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Abstract

With the recent industrial expansion, heavy metals and other pollutants have increasingly

contaminated our living surroundings. Heavy metals, being non-degradable, tend to accu-

mulate in the food chain, resulting in potentially damaging toxicity to organisms. Thus, tech-

niques to detect metal ions have gradually begun to receive attention. Recent progress in

research on synthetic biology offers an alternative means for metal ion detection via the help

of promoter elements derived from microorganisms. To make the design easier, it is neces-

sary to develop a systemic design method for evaluating and selecting adequate compo-

nents to achieve a desired detection performance. A multi-objective (MO) H2/H1

performance criterion is derived here for design specifications of a metal ion biosensor to

achieve the H2 optimal matching of a desired input/output (I/O) response and simultaneous

H1 optimal filtering of intrinsic parameter fluctuations and external cellular noise. According

to the two design specifications, a Takagi-Sugeno (T-S) fuzzy model is employed to interpo-

late several local linear stochastic systems to approximate the nonlinear stochastic metal

ion biosensor system so that the multi-objective H2/H1 design of the metal ion biosensor

can be solved by an associated linear matrix inequality (LMI)-constrained multi-objective

(MO) design problem. The analysis and design of a metal ion biosensor with optimal I/O

response matching and optimal noise filtering ability then can be achieved by solving the

multi-objective problem under a set of LMIs. Moreover, a multi-objective evolutionary algo-

rithm (MOEA)-based library search method is employed to find adequate components from

corresponding libraries to solve LMI-constrained MO H2/H1 design problems. It is a useful

tool for the design of metal ion biosensors, particularly regarding the tradeoffs between the

design factors under consideration.

Introduction

Metal ion pollutants are commonly found in soil, water, and crops. With the recent industrial

expansion, wastewater containing heavy metal increasingly contaminates our living surround-

ings [1–4]. Furthermore, non-degradable heavy metals may accumulate in food chains, and

the resulting toxicity damages organisms [5–7]. Hence, detection techniques have gradually
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begun to receive attention. Recent progress in research on synthetic biology offers an alterna-

tive means for metal ion detection via the help of promoter elements, such as PcusC and PpcoE
derived from E. coli [8] or PpbrA acquired from R.metallidurans [9, 10]. To make the design of

detectors easier, it is necessary to develop a method to evaluate and select adequate compo-

nents for achieving a desired detection performance.

In recent years, large numbers of genetic tools and engineering approaches have been and

still are being developed for metal ion biosensors. Synthetic biologists are forced to find inter-

changeable parts, such as promoters, ribosome binding sites (RBSs), and regulatory sequences,

that can be validated as construction units and assemble devices. The ability to quickly and

reliably engineer biological systems from libraries of standard interchangeable parts is one

trademark of modern technology [11–15]. Thus, to build a metal ion biosensor for a specified

purpose, one may need a systematic design process that begins with the specification, which

states the desired goal and technical details. Based on the specification, the biosensor is then

represented by a block diagram which consists of functional units of the system. At later stage

the design is evaluated and verified its feasibility via computational simulations and experi-

mental validations until the configuration and combination of biological parts reach suitable

performance [16]. Although a great deal has been accomplished in a short time, engineering a

metal ion biosensor to produce a desired behavior still remains an acute problem, due to the

uncertainties and fluctuations at the molecular level [17–29].

Recently, applying the analysis of nonlinear stochastic molecular systems to evaluate the

flexibility of combinations of biological parts has been a subject of considerable interest. A

multi-objective H2/H1 performance criterion is derived here for the design specifications of a

metal ion biosensor to achieve the H2 optimal tracking of a desired I/O response and H1 opti-

mal attenuation of parameter fluctuations and cellular noise simultaneously. Based on the

design specifications, the optimal design of the biosensor can be solved by an associated Ham-

ilton Jacobi inequality (HJI)-constrained optimization problem, which cannot be easily

achieved by present analytical or numerical methods. In order to simplify the analysis and

design of a nonlinear stochastic metal ion biosensor with multi-objective H2/H1 performance,

a Takagi-Sugeno (T-S) fuzzy model is employed here to interpolate several local linear stochas-

tic systems to approximate the nonlinear stochastic metal ion biosensor system. This allows

the HJI-based design problem to be replaced by a linear matrix inequality (LMI)-based design

problem. Thus, the multi-objective H2/H1 I/O response matching design of a synthetic bio-

sensor then can be achieved by solving a LMIs-constrained multi-objective optimization

problem.

