased enzymatic activity for the L50F mutant compared to
wild type (Wuhan) Mpro [86], but a third independent study reported
that the L50F substitution leads to almost complete loss of enzymatic
activity [87]. The naturally occurring L50F variant demonstrated nir-
matrelvir resistance in cell culture plus high fitness in cell-based infec-
tion systems [88].

The active site gateway comprises of two loops, L50–Y54 and
D187–A191, which stabilizes the substrate binding pocket. Along with
L50, the residue A191 is among the identified hot spot residues and
A191V is among the most frequently observed naturally occurring
variants. FRET based assay reveal increased catalytic efficiency in
A191Tmutant, while A191V displayed comparable activity to wild type
(Wuhan) SARS-CoV-2 Mpro [89]. A rare clinical mutant isolate with
substitution F185S had a significant (30-fold) decrease in activity. F185
is in proximity to the active site and forms several interactions that
stabilizes the loop that connects domain II to domain III. P184, which is
one of the identified hot spots, is involved in pi-stacking interaction with
F185, contributing to stabilizing the loop. Differential scanning fluo-
rimetry revealed that mutation of P184 to serine has a destabilizing
effect on the molecule [85].

Multiple studies have identified that mutation of hot spot residue
N142 does not dramatically decrease Mpro activity, but instead leads to
unchanged or increased catalytic activity [77,86,90,91]. In silico
screening coupled with biochemical analysis suggested that the N142L
substitution increased catalytic activity and reduced susceptibility to the
covalent Mpro inhibitor nirmatrelvir [91], and substitution of N142 to
serine or aspartic acid has been reported to modestly reduce suscepti-
bility to inhibition by nirmatrelvir [89]. However, another study
observed no significant change in either catalytic activity or nirmatrelvir
resistance when N142 was substituted with nine different amino acids,
including serine, leucine and aspartic acid [90]. Although not concor-
dant in their assessment of nirmatrelvir resistance, these studies do
agree that mutation of the active-site proximal hotspot residue N142 is
well tolerated by the enzyme. Interestingly, N142 lies close to the
binding site of pelitinib and changes conformation dramatically upon
pelitinib binding [92], suggesting that N142 mutations may also alter
pelitinib efficacy. A deep mutagenic scanning study concluded that
P168 is highly tolerant of mutation [77]. Kinetic characterisation of
P168M substituted Mpro demonstrated a slight reduction in enzymatic
activity and no resistance to the effects of the inhibitor nirmatrelvir
[91].

Overall, these analyses show that DRN analysis can identify hot spot
residues that have a high propensity for mutation. However, there is not
a perfect correspondence between the set of hot spot residues and those
residues that most frequently vary in SARS-CoV-2 sequences. While hot
spot residue mutations often have only mild consequences for Mpro ac-
tivity, there have been reports that hot spot mutations can alter Mpro

susceptibility to inhibitor compounds such as nirmatrelvir [88,89,91],
although we note that there is not universal support for these effects
[90]. This highlights the need for additional large-scale enzymatic
studies to probe the effects Mpro mutations upon enzyme activity and
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Table 4
The top 5 % most frequently mutated Mpro residues during the course of SARS-CoV-2 evolution with their metric specific positions listed in the descending and their corresponding percentiles in ascending order.

Residue Mutations Location BC CC DC EC ECC KC L PR Alpha
(35,302)

Beta
(4317)

Gamma
(8268)

Delta
(121,477)

Omicron
(22,514)

Total
(191,878)

P132 P132H,
P132L,
P132S

Domain
2

111
(63.49 %)

143
(52.96 %)

188
(38.16 %)

218
(28.29 %)

175
(42.43 %)

196
(35.53 %)

143
(52.96 %)

182
(40.13 %)

41
(1.2 ×

10− 3)

2
(4.6 ×

10− 4)

10
(1.2 ×

10− 3)

325
(2.7 ×

10− 3)

22,219
(9.9 ×

10− 1)

22,597
(1.2 ×

10− 1)
K90 K90N, K90R Domain

1
244
(19.74 %)

248
(18.42 %)

118
(61.18 %)

112
(63.16 %)

241
(20.72 %)

116
(61.84 %)

247
(18.75 %)

124
(59.21 %)

695
(2.0 ×

10− 2)

4297
0.99

160
(1.9 ×

10− 2)

3191
(2.6 ×

10− 2)

123
(5.5 ×

10− 3)

8466
(4.4 ×

10− 2)
A193 A193T,

A193V,
A193S

Domain
2

219
(27.96 %

198
(34.87 %)

274
(9.87 %)

