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Lead federated neuromorphic learning for
wireless edge artificial intelligence

Helin Yang 1,2, Kwok-Yan Lam 2,3 , Liang Xiao 1, Zehui Xiong 4,
Hao Hu 5, Dusit Niyato 3 & H. Vincent Poor 6

In order to realize the full potential of wireless edge artificial intelligence (AI),
very large and diverse datasets will often be required for energy-demanding
model training on resource-constrained edge devices. This paper proposes a
lead federated neuromorphic learning (LFNL) technique, which is a decen-
tralized energy-efficient brain-inspired computing method based on spiking
neural networks. The proposed technique will enable edge devices to exploit
brain-like biophysiological structure to collaboratively train a global model
while helping preserve privacy. Experimental results show that, under the
situation of uneven dataset distribution among edge devices, LFNL achieves a
comparable recognition accuracy to existing edge AI techniques, while sub-
stantially reducing data traffic by >3.5× and computational latency by >2.0×.
Furthermore, LFNL significantly reduces energy consumption by >4.5× com-
pared to standard federated learning with a slight accuracy loss up to 1.5%.
Therefore, the proposed LFNL can facilitate the development of brain-
inspired computing and edge AI.

In recent years, with the rapid development of mobile computing
and Internet of Things (IoT), billions of devices such as sensors,
actuators, robots, and autonomous vehicles are connected, gen-
erating massive amounts of data1. Driven by this trend, a powerful
technique termed edge artificial intelligence (AI), amalgamating
edge computing and AI2–8, has been proposed to enable devices on
the edge of a network to locally analyze and process data without
transferring collected data to a centralized server. Such capability
not only facilitates data privacy preservation but also reduces data
traffic and network latency. Moreover, unprecedented accuracies
have been achieved by deep learning of neural networks trained for
speech recognition, image and video classification, and object
detection in edge AI3–7. Despite these benefits, edge AI still faces
the following two fundamental challenges. Firstly, modern AI-
based algorithms depend intrinsically on sophisticated learning
methods7, and more importantly on sufficiently rich training

datasets9,10. Thus, the limited sizes of local datasets available to
edge devices inevitably make the task of training usable AI models
almost impossible9,10. Secondly, machine learning algorithms are
generally computing intensive and energy-demanding, which
hampers energy-constrained edge devices from training/analyzing
data locally2,3,11,12.

One potential technique to address the first challenge is feder-
ated learning (FL)13,14. In FL, as reported2,4,15–17, multiple collaborative
devices locally train a machine learning model (i.e., each with its own
data, in parallel) without uploading raw data to a server. In this con-
text, the devices only upload parameters (or gradients) to a central
server for global model aggregation. Then, the updated model para-
meters are sent back to devices for the next training epoch, and the
process is repeated until convergence. FL not only enables edge AI to
achieve a comparable model quality to centralized learning, but also
reduces data traffic and helps preserve data privacy. For these
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reasons, FL has recently been applied in privacy-sensitive medical
applications10,18–20, e.g., medical image classification18. Considering the
central coordinator in FL, all clients/devices are required to trust the
central server and the training speed is limited by the heterogeneity
of edge devices21. To address this issue, decentralized FL has been
proposed20–25, where model parameters are exchanged only among
interconnected devices without using a central server. Even so,
repeatedly cycling model aggregation among devices results in
increased training latency26–28. Furthermore, even if centralized or
decentralized FL provides a solution for privacy-enhancing and reli-
able model training under insufficient datasets at edge devices, model
training based on deep learning can consume a significant amount of

energy, further hindering application of decentralized FL in energy-
constrained edge devices.

As noted above, standard deep learning algorithms, e.g., multi-
layer artificial neural networks (ANNs) and convolutional neural net-
works (CNNs), are generally power-hungry29–32. To address this chal-
lenge, inspired by biological neurons, spiking neural networks
(SNNs)33,34 have been proposed and explored as a promising neuro-
morphic computing solution for the implementation of AI algorithms
in edge devices due to their low energy consumption. SNNs simulate
the electrical activity of human-brain systems and operate with con-
tinuous spatio-temporal dynamics and discrete spike events using
Integrate-and-Fire (IF) or Leaky IF (LIF) neuron units35. Owing to the
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Fig. 1 | Schematic diagram of the lead federated neuromorphic learning sys-
tem. a Schematic of a social learning network, where each human uses five
sensory organs to interact with the outside environment via neural networks.
The humans in a group exchange learned knowledge with each other for better
recognition. b Inspired by the collaborative learning system in (a) a federated
neuromorphic learning system is introduced to perform model aggregation from
edge devices in a group. The integration between devices and the external
environment is handled by using sensors (e.g., cameras, microphones, radars, and
touch sensors). c The structure of an SNN which is adopted to perform