However, there are tradeoffs between the H2 and H1 performances. As natural selection is

an important mechanism in defining traits best suited to environmental change in the face of

evolutionary trade-offs [30], one question that arises is whether a similar strategy could be

adopted for multi-objective design problems. Inspired by biological evolution events, such as

mutation, crossover, and selection, a multi-objective evolutionary algorithm (MOEA) is a

method to determine non-dominated Pareto optimal solutions [31, 32]. In particular, MOEA

is useful when considering the tradeoffs between design factors under consideration in multi-

objective H2/H1 design problems. Consequently, according to the criterion required for the

user-oriented specifications, the design can be constructed by selecting adequate components

with the help of a multi-objective evolutionary algorithm (MOEA)-based searching method.

In summary, this study provides a systematic design method for developing next-generation

synthetic biology, from biological component selection to genetic circuit assembly. When the

component libraries are more complete, more precise detection for metal ion can be achieved.

The contributions of this paper are fourfold. (a) A nonlinear stochastic system is introduced

to model a metal ion biosensor with intrinsic parameter fluctuations and extrinsic molecule
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noise. (b) A multi-objective (MO) H2/H1 I/O response matching performance criterion is

derived to fit the design specification for a metal ion biosensor, which achieves the H2 optimal

tracking of a desired I/O response and H1 optimal robust attenuation of parameter fluctua-

tions and cellular noise simultaneously. (c) By solving a LMIs-constrained optimization prob-

lem, a metal ion biosensor can be constructed, which achieves the H2/H1multi-objective

design by selecting adequate components from existing libraries. (d) The proposed MOEA-

based search method provides synthetic biologists with a useful tool for the design of metal ion

biosensors, particularly in the face of tradeoffs between the design factors considered in next-

generation synthetic biology.

Materials and Methods

For the convenience of description and explanation, as shown in Fig 1, the metal ion biosensor

is assembled by selecting a set of promoter-RBS components from the corresponding compo-

nent libraries in S1 File. The assembly included a metal ion-induced promoter-RBS compo-

nent Mi from the component library in Table A in S1 File, a constitutive promoter-RBS

component Cj from the component library in Table B in S1 File, and a quorum sensing (QS)-

dependent promoter-RBS component Ak from the component library in Table C in S1 File.

The metal ion-induced promoter-RBS Mi connects downstream with the LuxI coding

sequence, the production of which synthesizes a specific N-acylated homoserine lactone

(AHL) as a signal molecule [33–35]. The LuxR coding sequence is connected to the constitu-

tive promoter-RBS component Ci. When a sufficient amount of the LuxR protein is produced

in the presence of AHL, AHL binds to the LuxR protein to form a complex [34, 36, 37]. The

complex targets the cognate QS-dependent promoter-RBS component Ak and thereby acti-

vates transcription of the green fluorescent protein (GFP) coding sequence.

The dynamic model of the metal ion biosensor in Fig 1 can then be described as follows:

_xEðtÞ ¼ PMðPu;i; Pl;i; xS; IMÞ � ðd þ rEÞ � xEðtÞ

_xIðtÞ ¼ axEðtÞ � ðd þ rIÞ � xIðtÞ

_xRðtÞ ¼ PCðPu;j; 0; 0; 0Þ � ðd þ rRÞ � xRðtÞ

_xGðtÞ ¼ PAðPu;k; Pl;k; xR; xIÞ � ðd þ rGÞ � xGðtÞ

_GðtÞ ¼ mxG � ðd þ rOÞ � GðtÞ

ð1Þ

8
>>>>>>><

>>>>>>>:

in which

PCðPu;j; 0; 0; 0Þ ¼ Pu;j

PMðPu;i; Pl;i; xS; IMÞ ¼ Pu;i þ
Pu;i � Pl;i

1þ
KSI

xSIðxS; IMÞ

� �nSI

PAðPu;k; Pl;k; xR; xIÞ ¼ Pu;k þ
Pu;k � Pl;k

1þ
KRI

xRIðxR; xIÞ

� �nRI

xSIðxS; IMÞ ¼
xS

1þ
KM

IM

� � ; xRIðxR; xIÞ ¼
xR

1þ
KI

xI

� �

where xE, xI, xR, and xG denote the concentrations of autoinducer synthase, autoinducer, tran-

scriptional activator protein, and immature reporter protein, respectively, and G denotes the

intensity of GFP uorescence. IM is the concentration of metal ions and xS is the total
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concentration of the metal ion-dependent regulatory protein. xSI denotes the complex of xI
and IM, while xRI represents the complex of xR and xI. PM(Pu,i,Pl,i xS,IM), PC(Pu,i,0,0,0), and