260
(14.47 %)

258
(15.13 %)

274
(9.87 %)

198
(34.87 %)

260
(14.47 %)

5
(1.4 ×

10− 4)

773
(1.8 ×

10− 1)

2
(2.4 ×

10− 4)

78
(6.4 ×

10− 4)

26
(1.2 ×

10− 3)

884
(4.6 ×

10− 3)
P241 P241H,

P241L,
P241S,
P241T

Domain
3

212
(30.26 %)

220
(27.63 %)

235
(22.70 %)

257
(15.46 %)

218
(28.29 %)

227
(25.33 %)

220
(27.63 %)

248
(18.42 %)

232
(6.6 ×

10− 3)

32
(7.4 ×

10− 3)

90
(1.1 ×0− 2)

315
(2.6 ×

10− 3)

32
(1.4 ×

10− 3)

701
(3.7 ×

10− 3)

A260 A260S,
A260T,
A260V

Domain
3

260
(14.47 %)

239
(21.38 %)

207
(31.91 %)

224
(26.32 %)

190
(37.50 %)

174
(42.76 %)

239
(21.38 %)

228
(25.00 %)

58
(1.6 ×

10− 3)

8
(1.9 ×

10− 3)

9
(1.1 ×

10− 3)

385
(3.2 ×

10− 3)

10
(4.4 ×

10− 4)

470
(2.4 ×

10− 3)
P108 P108L,

P108Q,
P108S,
P108T

Domain
2

201
(33.88 %)

121
(60.20 %)

205
(32.57 %)

197
(35.20 %)

151
(50.33 %)

212
(30.26 %)

120
(60.53 %)

214
(29.61 %)

76 (2.2 ×

10− 3)
32
(7.4 ×

10− 3)

72
(8.7 ×

10− 3)

241
(2.0 ×

10− 3)

18
(8.0 ×

10− 4)

439
(2.3 ×

10− 3)

L75 L75F, L75I,
L75S

Domain
1

224
(26.32 %)

234
(23.03 %)

117
(61.51 %)

121
(60.20 %)

213
(29.93 %)

128
(57.89 %)

235
(22.70 %)

84
(72.37 %)

106
(3.0 ×

10− 3)

14
(3.2 ×

10− 3)

25
(3.0 ×

10− 3)

83
(6.8 ×

10− 4)

109
(4.8 ×

10− 3)

337
(1.8 ×

10− 3)
V73 V73A, V73F,

V73I, V73L,
V73K, V73T

Domain
1

262
(13.82 %)

246
(19.08 %)

258
(15.13 %)

212
(30.26 %)

222
(26.97 %)

275
(9.54 %)

246
(19.08 %)

213
(29.93 %)

18
(5.1 ×

10− 4)

0 4
(4.8 ×

10− 4)

288
(2.4 ×

10− 3)

1
(4.4 ×

10− 5)

311
(1.6 ×

10− 3)
I213 I213T,

I213V,
I213M

Domain
3

118
(61.18 %)

99
(67.43 %)

152
(50.00 %)

152
(50.00 %)

102
(66.45 %)

119
(60.86 %)

99
(67.43 %)

181
(40.46 %)

21
(5.9 ×

10− 4)

0 1
(1.2 ×

10− 4)

245
(2.0 ×

10− 3)

4
(1.8 ×

10− 4)

271
(1.4 ×

10− 3)
A191 A191S,

A191V,
A191T

Linker
loop

292
(3.95 %)

269
(11.51 %)

303
(0.33 %)

303
(0.33 %)

297
(2.30 %)

304
(0.00 %)

270
(11.18 %)

301
(0.99 %)

37
(1.0 ×

10− 3)

0 2
(2.4 ×

10− 4)

150
(1.2 ×

10− 3)

24
(1.1 ×

10− 3)

213
(1.1 ×

10− 3)
P184 P184S,

P184H,
P184L,
P184T

Linker
loop

297
(2.30 %)

229
(24.67 %)

301
(0.99 %)

273
(10.20 %)

283
(6.91 %)

300
(1.32 %)

229
(24.67 %)

302
(0.66 %)

11
(3.1 ×

10− 4)

1
(2.3 ×

10− 4)

0 183
(1.5 ×

10− 3)

8
(3.6 ×

10− 4)

203
(1.1 ×

10− 3)

P96 P96S, P96L,
P96H

Domain
1

304
(0.00 %)

216
(28.95 %)

304
(0.00 %

226
(25.66 %)

186
(38.82 %)

301
(0.99 %)

216
(28.95 %)

304
(0.00 %)