neuromorphic computing for edge devices. d The principle of LFNL without a
central server, where one device is selected as a leader to manage model aggre-
gation in a group. e An example situation of multiple humans crossing a vehicular
road, where multiple edge devices can observe, hear, and sense traffic objects.
f Illustration of LFNL-based traffic recognition. The leader (device) leads other
followers (devices) to train their own local neuromorphic models independently,
and it collects local model parameters (w2, w3, …, wK) to perform model
aggregation before broadcastingw to the followers for the next local training. The
exchange of local and global parameters repeats until convergence.
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inherent parallelism of binary spike-based sparse computing over
time steps, SNNs promise fast, sparse, and energy-efficient informa-
tion processing36–41. Furthermore, several attempts have beenmade to
combine SNNs with FL42,43 to improve learning capability, energy
efficiency, and privacy preservation, but model parameters are still
aggregated by a central server.

In this article, we propose lead federated neuromorphic learning
(LFNL), a decentralized brain-inspired computing method based on

SNNs, enabling multiple edge devices to collaboratively train a global
neuromorphic model without a fixed central coordinator. In particu-
larly, we present a leader election scheme to elect one device with
high capability (e.g., computation and communication capabilities) as
a leader to manage model aggregation. This approach can effectively
accelerate the convergence of federated learning and defend against
model poisoning attacks. Experimental results demonstrate that LFNL
achieves high classification accuracies of 94.3%, 95.6% and 94.7% on
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Fig. 2 | LFNL for audio recognition on a road. a Principle of local neuromorphic
learning (LNL) with data and model on the devices. b Principle of centralized
neuromorphic learning (CNL) with data and model being stored at the central
server. c Principle of centralized federated neuromorphic learning (CFNL) with
data being kept on the devices, and local model parameters being uploaded to the
central server for model aggregation. d Principle of transfer neuromorphic
learning (TNL) with data being kept on the device side, and each device trains its
model and then passes it to the next device for training, cyclically repeating the
process. e An example of audio recognition on a road, including firetruck,

ambulance and general traffic sounds. f, g Validation loss curves for three locally
training devices and LFNL. h–j Box plots show test accuracy performed for three
locally training devices and LFNL with uneven distributions of training dataset
(F: firetruck sound class, A: ambulance sound class, T: general traffic sound class).
The training dataset distributions of three sound classes for three devices are
shown at the top of these figures. k Confusion matrix for the test set in LFNL after
training. l–n Test accuracy, data traffic, and training latency comparisons for
different learning methods, respectively.
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audio, visual and radar signal recognition tasks with uneven dataset
distribution among devices. Such high accuracies are approximately
equivalent to those of centralized learning and significantly outper-
form local learning. LFNL also substantially reduces data traffic and
computational latency compared to centralizing learning. The results
further verify that LFNL yields approximately the state-of-the-art
accuracy (up to 1.5% loss) with significant energy consumption
reduction (~4.5×) compared to standard federated learning methods.
LFNL promises several important benefits for edge AI compared to
existing computing paradigms, including privacy enhancement, low
computational latency, data traffic reduction, energy efficiency, and
robustness. As such, LFNL is envisioned to significantly boost the
development of brain-inspired computing and edge AI.

Results
Construction of lead federated neuromorphic learning
In order to enable edge devices to perform computing with low
energy consumption, low latency, and high-accuracy recognition with
privacy-enhancement, we developed an LFNL system, as shown in
Fig. 1. Figure 1a shows a schematic diagram of a collaborative human
social system. Each human uses five general sensory organs to observe
analog stimulus from an outside environment, and then the stimulus is
transformed into a spike signal using specialized neurons which are
then processed by the human’s brain. Each human builds a corre-
sponding knowledge model, and then shares the model with others to
create an optimized knowledge model for better recognition. Inspired
by this, a federated neuromorphic learning system is introduced for
edge AI (Fig. 1b), where the edge devices are equipped with cameras
(vision), microphones (hearing), radars (object sensing), pressure
sensors (touch), and radio-frequency signal detectors (wireless com-
munication). These sensors adopt SNNs as a neuromorphic processor
to convert detected information into spike signals. The structure of
SNNs with Meta-Dynamic Neurons (MDNs)32 is illustrated in Fig. 1c,
and the inputs of SNNs are discrete spikes which are encoded from
object analog signals (vision, audio, radar, etc.)32. The signals in input,
hidden and output layers of SNNs are all spike trains (see Methods).