PA(Pu,k,Pl,k,xR,xI) are the activities of the metal ion-induced promoter-RBS component, the

constitutive promoter-RBS component, and the QS-dependent promoter-RBS component,

respectively. Pu,i and Pl,i are the maximum and minimum promoter-RBS strengths of the ith

metal ion-induced promoter-RBS component in Table A in S1 File; Pu,j is the promoter-RBS

strength of the jth constitutive promoter-RBS component in Table B in S1 File, and Pu,k and Pl,
k are the maximum and minimum promoter-RBS strengths of the kth QS-dependent pro-

moter-RBS component in Table C in S1 File. rE denotes the degradation rate for autoinducer

synthase, rI denotes the degradation rate for the autoinducer itself, rR denotes the degradation

rate for the transcriptional activator protein, rG denotes the degradation rate for the immature

reporter protein, and rO denotes the degradation rate for the mature reporter protein. d is the

dilution rate due to cell growth. a is the autoinducer synthesis rate. m is the maturation rate for

the reporter protein. KSI and nSI denote the binding afnity and binding cooperativity between

the xSI complex and the corresponding promoter-RBS component, respectively. KM is the dis-

sociation rate between the metal ion IM and the metal regulatory protein xS. KRI and nRI are the

binding afnity and binding cooperativity between the xRI complex and the promoter-RBS part,

respectively. KI is the dissociation rate between the autoinducer xI and the transcriptional acti-

vator protein xR.

Fig 1. A metal ion biosensor. The metal ion biosensor is assembled by selecting a set of promoter-RBS

components from the corresponding component libraries in S1 File, namely, a metal ion-induced promoter-RBS

component Mi from the component library in Table A in S1 File, a constitutive promoter-RBS component Cj from the

component library in Table B in S1 File, and a QS-dependent promoter-RBS component Ak from the component

library in Table C in S1 File.

doi:10.1371/journal.pone.0165911.g001
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However, biological components are inherently uncertain in a molecular biological system.

For example, the kinetic parameters of the components, including the processes of transcrip-

tion and translation, the degradation rates of regulatory proteins, dilution rates of the cells,

and the maturation rates for the reporter proteins, are all stochastically uncertain in vivo as a

result of gene expression noise from biochemical processes, thermal fluctuations, DNA muta-

tion, and evolution. Additionally, a synthetic gene circuit in vivo also suffers from environ-

mental molecular noise. Therefore, the equations in (1) should be modified as follows:

_xEðtÞ

_xIðtÞ

_xRðtÞ

_xGðtÞ

_GðtÞ

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

¼

PMðPu;i; Pl;i; xS; IMÞ � ðd þ rEÞ � xEðtÞ

axEðtÞ � ðd þ rIÞ � xIðtÞ

PCðPu;j; 0; 0; 0Þ � ðd þ rRÞ � xRðtÞ

PAðPu;k; Pl;k; xR; xIÞ � ðd þ rGÞ � xGðtÞ

mxG � ðd þ rOÞ � GðtÞ

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

þ

PMðDPu;i;DPl;i; xS; IMÞ � ðDd þ DrEÞ � xEðtÞ

DaxEðtÞ � ðDd þ DrIÞ � xIðtÞ

PCðDPu;j; 0; 0; 0Þ � ðDd þ DrRÞ � xRðtÞ

PAðDPu;k;DPl;k; xR; xIÞ � ðDd þ DrGÞ � xGðtÞ

DmxG � ðDd þ DrOÞ � GðtÞ

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

nðtÞ þ

v1ðtÞ

v2ðtÞ

v3ðtÞ

v4ðtÞ

v5ðtÞ

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

ð2Þ

where ΔPu,i, ΔPl,i, ΔPu,j, ΔPu,k, ΔPl,k, ΔrE, ΔrI, ΔrR, ΔrG, ΔrO, Δa, Δm, and Δd are the standard

deviations of the corresponding stochastic parameters and n(t) is Gaussian noise, which has a

mean of zero and unit variance, and accounts for sources of random uctuation. The Gaussian

noise parameters vp, p = 1, 2, 3, 4, with a zero mean and variance of σp2, are molecular noise for

both the transcriptional and translational gene expression processes. v5 denotes molecular

noise in mature protein expression.