103
(2.9 ×

10− 3)

0 7
(8.5 ×

10− 4)

82
(6.8 ×

10− 4)

9
(4.0 ×

10− 4)

201
(1.0 ×

10− 3)
H246 H246Y,

H246N,
H246R

Domain
3

174
(42.76 %)

189
(37.83 %)

140
(53.95 %)

200
(34.21 %)

124
(59.21 %)

153
(49.67 %)

188
(38.16 %)

126
(58.55 %)

32
(9.1 ×

10− 4)

7
(1.6 ×

10− 3)

119
(1.4 ×

10− 2)

34
(2.8 ×

10− 4)

6
(2.7 ×

10− 4)

198
(1.0 ×

10− 3)
K100 K100N,

K100R
Domain
1

265
(12.83 %)

166
(45.39 %)

257
(15.46 %)

170
(44.08 %)

160
(47.37 %)

260
(14.47 %)

166
(45.39 %)

243
(20.07 %)

1
(2.8 ×

10− 5)

159
(3.7 ×

10− 2)

0 11
(9.1 ×

10− 5)

0 171
(8.9 ×

10− 4)
T21 T21I, T21A Domain

1
193
(36.51 %)

208
(31.58 %)

189
(37.83 %)

123
(59.54 %)

204
(32.89 %)

178
(41.45 %)

207
(31.91 %)

185
(39.14 %)

34
(9.6 ×

10− 4)

7
(1.6 ×

10− 3)

33
(4.0 ×

10− 3)

80
(6.6 ×

10− 4)

17
(7.6 ×

10− 4)

171
(8.9 ×

10− 4)
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inhibitor susceptibility.

3.3. Comparing computational and mutational screening to estimate
mutation tolerance

Deep mutational scanning (DMS) is a powerful functional method to
define the mutation tolerance of specific residues within a protein [51,
77]. We compared the set of residues that were identified as cold spots or
hot spots by DRN using any of the eight metrics tested (Tables 2 and 3)
with the set of residues identified by DMS of Mpro [51] as being most
mutation sensitive (greatest loss of function when mutated) or least
mutation sensitive, respectively (Fig. 2). The number of residues per set
was defined by the number identified in the DRN analyses, representing
17 % (cold spots) or 15 % (hot spots) of resides in Mpro. For both com-
parisons we observed more overlap between the DRN and DMS sets than
would be expected by random chance: 22 residues that are both cold
spots and highly mutation sensitive, versus 9 residues (2.9 %) to be
expected by random selection, and 20 residues that are both hot spots
and highly mutation tolerant, versus 7 residues (2.3 %) to be expected
from random selection. The comparison of hot spots and
mutation-tolerant residues is confounded by the fact that DMS analysis
shows approximately half of the residues in Mpro to have WT-like
functional scores (between 0.9 and 1.0), indicating high mutation
tolerance [51]. Of the 46 residues that are identified as hot spots in Mpro

(Table 3), 42 have WT-like functional scores (> 0.9). Three others have
high functional scores (0.89 for T190, 0.87 for P52 and 0.78 for Q189),
indicating significant residual activity. No DMS data was obtained for
G258 by Flynn and colleagues [51], but another DMS study showed this
residue to be highly mutation tolerant [77]. Similarly, 48 of the 52 cold
spot residues have functional scores < 0.9, indicating either interme-
diate or null-like catalytic function [51]. These results suggest that DRN
analysis can readily identify hot spot residues dispensable for protein
activity. DRN analysis can also identify cold spot residues that are likely
to have important functional roles, but the metric scores from DRN
analysis and catalytic sensitivity of residues to mutation (as determined
using DMS) are not perfectly correlated.

We also compared the hot spots and most mutation tolerant residues
with the set of residues having the highest mutation frequency in SARS-
CoV-2 sequences (Fig. 2B), revealing only modest overlap with both sets.
This may again arise from the fact that approximately half the residues
within Mpro are highly mutation tolerant in vitro, making the relative
ranking of these residues somewhat arbitrary. However, we wondered
whether the rich information on protein dynamics that is accessible via
DRN might facilitate greater discrimination of relative propensity to
mutate for these mutation-tolerant residues. Given the importance of
predicting mutation propensity for drug resistance, we thus proceeded
to investigate whether the power of DRN analysis could be improved by

combining it with ML approaches.