LFNL is implemented with a leader and a number of followers in a
group (Fig. 1d), and the learning model parameters are shared and
exchanged via distributed networks with each device training its
model independently on local data. Note that a device with high
computation, communication, and energy supply capabilities is
elected as the leader to effectively manage model aggregation and
accelerate the federated learning process (the leader election proto-
col and performance evaluation are discussed in Supplementary
Figs. 1, 2). To better illustrate the concept of LFNL for edge AI, we
consider a scenario in which several edge devices cross a road as an
example (Fig. 1e). In a social network, humans share their learning
knowledge with each other to provide better object recognition, and
one of them acts as a leader to lead the group members to better
explore, learn, and adapt to the physical world. Inspired by the
human-like learning functionalities, LFNL realizes object recognition
by training or evaluating spike signals from auditory, vision, and radar
systems using neuromorphic learning (Fig. 1e). The objective of the
leader is to aggregate the uploaded local neuromorphic model
parameters (w2, w3, …, wK ) from the followers. All followers only
need to send their local model parameters to the leader instead of
uploading their raw data. After aggregating the model parameters at
each global epoch, the updated global parameter w will be sent to
followers for the next training epoch. Further details about the LFNL
can be found in Methods.

Application to audio recognition
We first tested the audio recognition capability of LFNL, and selected
a traffic sound dataset (https://www.kaggle.com/vishnu0399/
emergency-vehicle-siren-sounds) for performance evaluation. To

compare LFNL with other techniques, we introduce four benchmark
methods based on SNNs, each of which incorporates some, but not
all, of the benefits of LFNL. Briefly, these are as follows. Local neu-
romorphic learning (LNL) enables each device to locally train its
model without sharing raw data with other devices (Fig. 2a). Cen-
tralized neuromorphic learning (CNL) uses a central server to collect
datasets of all devices for global model training (Fig. 2b). Venkatesha
et al.43. designed a centralized federated neuromorphic learning
(CFNL) method for training decentralized and privacy promoting
SNNs, where a central server is used to perform global SNN model
aggregation. CFNL can keep the raw data on the devices (Fig. 2c), and
only the local model parameters need to be uploaded to the central
server for model aggregation which enhances the global accuracy.
However, CFNL still relies on a centralized structure. Transfer neu-
romorphic learning (TNL) keeps data on the devices (Fig. 2d), and
each device trains its model and then passes it to the next device for
training, repeating the process cyclically. However, the devices train
in sequence rather than in parallel, leading to a longer training
latency27,28.

We implemented the experiments on several Raspberry PI 4Bs, a
Raspberry PI 3B+ and one laptop (see Methods). In the benchmark
LFNL, the SNN has 128-2000-3 neurons corresponding respectively to
the input-hidden-label layers. For the traffic sound dataset, total of
600 sound samples were used with three classes, including firetruck,
ambulance, and general traffic sound samples with each having
200 samples. 80% of the sound samples were used for training, and
the remaining 20% of their samples were used for validation and
testing.

As the validation loss is widely used to measure the quality of
training capability, we considered this metric versus training
epochs for three locally training devices and LFNL. Since device 3
has insufficient training samples (Fig. 2f), it has a higher validation
loss than those of the other two devices having more training
samples, leading to a lower test accuracy of 84.2% (Fig. 2h). Device
1 and device 2 achieve test accuracies of 91.3% and 91.4% (Fig. 2h),
respectively. However, by applying LFNL, the system achieves a
faster training convergence speed (Fig. 2g) and a higher test
accuracy of 94.3% (Fig. 2h) than those of the three locally training
devices. In general, AI performs well when the training data is
sufficient, for example, the training and test accuracy of device 1
and device 2 are quite good. We further examined the stability and
robustness of LFNL with an uneven dataset distribution of the
three classes on the three devices. As depicted in Fig. 2i, as each
device has significantly insufficient training samples on one class
dataset, the overall test accuracy of the three locally training
devices decreases substantially compared to Fig. 2h. Similarly, this
phenomenon also happens with the uneven distribution of data-
sets on device 2 and device 3 (Fig. 2j). However, LFNL still main-
tains a high test accuracy of 95% and significantly outperforms
locally training devices. Moreover, the LFNL results do not dete-
riorate when we divided the training samples into six smaller parts
for six devices (Supplementary Fig. 3). In addition, we find that
LFNL can effectively defend against model poisoning attacks
(Supplementary Fig. 4).