Consequently, the whole QS-based metal ion biosensor is expressed by (2), which can also

be represented by the more generalized nonlinear ordinary differential equation:

_xðtÞ ¼ f ðxðtÞ; S; IMÞ þ fwðxðtÞ; S; IMÞnðtÞ þHvðtÞ

yðt; SÞ ¼ CxðtÞ
ð3Þ

where x(t) represents the state vector of the QS-based metal ion biosensor. y(t,S) is the output

vector. v(t) is extrinsic molecular noise from the environment. S = (Mi,Cj,Ak) is the set of pro-

moter-RBS components selected from the corresponding component libraries in Tables A, B,

and C in S1 File. f(x(t),S,IM) is a smooth nonlinear function that characterizes the behavior of

the QS-based metal ion biosensor. fw(x(t),S,IM)n(t) is the intrinsic parameter uctuations of the

QS-based metal ion biosensor. H denotes the noise-coupling matrix. C is the output matrix.

For the convenience of analysis and design of the QS-based metal ion biosensor inserted into

host cells, the nonlinear stochastic differential equation of metal ion biosensor in (3) can be

represented by the following Ito’s stochastic differential equation:

dxðtÞ ¼ ðf ðxðtÞ; S; IMÞ þHvðtÞÞdt þ fwðxðtÞ; S; IMÞdwðtÞ

yðt; SÞ ¼ CxðtÞ
ð4Þ

where w(t) is a standard Wiener process or Brownian motion with dw(t) = n(t)dt to represent
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the random parameter uctuations of the synthetic gene circuit. In general, x(t) in (4) is depen-

dent on IM, i.e., the solution of (4) can be represented by x(t, IM). If the output y(t,S) is the last

state of metal ion biosensor, then C = [0,0,0,0,1].

The purpose of our design is to construct a metal ion biosensor by selecting a set of suitable

components from the corresponding libraries to achieve optimal matching of a desired I/O

response and minimize the effect of external disturbance and noise simultaneously within a

feasible range of metal ion concentrations, i.e., to achieve optimal H2 matching and optimal

H1 disturbance filtering simultaneously. To achieve this, the following design specifications

are needed:

• A reference model with the desired I/O response to be matched by the metal ion biosensor

in (4) is given as follows:

dxrðtÞ ¼ ðArxrðtÞ þ rðt; IMÞÞdt

yrðtÞ ¼ CrxrðtÞ
ð5Þ

where xr(t) is the desired reference state, yr(t) is the output vector of the desired reference

model, r(t,IM) represents a desired steady state trajectory for x(t), Ar is a matrix to be specied

for the transient behavior of xr(t), and Cr is the output matrix of the desired reference model.

In general, C = Cr. At the steady state, xr(t) = -Ar
-1r(t,IM). If we set Ar = -I, then at the steady

state, xr(t,IM) = r(t,IM). Therefore, if the desired steady state xr(t,IM) of the metal ion biosensor

in (4) is set as r(t,IM) and we could select an adequate set S of components from the corre-

sponding libraries so that the stochastic dynamic Eq (4) of the metal ion biosensor could

match the desired reference model in (5), i.e., at the steady state, xr(t) = -Ar
-1r(t,IM) and the I/

O response is given by yr = -CrAr
-1r(t,IM).

• Standard derivations of molecular noise and parameter fluctuations in (2) to be tolerated in
vivo are specified in order to guarantee the robust design of the metal ion biosensor.