3.4. Boosting DRN predictive power with advanced ML models

To enhance the predictive power of the DRN, we incorporated in-
dividual residue values per metric, along with other predictors, into our
ML models as outlined in the Methodology section. Here, we present
eight ML models that comprise all combinations of ANN or RF,
Regression or Classification, MATLAB or Scikit-Learn. In all cases, the
models split the data randomly into training (70 %), validation (15 %)
and testing (15 %) sets, and we set the initial state for training in a
random way. For reproducibility, we set values for the random seeds;
varying these values can lead to varying performance in the predictive
power of the models, particularly because our datasets are small, e.g.,
the validation and testing datasets typically have 45 elements.

The performance of the models is summarized in Table 5A, which
gives the “R” values for each regression model for each data subset, as
well as the AUC values for each classification model for each data subset.
The “Combined” subset is all data for the ANN models but comprises
only the testing and validation data for the RFmodels. This is because RF
overfits to the training data (as seen by the AUC values of 1 in the
Table 5A), so its performance needs to be evaluated on other data. We
have also produced ROC plots for each classification model, see Fig. 3.
The regression plots and confusion matrices for the Scikit-Learn ANN
models are given in Fig. 4; and for the other cases in the Supplementary
Data that represent the best models – Fig. S3 for MATLAB ANN, Fig. S4
for MATLAB RF, and Fig. S5 for Scikit-Learn RF. In addition to this, the
intermediate model examples (Fig. S6 for Scikit-Learn ANN, Fig. S7 for
MATLAB ANN, and Fig. S8 for MATLAB RF) and worst model examples
(Fig. S9 for Scikit-Learn ANN, Fig. S10 for MATLAB ANN, and Fig. S11
for MATLAB RF) are given in the Supplementary Data.

Recalling that AUC = 0.5, R = 0 for a random predictor and AUC
= 1, R = 1 for a perfect predictor, it is seen that in all cases the models
are significantly better than random, but far from excellent. Importantly,
for the ANN models, the R and AUC values for the testing and other
datasets are quite similar (Scikit case) or only a little different (MATLAB
case), so there has not been significant overfitting. With training data
excluded, the range in R values is between 0.421 and 0.673, and the
range in AUC values between 0.650 and 0.820. All the models could be
described as being reasonable predictors though not ones of high
quality.

3.5. Comparison of DRN and ML predictions

Next, we compared the predictive power of DRN both independently
and when integrated with the ML models.

Fig. 2. Graphical comparison of predicted cold and hot spots from DRN analysis with functional scores from deep mutational scanning (DMS) [51]. A) Overlap of
cold spots identified via DRN metrices (Table 2) versus least mutation-tolerant residues in Mpro (52 residues in each set). B) Hot spots identified by DRN analysis
(Table 3) are compared with the most mutation-tolerant residues from DMS and the residues most frequently mutated in deposited sequences (46 residues in each
set). C) Cumulative frequency distribution of functional scores from DMS for all residues versus residues identified as cold or hot spots by DRN analysis. Residues with
functional scores above 0.9 have “WT-like” function, while residues with lower scored have impaired function (either “intermediate” or “null-like” functions) [51].
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3.5.1. Correlation between predictions (by DRN or ML) and target values
We calculated the correlation, or “R” values, between various metrics

and log10 (1 +mutation frequency), i.e. adjusting the observed or target
data as was done for the ML regression models. The results are presented
in Table 5B and vary between 0.22 and 0.3. The “R” values between
predictions and targets for the ML models are given in Table 5A: the
values for independent data sets vary between 0.421 and 0.637, with an
average of 0.55. These results clearly demonstrate that ML is able to
combine information from the different metrics and make predictions
that are substantially more accurate than those from the individual
metrics.

3.5.2. Comparison of DRN and ML predictions of cold and hot spot residues
There are 109 residues in Mpro that remained unmutated throughout

the evolution of SARS-CoV-2. The protein analysed has 304 residues,
and we aimed to determine the location of these non-mutated residues
within each metric. To do this, we divided the metric specific datasets
into three bins: the top bin containing 102 residues with the highest
metric values (and ECC and L with the lowest metric values), the middle
bin with 101 residues, and the bottom bin with 101 residues having the
lowest metric values (with ECC and L being the highest in this case). To
assess the significance of non-mutating residue enrichment in the top
102 residues (top third) as well as the significance of their depletion in
the bottom 101 residues (bottom third) bins for each DRN metric, hy-
pergeometric p-values were calculated. The p-values were computed for
two mutation frequency cut-offs: a cut-off of 0, where non-mutated
residues have a mutation frequency of 0 in the used GISAID dataset,
and a cut-off of 20, where non-mutated residues have a mutation

Table 5A
Evaluating the predictive power of the ML model using the correlation coefficient or “R” value for the regression models, and the AUC value for ML classification
models.