We further compared the performance of LFNL with other
learning methods (Fig. 2l–n). As depicted in Fig. 2l, LFNL not only
achieves a similar test accuracy to CNL, but also significantly reduces
both data traffic size by >3.5× (Fig. 2m) and training latency by ~2.0×
(Fig. 2n). Both CFNL and LFNL train the learning model in parallel, and
have approximately similar test accuracies (Fig. 2l) and training
latencies (Fig. 2n), but the former needs a central server for model
aggregation and it also has higher data traffic (Fig. 2m). Unlike LFNL,
TNL trains the model sequentially rather than in parallel and has lower
data traffic than that of LFNL (Fig. 2m), but it requires much longer
computational latency (Fig. 2n). The results shown in Fig. 2l–n

Article https://doi.org/10.1038/s41467-022-32020-w

Nature Communications |         (2022) 13:4269 4

https://www.kaggle.com/vishnu0399/emergency-vehicle-siren-sounds
https://www.kaggle.com/vishnu0399/emergency-vehicle-siren-sounds


strongly support the conclusion that LFNL is more suitable for edge AI
in terms of recognition accuracy, data traffic, latency and privacy-
enhancement factors.

Application to visual recognition
Next, we applied LFNL to implement visual recognition, as illustrated
in Fig. 3a. In the benchmark LFNL, the SNN has 1728-2500-3 neurons
corresponding respectively to the input-hidden-label layers. For
the traffic image dataset (https://www.kaggle.com/vishnu0399/
emergency-vehicle-siren-sounds, https://www.kaggle.com/hj23hw/
pedestrian-augmented-traffic-light-dataset), in total, 872 images are
used with three classes, including 160 bicycle images, 205 car images,
and 507 traffic light images. 80% of the images were used for training,
and the remaining 20% of the images were used for validation and
testing.

Figure 3b illustrates the validation loss curves of three locally
training devices and LFNL. The training dataset distributions of three
traffic types (i.e., bicycle (B), car (C) and traffic light (L)) for three
devices are shown at the top of Fig. 3d. Due to the insufficient training

images, both device 2 and device 3 overfit quickly and result in
unstable training (Fig. 3b), achieving low test accuracies of 88.0% and
78.5% (Fig. 3d), respectively. Compared with the three locally training
devices, LFNL overcomes the local overfitting, exhibits smoother and
significantly obtains a smoother and faster convergence (Fig. 3b), and
achieves a higher test accuracy of 95.6% (Fig. 3d). We further exam-
ined the stability and robustness of LFNL with a significantly uneven
and insufficient dataset distribution. From Fig. 3e–g, we find that the
overall test accuracy of locally training devices with uneven and
insufficient datasets declines significantly, whereas the LFNL results
do not deteriorate. Furthermore, LFNL still robustly achieves a high
classification accuracy under random image rotation angles (Supple-
mentary Fig. 5).

We also considered the performance comparisons for different
learning methods (Fig. 3h–j). As shown in Fig. 3h, LFNL achieves
similar training convergence and validation loss values to those of
CNL, CFNL and TNL. In addition, it also obtains a comparable test
accuracy to other learning methods (Fig. 3i). However, by using our
LFNL method, the training latency is significantly reduced in
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Fig. 3 | LFNL for visual recognition on a road. a An example of visual recognition
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classes. b Validation loss curves for three locally training devices and LFNL.
c Confusion matrix for the test set in LFNL after training. d–f Box plots show test
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comparison to CNL and TNL (Fig. 3i). We note that both CNL and
CFNL rely on a central structure which increases the data traffic for
edge AI. In these results (Fig. 3b–j), LFNL significantly outperforms
individual devices regardless of how uneven the data distributions
are, and its recognition capability is close to that of the centralized
learning method.