• H2 design performance between the engineered biosensor output y in (4) and the desired ref-

erence output yr is given by:

J2ðSÞ ¼ E
Z

ðyrðt; SÞ � yðtÞÞTQðyrðt; SÞ � yðtÞÞdt

¼ E
Z

yðt; SÞTQyðt; SÞdt
ð6Þ

where Q is the weighting matrix and y is the output of the following augmented system:

dxðtÞ ¼ ðf ðxðtÞ; S; IMÞ þHvðtÞÞdt þ f wðxðtÞ; S; IMÞdwðtÞ

yðt; SÞ ¼ CxðtÞ
ð7Þ

and

xðtÞ ¼
xðtÞ

xrðtÞ

0

@

1

A; yðtÞ ¼
yðtÞ

yrðtÞ

0

@

1

A; vðtÞ ¼
vðtÞ

rðtÞ

0

@

1

A; C ¼
C 0

0 Cr

0

@

1

A; H ¼
H 0

0 I

0

@

1

A;

f ðt; S; IMÞ ¼
f ðt; S; IMÞ

Ar

0

@

1

A; f wðt; S; IMÞ ¼
fwðt; S; IMÞ

0

0

@

1

A; Q ¼
� Q Q

Q � Q

0

@

1

A
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Since the reference signal r(t) is treated as an uncertain external input by the designer, it

account for sources of noise.

• H1 filtering performance to attenuate the effect of v(t) on matching error is given as follows:

J1ðSÞ ¼
E
Z

ðyrðt; SÞ � yðtÞÞTQðyrðt; SÞ � yðtÞÞdt

E
Z

vðtÞTvðtÞdt

¼

E
Z

yðt; SÞTQyðt; SÞdt

E
Z

vðtÞTvðtÞdt

ð8Þ

Thus, if the H2 matching performance and H1 ltering performance in (6) and (8) are mini-

mized simultaneously by choosing an appropriate set of components from the corresponding

component libraries in S1 File, the engineered metal ion biosensor will then optimally match

the specied I/O response and optimally lter parameter uctuations and environmental distur-

bances simultaneously, i.e., to select a component set S from component libraries in S1 File to

solve the following simultaneous minimization problem:

min
S
ðJ2ðSÞ; J1ðSÞÞ ð9Þ

where J2(S) and J1(S) are dened in (6) and (8), respectively. To make the design easier, an indi-

rect method is proposed by simultaneously minimizing the upper bounds of J2(S) and J1(S),

i.e., the multi-objective problem in (9) is transformed to a suboptimal problem as follows:

ða�; b
�
Þ ¼ min

S
ða; bÞ ð10Þ

subject to

J2ðSÞ ¼ E
Z

yðt; SÞTQyðt; SÞdt � a ð11Þ

J1ðSÞ ¼
E
Z

yðt; SÞTQyðt; SÞdt

E
Z

vðtÞTvðtÞdt
� b ð12Þ

where α and β are the upper bounds of H2 and H1 performances, respectively.

Remark 1: H2 performance in (6) can be considered as the penalty of the quadratic match-

ing error under the assumption v(t)� 0 and α in (11) denotes the upper bound of H2 perfor-

mance under the assumption v(t)� 0.

Remark 2: The inequality in (12) means that the effect of extrinsic molecular noise on the

matching error is less than β from an average energy point of view. Because the statistics of

extrinsic molecular noise may be unavailable or uncertain, it is very difficult to obtain the

noise filtering ability β� for all possible extrinsic noise v(t) directly and only the upper bound β
of the noise-ltering ability β� can be given in (12) at rst. Similarly, the upper bound α of α

�

is

also given. We will then decrease the upper bound (α, β) to as small a value as possible to

approach the lower bound (α
�

, β
�

), i.e., to get (α
�

, β
�

) by minimizing (α, β) indirectly.

Remark 3: If the extrinsic environmental molecular noise v(t) is deterministic, then the

expectation on v(t) in (11) and (12) should be disregarded.
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Remark 4: If the initial condition x(0) is considered, then the noise-ltering upper bound in

(12) should be modied as follows:

E
Z

yðt; SÞTQyðt; SÞdt � EVðxð0ÞÞ þ bE
Z

vðtÞTvðtÞdt ð13Þ

for some Lyapunov function V(x(0)), i.e., the energy due to the initial condition x(0) should

be considered in the effect of noise [38, 39].

Based on the multi-objective H2/H1 design criterion, we obtain the following result for the

QS-based metal ion biosensor design.