Method & Program Regression: R value Classification: AUC value

Training Validation Testing Combined Training Validation Testing Combined

ANN MATLAB 0.752 0.531 0.613 0.692 0.845 0.650 0.720 0.798
ANN Scikit 0.653 0.673 0.664 0.656 0.833 0.860 0.820 0.836
RF MATLAB 0.862 0.503 0.421 0.460 1.000 0.732 0.754 0.738
RF Scikit 0.651 0.489 0.581 0.533 1.000 0.736 0.759 0.740

Fig. 3. ROC plots showing the true (y-axis) and false positive (x-axis) rates represented for each classification model; A)MATLAB ANN, B) Python Sci-kit learn ANN,
C) MATLAB RF (using TreeBagger) and D) Python Sci-kit learn RF. Each subplot consists of curves and computed area under the curve (AUC) for the training (red),
validation (green), test (blue) and the overall/combined datasets (orange). In each case, the dashed diagonal line corresponds to a random predictor.
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frequency ranging from 0 to 20. For the top 102 and bottom 101 residue
bins, hypergeometric analysis showed highly significant enrichment of
non-mutating residues in the top bin and depletion in the bottom bin,

with p-values less than 0.01 for both the 0 and 20 mutation frequency
cut-offs (Table 6).

In the DRN analysis, residues were ranked in descending order based

Fig. 4. Assessment of Python Scikit-learn ANN model. The correlation (scatter plots) between model predictions and target values for the regression model are shown
across the datasets: A) training, B) validation, C) testing, and D) overall. The x-axis represents the target values, while the y-axis shows the output or predicted values.
As discussed in Section 2.4, the target data is log10 (1 + mutation frequency) and varies between 0 and about 4. Each plot features a line of best fit, and the R-value.
For the classification model in which each residue is regarded as either mutated or not-mutated, E-H illustrate the confusion matrices for the training, validation,
testing, and overall datasets, respectively. The x-axis denotes the target values, and the y-axis the predicted outputs. In each classification subplot, the first two green
diagonal cells display the number and percentage of correct classifications, and the red off-diagonal cells show the number and percentage of incorrect classifications.
For the overall dataset, 79.6 % of classifications were correct and 20.4 % were wrong.

Table 5B
The “R” value for the correlation between various DRN metrics and the target data.

Metric Averaged BC Averaged CC Averaged CC Averaged EC Averaged ECC Averaged KC Averaged L Averaged PR SASA B factor RMSF

|R| value 0.30 0.30 0.27 0.22 0.26 0.28 0.29 0.23 0.28 0.25 0.24

Table 6
Enrichment fold and the enrichment/depletion p-values from hypergeometric test of non-mutated residues in the top and bottom third of the DRN metrics (non-
mutated cut-off of 20). Notes: p-value: * p < .05, ** p < .01, *** p < .001.

Averaged DRN
metric

No. of non-mutated residues in
the top bin

Enrichment
fold

P value No. of non-mutated residues in the
bottom bin

Depletion
fold

P value

Cut-off of 0
BC 56 1.53 9.78 × 10− 7 *** 16 2.26 1.05 × 10− 7 ***
CC 54 1.48 1.05 × 10− 5 *** 21 1.72 6.67 × 10− 5 ***
DC 54 1.48 1.05 × 10− 5 *** 21 1.72 6.67 × 10− 5 ***
EC 48 1.31 2.97 × 10− 3 ** 23 1.57 5.09 × 10− 4 ***
ECC 53 1.45 3.11 × 10− 5 *** 26 1.39 6.31 × 10− 3 **
KC 51 1.39 2.31 × 10− 4 *** 18 2.01 1.78 × 10− 6 ***
L 54 1.48 1.05 × 10− 5 *** 21 1.72 6.67 × 10− 5 ***
PR 51 1.39 2.31 × 10− 4 *** 20 1.81 2.16 × 10− 5 ***
Cut-off of 20
BC 89 1.25 8.08 × 10− 7 *** 53 1.33 4.77 × 10− 6 ***
CC 88 1.24 3.37 × 10− 6 *** 50 1.41 9.51 × 10− 8 ***
DC 85 1.19 1.38 × 10− 4 *** 59 1.19 2.06 × 10− 3 **
EC 85 1.19 1.38 × 10− 4 *** 54 1.30 1.54 × 10− 5 ***
ECC 87 1.22 1.28 × 10− 5 *** 54 1.30 1.54 × 10− 5 ***
KC 86 1.21 4.40 × 10− 5 *** 54 1.30 1.54 × 10− 5 ***
L 88 1.24 3.37 × 10− 6 *** 50 1.41 9.51 × 10− 8 ***
PR 81 1.14 5.92 × 10− 3 ** 60 1.17 4.55 × 10− 3 **
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on their metric values (except for metrics ECC and L), with higher values
indicating greater functional importance, and potentially being less
prone to mutations. The analysis is presented as an alluvial plot in
Fig. 5A, which illustrates the transitions of the unmutated residues be-
tween the bins for eight DRN metrics. The Supporting information de-
tails the unmutated residues found within each bin across the eight DRN
metrics (Table S1).