Application to radar signal recognition
This section tests the radar signal recognition capability of LFNL,
where we simulate a situation (Fig. 4a) in which devices (e.g.,
vehicles) use radar systems to recognize human gestures on a
road, for applications such as recognizing when a person crosses a
road, hails a taxi, or signals for a bus to stop. In total, 1695 five-
class radar gesture samples31 were adopted for classification eva-
luation, where 80% and 20% of the samples were used for training
and testing, respectively. In the benchmark LFNL, the SNN has
4800-1000-5 neurons corresponding respectively to input-
hidden-label layers. Figure 4b presents the validation loss curves
for three locally training devices and LFNL, where the dataset
distribution for the three devices are set as 39.5%, 27.8% and 12.7%,
respectively. Similarly to previous results, due to insufficient
training samples, device 3 achieves higher validation loss values
than those of the other two devices, leading to a lower test
accuracy of 78.3% (Fig. 4c). Fortunately, this problem can be
mitigated using LFNL, as illustrated in Fig. 4c, d, in which it is seen
that the accuracies of the three locally training devices are
obviously improved from 93.2%, 91.1% and 78.3%, respectively, to
94.7%. Further, we divided the training samples into six parts for
six devices with each having a smaller training dataset, in parti-
cular, the dataset sizes at the six devices were set as 17.7%, 17.7%,
14.8%, 11.8%, 8.9%, and 9.1%, respectively. As shown in Fig. 4e, the
overall test accuracy of the six locally training devices significantly
decreases, especially the performance of device 5 and device 6,
because they have very small training samples, whereas the LFNL
results do not deteriorate. The confusion matrix of five-label
recognition is provided in Fig. 4f. For each gesture class, only very
few samples are misclassified into other classes. Similar to the
corresponding results in Figs. 2 and 3, the test accuracy of LFNL is

still equivalent to other learning methods (e.g., CNL and TNL), as
shown in Fig. 4g. However, LFNL significantly reduces the training
latency compared with CNL and TNL (Fig. 4h), and it does not need
a central server compared with CNL and CFNL.

Analysis of recognition accuracy and energy consumption
This section compares the accuracy and energy consumption (Fig. 5)
of LFNL-SNN with those of standard lead federated learning based
ANN (LFL-ANN), in order to illustrate the energy efficiency of LFNL.
Note that both SNNs and ANNs have the same learning structure for
fair comparison. The details of energy consumption analysis can be
found in Methods.

In Fig. 5a, d, and g, we find that the accuracy of LFNL-SNN suffers
a slight loss (up to 1.5%) compared to LFL-ANN. In ANN, the neurons
use high-precision activation and continuous values, and propagate
signals only in the spatial domain, whereas the signals in SNNs are
spike trains coded in binary events instead of continuous activation
and each spiking neuron exhibits rich dynamic behavior. Thus, LFNL-
SNN generally has more temporal versatility but slightly lower
recognition accuracy (Fig. 5a, d, g) compared to LFL-ANN36–43. For
example, as illustrated in Fig. 5e, the visual recognition accuracy of
LFNL-SNN is 94.3%, only slightly lower than that of LFL-ANN with the
accuracy of 95.8% in this scenario.

Figure 5c, f, h show the estimated energy consumption of ANN
and SNN models trained on the audio, vision and radar datasets for
three devices, respectively. From these figures, compared with LFL-
ANN, the significantly larger energy saving gains achieved can be
attributed to the sparsity obtained with event-driven spike trains in
SNNs. For example, for visual recognition illustrated in Fig. 5f, the
energy consumption of LFL-ANN is 13.85 µJ, whereas that of LFNL-
based SNNs is 2.92 µJ which is 4.75× in reduction. Thus, we see that, in
using LFNL-SNN for edge AI, the energy needed for computation is
significantly reduced while he accuracy is largely preserved compared
with its ANN-based counterpart.

Application in complex and high-dimensional datasets
In addition to evaluating performance on audio, visual, and radar
signal recognition tasks, LFNL is expected to be effective and robust
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on complex and high-dimensional datasets. Therefore, we further
applied LFNL to evaluate the classification accuracy on CIFAR10 and
CIFAR100 datasets44. Note that we used the github repository43 pro-
vided by Venkatesha et al.43 to run the experiments and obtain the
CFNL results described below.

Figure 6 shows the experimental results for LFNL and CFNL
methods on the CIFAR10 and CIFAR100 datasets using the VGG9
training model44, where different parameters (i.e, participating
device configurations, non-IID distribution and gradient noise) are
considered in the performance evaluation. Here, we use P/N to
show the device split, where N means that the dataset is divided
into N parts for N devices, and P represents the number of parti-
cipating devices selected for model aggregation in each global
round43. From Fig. 6a, b, we observe that the classification