Proposition 1: The multi-objective I/O matching problem in (10)–(12) is equivalent to

how to select components Mi, Cj, and Ak of the metal ion biosensor from the corresponding

component libraries in S1 File to solve the following HJI-constrained multi-objective problem:

ða�; b
�
Þ ¼ min

Mi;Cj;Ak
ða; bÞ ð14Þ

subject to

xTCTQCx þ
1

2
f wðx; S; IMÞ

T @
2VðxÞ
@x2

f wðx; S; IMÞ

þ
@VðxÞ
@x

� �T

f wðx; S; IMÞ < 0

xTCTQCx þ
1

2
f wðx; S; IMÞ

T @
2VðxÞ
@x2

f wðx; S; IMÞ

þ
@VðxÞ
@x

� �T

f wðx; S; IMÞ þ
1

4b

@VðxÞ
@x

� �T

HHT @VðxÞ
@x

� �

< 0

with V(x(t))>0 and EV(x (0))<α, i.e., the I/O response of an engineered metal ion biosensor

will optimally match the specied I/O response of the reference model and optimally lter intrin-

sic uctuations and external disturbances simultaneously.

Proof: See S2 File.

It is still very difficult to solve the constrained multi-objective minimization in (14) to

simultaneously achieve the optimal matching of the specified reference output in (5) and opti-

mal filtering of parameter fluctuations and environmental disturbances. Recently, the fuzzy

dynamic model has been widely used to interpolate local dynamic models to efficiently

approximate a nonlinear dynamic system [40, 41]. Hence, in this situation, we employ the T-S

fuzzy model to interpolate several linear systems at different local operation points to effi-

ciently and globally approximate the augmented nonlinear system in (7) so that the design pro-

cedure for a multi-objective optimal design of a synthetic metal ion biosensor can be

simplified.

In this study, the T-S fuzzy method is employed to simplify the analysis and design proce-

dure for the QS-based metal ion biosensor under intrinsic parameter fluctuations and extrinsic

environmental molecular noise. The T-S fuzzy model is described by fuzzy if-then rules. The

pth rule of the fuzzy model for the augmented system in (7) is proposed in the following form

[38, 40, 41]:

Rule p : If z1ðtÞ is Fp1 and z2ðtÞ is Fp2 and . . . and zgðtÞ is Fpg

then dxðtÞ ¼ ðApxðtÞ þHvðtÞÞdt þ AwpxðtÞdwðtÞ

yðtÞ ¼ CxðtÞ

ð15Þ
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for p = 1,2,. . .,L, where zg is the element of premise variables of the pth augmented system, i.e.,

z = [z1,. . .,zg]T, Fpg is the fuzzy set, Ap and Awp are the fuzzy system matrices, L is the number

of if-then rules, and g is the number of premise variables. The physical meaning of the fuzzy

rule p is that if the premise variables z1(t),. . .,zg(t) are with the fuzzy sets Fp1,. . .,Fpg, then the

augmented system in (7) can be represented by interpolating the linearized system in (15) via

the fuzzy basis. The fuzzy dynamics in (15) are denoted as follows [41–43]:

dxðtÞ ¼
XL

p¼1

mpðzÞððApxðtÞ þ HvðtÞÞdt þ AwpxðtÞdwðtÞÞ

yðtÞ ¼ CxðtÞ

ð16Þ

in which

Ap ¼
Ap 0

0 Ar

 !

; Awp ¼
Awp 0

0 0

 !

where mpðzÞ ¼
Qg

q¼1
FpqðzqÞ=

PL
p¼1

Qg
q¼1

FpqðzqÞ, Fpq(zq) is the grade of membership of zq (t) in

Fpq or the possibility function of zq (t) in Fpq, and μp is the fuzzy basis function for k = 1,2,. . .,L.

The denominator
PL

p¼1

Qg
q¼1

FpqðzqÞ in the above fuzzy basis function is only for normalization

so that the total sum of the fuzzy basis is
PL

p¼1
mpðzÞ ¼ 1. The physical meaning of (16) is that

the fuzzy stochastic system interpolates L local linear stochastic systems through the nonlinear

basis μp(z) to approximate the nonlinear stochastic system in (7).

Remark 5: In [40], Takagi and Sugeno proposed a systematic method to build a T-S fuzzy

model for nonlinear function approximation by a system identification tool, i.e., the local system

matrices Ap and Awp in (16) can be identified by the least square estimation method. Conversely,

many studies have proved that the T-S fuzzy model can approximate a continuous function to

any degree of accuracy. However, there is still some fuzzy approximation error in (16). In the

design, for simplicity, the fuzzy approximation error can be merged into the external noise.