For the ANN ML models, residues were ranked in ascending order, as
the ML models predict the number of mutations. Fig. 5B represents the
flow of the unmutated residues between each bin of the two ML models.
The unmutated residues predicted within each bin for the two models
are listed in Table S2. We focused on the two ANN ML models only
because, as previously discussed, RF tends to overfit the training data.
To compare with the DRN analysis, we need to consider the entire
dataset of 304 residues, which is represented by the combined dataset.
Here, we looked at the combined dataset of the best model.

Notably, while DRN metrics accurately predicted approximately half
of the residues with no mutations in the top bin (56, 54, 54, 48, 53, 51,
53, 51 for averaged BC, CC, DC, EC, ECC, KC, L, PR respectively; see
Table S1), the prediction rate significantly increased with the incorpo-
ration of ML ANN models (72 for both Python and MATLAB ANN; see
Table S2). This demonstrates the effectiveness of ML approaches. As
expected, there was a progressive reduction in unmutated residues in the
middle bin followed by the bottom bin, with ML models showing
improved predictive power in these two bins as well (Tables S1 and S2).
The alluvial plots in Fig. S12 illustrate distinct residue flow patterns
across DRN metrics for Python and MATLAB ANN models. Both ML
models show significant residue prediction similarity seen across the
three bins. Furthermore, notable differences in distribution are evident,
particularly in the middle and bottom bins between MLmodels and DRN
metrics.

Secondly, we revisited the top 5 %most frequently mutated residues
of Mpro (Table 4). Although the combination of DRN metrics identified
three hot spot residues (P96, P184 and A191) out of 15 (Fig. 1 and
Table 3), integrating DRN with ML models significantly increased the
prediction accuracy (Fig. 6). Specifically, the Python ANN model pre-
dicted five highly mutated residues (A193, P241, A260, V73, P184),
while the MATLAB ANN model included P132 (the most mutated res-
idue in the evolution of protein), K90, A193, A260, P108 and V73.
Altogether, the ML models predicted eight residues, demonstrating
roughly three-fold increase in prediction power.

Lastly, we compared the overlap between predicted cold and hot
spots identified by DRN (top and bottom 5 % residues) (Table 2, Table 3

and Fig. 1) and those identified by the ML ANN models (bottom and top
5 % residues respectively) (Fig. 6). ML models commonly predicted
residues N28, C128, H163, N203, N214 and W218 as cold spots while
eight DRN metrics commonly identified only L115. While there were no
common hot spot residues identified among the eight DRN metrics, ML
models agreed on residues V73, A193 and A260 as hot spots.

4. Conclusion

Evolutionary mutations of viruses and other pathogens pose signifi-
cant challenges to drug discovery by altering the structure, function, and
interactions of drug targets. To overcome these challenges, drug dis-
covery efforts must continuously adapt by monitoring pathogen muta-
tions and updating therapeutic strategies accordingly. Identifying
conserved mutation patterns that lead to drug resistance mechanisms,
for example, can help in designing more effective and long-lasting drugs
[93,94]. Identifying mutation-resilient (cold spots) and mutation-prone
regions (hot spots), and thereafter developing drugs that target cold
spots, can guide the development of broad spectrum therapies that are
effective against multiple viral strains.

While understanding the effects of current mutations at the protein
structure level is achievable, predicting future mutations remains a
significant challenge. Here, we took advantage of the extensive mutation
data available for SARS-CoV-2 Mpro, along with a vast amount of liter-
ature to test our hypothesis regarding the mutation position predictive
power of DRN metrics alone and together with ML approaches. We used
the Mpro protein from SARS-CoV-2 (Wuhan strain) to perform DRN
analysis across eight metrics (averaged BC, CC, DC,EC, ECC, KC, L, PR)
and evaluated how well the combined metric values correlate with per
residue mutation frequencies observed during the evolution SARS-CoV-
2. We then used ML to combined these DRN with other sequence- and
structure-based metrics (BLOSUM62 matrix, RMSF, SASA and B-factor),
with the aim of enhancing our ability to predict residue mutation
likelihood.