accuracy of the two methods gradually decreases as the number of
devices increases. The reason for this is that the training dataset is
divided among more devices which degrades the learning capacity
with insufficient local training data. We further evaluated the
classification accuracy under different levels non-IID-ness of the
data, where the Dirichlet distribution with concentration para-
meter α is used to obtain non-identical datasets45,46. Note that as
the value of α decreases, the class composition becomes more
skewed and the degree of the the non-identicality of the data
becomes more pronounced. Figure 6c, d show that even though
the data becomes more non- IID as the parameter α decreases, the
classification accuracies of both LFNL and CFNL do not decline
significantly when α ≥ 1. However, when α < 1, the non-IID-ness of
the data tends to be more skewed as α < 1 decreases, and the
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training model diverges significantly. Finally, there is a steady
decrease in the classification accuracy of LFNL and CFNL. Due to
the the unreliability of wireless environments, some devices will
fail to communicate their model parameters to the central server
or leader, and we capture this by considering the probability of
such stragglers. As shown in Fig. 6e, f, for both the CNFL and LFNL
methods, the negative effect of the probability of stragglers on the
test accuracy is not significant in the case of IID training data.
However, the accuracy decreases more significantly in the non-IID
case as the probability of stragglers increases. From Fig. 6a–f, we
can see that LFNL still achieves a higher classification accuracy
than that of CNFL under different parameters on both CIFAR10
and CIFAR100 datasets, as the LFNL elects the leader to be the
device with higher overall channel quality which reduces the
probability of stragglers.

Discussion
In this paper, we have proposed a lead federated neuromorphic
learning method for edge AI, namely LFNL, integrating brain-inspired

neuromorphic computing and federated learning in the domain
of human-like machine intelligence. LFNL enables edge devices
to collaboratively train a global reliable model while enhancing
privacy without a central server, in the presence of uneven
and insufficient training data on edge devices. Owing to the
decentralized federated learning and parallel training structures,
LFNL becomes an effective alternative to the centralized data
sharing paradigm across edge devices without relying on
any central server, and thus significantly reduces the heavy data
traffic, enhance data privacy and decreases training latency com-
pared to existing centralized learning methods. Moreover, with
the implementation of spike-based processing features, our pro-
posed LFNL can substantially reduce energy consumption, which
makes LFNL particularly suitable for energy-constrained edge
devices.

The advantages of LFNL have been demonstrated experimentally
in a series of benchmark comparisons on audio, visual and radar
signal recognition tasks under uneven dataset distributions. We have
seen that LFNL achieves an inference accuracy of more than 94% for
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each task, and it significantly outperforms the locally training method
and obtains a comparable recognition accuracy to centralized learn-
ing without causing heavy data traffic, as shown in Figs. 2–4. Due to
the spike activation driven nature of LFNL, the method requires a
finite number of training time steps T to optimize LFNL-SNN and
obtains slight lower classification accuracy than that of the standard
federated learning-based ANNs. However, it can significantly reduce
the energy consumption for energy-constrained devices (Fig. 5). Due
the scalability of LFNL, such a higher classification accuracy is still
achieved compared with the existing federated learning framework
on larger and higher-dimensional datasets (CIFAR10 and CIFAR100
datasets) (Fig. 6).

In brief, LFNL offers a powerful mechanism for democratizing
the use of neuromorphic learning in the domain of human-like
machine intelligence. Owing to the aforementioned benefits and
advantages, LFNL can effectively deploy deep learning of neural
networks for resource-constrained edge devices with various
practical applications, such as speech recognition, image and video
classification, smart sensing, health monitoring and multi-object
detection in edge AI. It also has the potential to implement deep
learning on large-scale scientific/industrial systems, for example,
autonomous instruments, autonomous vehicles and mission cri-
tical diagnostics. This gives us confidence that LFNL can contribute
significantly to the development of brain-inspired computing and
edge AI.

Methods
SNN model
In order to enable SNNs to achieve better learning efficiency and
generalization for object recognition/classification in LFNL, SNNs
combined with an MDN architecture32 is used in our work. The MDN is
designed with meta neurons including the first-order and second-
order dynamics of membrane potentials, as well as the spatial and
temporal meta types supported by hyper-parameters32.