Our key observations in this study can be summarized as follows: (1)
We identified the top 5 % of residues with the highest metric values
across eight metrics as potential cold spots, resulting in 52 unique res-
idues. Mutation rates were calculated for each residue across five line-
ages, totalling 191,878 unique Mpro sequences. The DRN metrics
identified 25 residues out of 52 with zero mutations throughout the
evolution of virus up to February 24, 2024. Thus, 23 % (25 out of 109) of
the non-mutated Mpro residues were within the top 5 % of high cen-
trality residues. (2) Mapping potential cold spots onto 3D structure of

Fig. 5. Alluvial plot depicting the classification of the 109 residues with no mutations into top, middle, and bottom groups across A) eight DRN centrality metrics and
B) two machine learning models. Each column represents one metric in A), with the leftmost column representing BC and the rightmost column representing PR. The
columns in B) represent the Python ANN and MATLAB ANN machine learning models. The flows between the columns illustrate how the unmutated residues
transition between the top, middle, and bottom groups for each metric (A)) or model (B)). Each flow is coloured according to the groups of the first column. The
thickness of the flows corresponds to the number of residues moving between the groups. The top group (pink) contains the first 102 residues of the Mpro protein with
the highest values of the DRN metric (A)) or lowest predicted mutation frequencies (B)). The middle group (blue) contains 101 residues with the next highest DRN
metric values (A)), or next lowest mutation frequency predictions (B)). The bottom group (green) contains the last 101 residues with the lowest values of the DRN
metric (A)), or highest mutation frequencies (B)).
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the protein revealed that these hubs are located in key functional and
core regions of the protein. Our literature review supports the finding
that many of these residues are crucial for dimerization and catalytic
activity. (3) Similar to cold spot identification, potential hot spot resi-
dues (bottom 5 % of residues with the lowest metric values) were also
extracted. Of these, 80.4 % underwent mutation in at least one SARS-
CoV-2 lineage. However, only three of these low-centrality residues
(P96, A191, P184) overlapped with the top 5 % most mutated Mpro

residues (4)We identified potential hot spots which were mainly located
in the peripheral parts of the protein suggesting that DRN metrics can
identify residues that are distant from structurally and functionally
critical areas of the protein. This is supported by literature which shows
that the SARS-CoV-2 Mpro has multiple allosteric sites distal to the active
site linked to enzyme activity [95]. (5) Although the 5 % subset of data
analysis was not statistically significant for all DRNmetrics, the goal was
to provide a snapshot of the data for comparison with existing literature.
Importantly, each DRN metric showed a meaningful correlation with
mutation frequencies in the overall dataset. While the R-values were
relatively low, ranging from 0.22 to 0.30, the p-value tests indicated that
all correlations were statistically significant. (6) We further compared
the cold and hot spots with the residues that were least/most tolerant of
mutation in the DMS. The cumulative frequency plot demonstrates that
almost all hot spot residues (42/46) have WT-like activity, while almost
all cold-spot residues (48/52) have impaired activity (either null-like or

intermediate). We conclude that DRN is competent to identify residues
that are mutation sensitive or mutation insensitive. However, it strug-
gles to determine the severity of catalytic defect caused by mutation of a
mutation-sensitive residue. (7) Machine learning was then used to
construct predictors that combine the DRN data with other data, and it
was found that the correlation to the mutation frequencies improves
with R-values on the testing dataset of order 0.6. Furthermore, all
models had Pearsons correlation p-values < 0.05 between the predicted
and target data for the testing dataset implying great model prediction
(Scikit learn ANN p-value: 1.93e-6, MATLAB ANN: 2.08e-2, MATLAB
RF: 3.98e-3 and Python RF: 2.30e-5). (8) Integrating DRN with ML
models significantly increased the prediction accuracy of most
frequently mutated residues. We also observed close agreement between
the ANN models in Python and MATLAB in terms of cold and hot spot
residue distribution signifying consistency. Python ANN model pre-
dicted five while MATLAB ANN model predicted six including residue
P132, the most mutated residue in the evolution of the protein. Alto-
gether, the ML models predicted eight residues, demonstrating roughly
3-fold increase in prediction power. (9) Integration of DRN with ML
models also increased the prediction power of cold spots. While DRN
metrics identified ~ 50 non-mutated residues within the top bin that
contained 102 residues with the highest metric values, both Python and
MATLAB ANN models could identify 72 nonmutated residues.

While the combination of DRN metrics and ML models has improved

Fig. 6. Cold spot residues per ML-ANN models (bottom 5 %) (A) MATLAB ANN; B) Python ANN) and hot spot residues per ML-ANN models (top 5 %) (C) MATLAB
ANN; D) Python ANN). The structural domains I (residues 10–99), II (residues 100–183) and III (residues 183–197) are coloured in pink, blue and orange,
respectively. The N-finger is shown in cyan, and the linker loop is shown in green. The catalytic residues (H41 and C145) are coloured based on their atom types,
where the carbon atoms are coloured light grey, oxygen atoms in red, nitrogen atoms in blue, sulfur atoms in yellow. The cold spots are depicted as spheres in A–B,
while hot spots are depicted as spheres in C-D. Chain B is coloured grey.
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our ability to predict whether specific residues in Mpro will have a high
mutation frequency in patient-derived samples, it is not perfect. There
are some fundamental biological considerations that may limit the
achievable accuracy of such predictions. Firstly, the enzymatic activity
of Mpro may not be the only determinant of its contribution to virus
fitness. In the crowded context of an infected cell, Mpro may need to
interact with additional binding partners [96] or it may need to avoid
spurious interactions with other proteins that would be detrimental to
virus fitness. Secondly, if hot spot mutations are assumed to have neutral
or only mild effects on Mpro function and to arise via genetic drift, then
some mutations might be over- or underrepresented in populations due
to founder effects [97] and genetic bottlenecks [98]. These potential
pitfalls notwithstanding, DRN represents an orthogonal approach to
identify residues that are structurally amenable to mutations. This could
inform selection of promising leads from a panel of drug-like lead
compounds, to avoid compounds that bind to mutation-prone residues,
or might help identify residues with mutational rates far below that
expected from DRN analysis, potentially highlighting residues with
additional functional roles. Furthermore, in this study we showed that
the DRN metrics identified residues neighbouring the most frequently
mutated ones. Thus, with fine-tuning of the DRN calculations, we may
be able to improve the predictive power.

Overall, this work lays a foundation for understanding protein evo-
lution and holds promising potential for practical applications in drug
discovery and pathogen evolution. By identifying and targeting residues
that are less prone to mutations, this approach can guide the develop-
ment of drugs with higher resistance barriers. While aiming to improve
the predictive power of DRN analysis, our future work will also extend
this approach to other proteins. We would expect that the DRN metric
values are correlated to mutation frequencies, but a key question to
investigate is whether the ML predictors developed here can be used
unchanged to make reasonable predictions about the mutation fre-
quencies of other proteins.
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Requirements for Existing Software

The SARS-CoV-2 variants of concern sequences were retrieved from
the GISAID database (https://gisaid.org/). The VOC mutations were
identified from the sequences using the CoVsurver tool (https://gisaid.
org/database-features/covsurver-mutations-app). The SARS-CoV-2
Mpro protein structure (PDB ID 5RFV [52]) was downloaded from the
RCSB PDB website (https://www.rcsb.org/). PyMol (version 2.4) (free
to download at https://www.pymol.org) was used to remove any
non-protein molecules and to reconstitute the biological unit as chains A
and B and prepare protein structure figures. The PROPKA tool version
3.5.1 (free to download: https://pypi.org/project/propka) was then to
protonate the Mpro structure. The GROMACS software (version 2021.1)
was used for the production simulations. It is free to download (https
://manual.gromacs.org/documentation/2021.1/download.html). VMD
version 1.9.3 (https://www.ks.uiuc.edu/Research/vmd/vmd-1.9.3/)
was used for visualization of MD simulations. The GROMACS version
2020.1 was also used to calculate RMSD, RSMF, Rg, B-factor and SASA.
MD-TASK (freely available at https://md-task.readthedocs.io/en/lat
est/home.html) was used for DRN calculations. Python version
3.10.13 (free to download: https://www.python.org/downloads/) was
used for generating Python RF and ANN machine learning models. In
Python, the free to download packages Keras version 3.0.5 (https://gith
ub.com/fchollet/keras), TensorFlow version 2.15.0 (https://pypi.org/
project/tensorflow/) and Scikit-learn library version 0.24.2 (https://p
ypi.org/project/scikit-learn/) were used for model generation. MAT-
LAB version 2023b was used with TreeBagger version for classification
models and Deep Learning Toolbox for ANN models. Alluvial plots were
generated in R version (4.3.2) free to download (https://cran.r-project.
org/bin/windows/base/). MD simulations will be made available upon
request.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the
online version at doi:10.1016/j.csbj.2024.10.031.
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