Figure 1c shows a typical SNN architecture with LIF neurons. The
spiking neurons in SNNs communicate with each other using spike
trains coded in binary events (1: spike, 0: no spike) in a temporal
domain over a given number of time steps T, referred to as spike train
duration. In this work35, LIF35 is applied to perform standard first-order
dynamic spike neurons. The dynamic includes only up to an attractor.
The dynamic behavior of the i-th spike neuron using LIF is char-
acterized by

τ
dUiðtÞ
dt

= βUiðtÞ+CðtÞ, ð1Þ

where UiðtÞ denotes the the membrane potential and τ is the time
constant for UiðtÞ. CðtÞ is the input synaptic current (the weighted
summation of pre-spike events) at time t and can be written as

C tð Þ= ∑
M

i = 1
wi,j ∑

N

n= 1
Vi t � tn
� �

, ð2Þ

where Viðt � tnÞ is the spike event from the current neuron i to its pre-
neuron j, wi,j is the synaptic weight between Viðt � tnÞ and N denotes
the number of neurons. In this context, the dynamic behavior of spike
neurons in the first-order is given by &

τ dUiðtÞ
dt =βUiðtÞ+CðtÞ,

SiðtÞ= 1 and UiðtÞ+Ure, if UiðtÞ ≥ Uth,

SiðtÞ=0, if UiðtÞ<Uth,

8
><

>:
ð3Þ

where SiðtÞis the output of the i-th neuron at time t, and Ure and Uth

are the reset potential and firing threshold (resting potential),
respectively. In Eq. (3), the spike event SiðtÞ can be obtained from the

value of the membrane potential UiðtÞ, e.g., SiðtÞ= 1 when UiðtÞ≥Uth,
and otherwise, SiðtÞ=0.

The dynamic behavior of the i-th second-order neuron with
MDNs can be written as32

τ dUiðtÞ
dt =U2

i ðtÞ � UiðtÞ � HiðtÞ +CðtÞ,
dOiðtÞ
dt =ηaðηbUiðtÞ � HiðtÞÞ,

Si tð Þ = 1, Ui tð Þ=ηc andHi tð Þ =Hi tð Þ+ηd , if Ui tð Þ≥Uth,

Si tð Þ =0, if Ui tð Þ < Uth,

8
>>>><

>>>>:

ð4Þ
where HiðtÞ denotes a resistance value simulating hyperpolarization
which is tapped to charge the activation and inactivation of currents,
and ηa, ηb, ηc, and ηd are dynamic parameters which are used to
distinguish the different second-order dynamics of the membrane
potential in the SNN. From Eq. (4), we can observe that the attractor
of UiðtÞis determined by HiðtÞ and CðtÞ32.

In an SNN, the loss function is used to evaluate the mean square
error between output firerates SiðtÞ and classification labels Y i, which
is given by

Loss = ∑
M

i = 1

1
T

∑
T

t = 1
SiðtÞ � Y i

� �2

: ð5Þ

Since SNNs involve non-differentiable functions, the widely-used
gradient-based back propagation (BP) cannot be used directly to train
them. Rather, an approximate BP technique to train the SNNs model
in LFNL. Thus, an approximate BP trick technique32,36 is used to train
SNNs using a pseudo differential gradient give by

G=
1, if ∣UiðtÞ � Uth∣<Utar,

0, otherwise,

�
ð6Þ

which is used to dynamically update the synaptic values in SNNs, and
where Utar is the range of membrane potential between input. The
learning structure is trained on a sequence of binary spike events over
a given number of time steps T, further detail can be found in the
study32.

LFNL model
Federated learning has become an important paradigm aiming to
train a collaborative AI model while keeping all the training data
localized13,14. Thus, federated learning holds substantial promise for
use in edge data analytics15–17, which enables edge devices to train
their AI models locally without sharing sensitive private data with
external parties.

To perform model aggregation in LFNL, a set of edge devices
K participate in global neuromorphic model training (training
federation for object recognition) with a leader to perform model
aggregation. Each device k adopts its local database Dkto train its
local neuromorphic model parameters wkwithout sharing local
data with the leader. In the federated learning scenario, a loss
function f ðwk : xk,j,yk,jÞ is introduced to quantify the federated
performance error over the input data sample vector xk,j on the
training model wk and the desired output scale vector yk,j for each
input sample j at the k-th device. Accordingly, the local
loss function on the training set Dk at the k-th device can be
expressed by

FðwkÞ=
1

∣Dk ∣
∑
j2Dk

f ðwk : xk,j , yk,jÞ; ð7Þ

where ∣Dk ∣ denotes the cardinality of the set Dk . At the leader, the
global loss function with the local datasets of participating device
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can be written as

FðwÞ≜ ∑
k2K

∣Dk ∣
∣D∣

FðwkÞ=
1

∣Dk ∣
∑
k2K

∑
j2Dk

f ðwk : xk,j, yk,jÞ, ð8Þ

where w denotes the global model parameter at the leader and D is
the set of all data from all participating devices. The objective of the
federated learning task is to find an optimal model parameter w* by
minimizing the global loss function47 given by

w* = argmin F wð Þ: ð9Þ

The leader iteratively updates the aggregated model through the
local training procedure across edge devices in a group until the
model converges to a certain learning accuracy target48,49. The leader
election protocol and process can be found in Supplementary
Fig. 1b, c.

Energy consumption analysis
Similar to the work50, the energy consumption can be estimated based
on the number of floating point operations (FLOPS) of ANNs or SNNs
which is approximately equivalent to the number of multiply-and-
accumulate (MAC) operations. In the case of ANNs, FLOPS mainly
consist of the MAC operations of convolutional and linear layers. On
the contrary, for SNNs, as it performs training over binary spike sig-
nals, only accumulate (AC) operations are needed to handle the dot
operations, except in the first input layer. For each convolutional layer
with I input of ANN or SNN, with I input channels, O output channels,
M ×M input feature map size, weight kernel size p×p and Q×Q
output size, the number of FLOPS for ANNs and SNNs are respectively
given by ref. 50

FANN =Q2 × I ×p2 ×O, ð10Þ

FSNN =Q2 × I ×p2 ×O×R, ð11Þ

where R is the net spiking rate across training latency steps in SNNs,
and we know R < 1 due to the sparse event-driven activity. We note
that Eq. (11) is calculated over one time-step in SNN.

Based on the calculations from (10 and (11), we determine the
total energy consumption by specifiying the energy consumption per
MAC or AC operation on a 45 nm CMOS processor with 32-bit integer
arithmetic51. Each MAC operation consumes 3.2 pJ while each AC
operation needs only 0.1 pJ in the 45 nm CMOS processor. Hence, the
total energy consumption for an ANN (EANN) and an SNN (ESNN) can
be calculated by ref. 50

EANN = ∑
L

l = 1
FANN
l

� �
× EMAC , ð12Þ

ESNN = FSNN
1 × EMAC + ∑

L

l = 2
FSNN
l

� �
× EAC ×T , ð13Þ

where L is the number of layers of the ANN or SNN. EMAC and EAC are
the energy consumption of one MAC or AC operation, respectively. In
the case of SNNs, as shown in Eq. (13), calculating the total energy
consumption requires considering the total number of AC operations
over T time training steps. In addition, the first layer (input layer) in
SNNs needs to convert the analog input into binary spike events, and
thus MAC operations are used in this layer. Note that the energy
calculation in Eqs. (12) and (13) are approximate estimations which do
not take into account the memory and any hardware circuit energy
consumption.

Leader election for LFNL
LFNL considers communication capability in leader election, as shown
in Supplementary Fig. 1. In particular, it is preferred that the elected
leader be located at the center of the edge devices, so that the
communication capabilities (wireless communication link quality and
Signal-to-Interference plus-Noise-Ratio (SINR)52) from the followers to
the leader are relatively balanced. In this context, taking the devices’
communication capacity into account for the leader election can
greatly improve the federated model aggregation speed in terms of
lower latency.

Experimental hardware and software
We implemented the experiments on two Raspberry PI 4Bs (CPU
clock: 1.5GHz, RAM: LPDDR4 8 GB), one Raspberry PI 3B+ (CPU clock:
1.4 GHz, RAM: LPDDR4 1 GB) and one laptop (CPU: 1.60GHz, RAM:
8 GB). Note that when we implemented the experiment with more
devices setting, we used the laptop. In terms of software, the
experiments were performed using PyTorch via Python 3.0. The net-
work and training parameters in our experiments are shown in Sup-
plementary Table 1.

Data availability
The sound or speech databases can be accessed at https://www.
kaggle.com/vishnu0399/emergency-vehicle-siren-sounds. The image
databases are collected from https://github.com/nikhilpatil99/Smart-
Traffic-Management-Using-Deep-Learning, and https://www.kaggle.
com/hj23hw/pedestrian-augmented-traffic-light-dataset53, and the
CIFAR10 and CIFAR100 datasets44 are from (https://www.cs.toronto.
edu/~kriz /cifar.html). The radar gesture database is collected from
the study30.

Code availability
The code used in this research were developed using the Python and
Matlab platform. To assist researchers in reproducing the experi-
mental results, some code is available at https://github.com/
GOGODD/FL-EDGE-COMPUTING/releases/tag/federated_learning.
Some basic code was adopted from the studies32,43.
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