After investigating the approximation of the nonlinear stochastic QS-based metal ion biosen-

sor by the fuzzy interpolation method, in order to avoid solving the nonlinear constrained simul-

taneous optimization problem in (14) for the multi-objective design problem of a QS-based metal

ion biosensor under intrinsic parameter fluctuations and extrinsic molecular noise, the measure-

ment procedure for the matching and filtering abilities of a QS-based metal ion biosensor could

also be simplified by the fuzzy approximation method. We then get the following result.

Proposition 2: Based on the T-S fuzzy model in (16), the H2/H1 I/O response matching

problem in Proposition 1 becomes how to select promoter-RBS components Mi, Cj, and Ak from

the corresponding component libraries in S1 File to solve the following multi-objective problem:

ða�; b
�
Þ ¼ min

Mi;Cj;Ak
ða; bÞ ð17Þ

subject to

xð0ÞTPxð0Þ � a � 0 ð18Þ

CTQC þ PAp þ Ap
TP þ Awp

TPAwp < 0 ð19Þ

CTQC þ PAp þ Ap
TP þ Awp

TPAwp PH

HTP � b

 !

< 0 ð20Þ
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for p = 1,2,. . .,L. Based on the optimal selection of these promoter-RBS components, the I/O

response of an engineered metal ion biosensor will achieve the optimal matching for the I/O

response of the specied reference model and the optimal ltering of parameter uctuations and

environmental disturbances simultaneously.

Proof: See S3 File.

Thus, the multi-objective H2/H1 optimal I/O response design of the QS-based metal ion

biosensor obtained by solving the HJI-constrained multi-objective optimization problem in

(14) could be replaced by solving the following LMI-constrained multi-objective optimiza-

tions:

ða�; b
�
Þ ¼ min

ðMi;Cj;AkÞ2O
ða; bÞ

subject to P > 0 and LMIs in ð18Þ� ð20Þ

ð21Þ

where O is the feasible set of promoter-RBS libraries in S1 File.

Remark 6: In this study, the fuzzy approximation method in (15) or (16) is only employed

to simplify the analysis and design procedure via solving P>0 for LMIs in (21) instead of solv-

ing V(x(t))>0 for HJIs directly. Further, based on the fuzzy interpolation of local linear sys-

tems, i.e., replacing f(x(t),S,IM) and fw(x(t),S,IM) by the fuzzy approximations in (16), V(x) =

xTP x is employed in in Proposition 2 to solve the HJI in Proposition 1. The HJI in Proposition

1 is replaced with a set of LMIs in Proposition 2 and we only need to solve P>0 for LMIs to

guarantee the output of an engineered QS-based metal ion biosensor that will optimally match

the specied reference I/O response in (5) and optimally lter parameter uctuations and cellular

disturbances simultaneously.

Remark 7: In general, it is very difficult to directly solve the LMI-constrained multi-objec-

tive optimization in (21) for a synthetic gene circuit. In this study, a MOEA-based library

searching method is proposed to solve the LMI-based multi-objective I/O response-matching

problem in (21) for a metal ion biosensor in sequel. In general, no unique solution exists such

that α and β in (21) are minimized simultaneously. Therefore, more effort is needed for the

multi-objective optimization problem in (21) to seek a set of Pareto optimal solutions, from

which the designer can select the preferred option.

However, a problem remains with the tradeoff between H2 and H1 performance. In light

of evolutionary trade-offs, the mechanism of natural selection produces traits best-suited for

adapting to environmental change. A similar strategy can be adapted for the multi-objective

design problem in (21). Inspired by biological evolution, a MOEA is a population-based

method to determine Pareto optimal solutions that are non-dominated. Compared with the

weighted sum method, MOEA is useful for considering multi-objective design problems, in

particular for assessing tradeoffs between design factors. Thus, before discussing the design

procedure of the multi-objective I/O response-matching problem in (21), some properties

regarding the Pareto optimal solutions are given as follows:

Definition 1: (Dominance) Consider two solutions (Mi
1, Cj

1, Ak
1) and (Mi

2, Cj
2, Ak

2) in O

for two objective values (α1, β1) and (α2, β2) subject to the LMIs in (18)–(20), respectively. (α1,

β1) is said to dominate (α2, β2), if α1�β1 and α2�β2.

Definition 2: (Pareto optimal solution) A solution (Mi
�, Cj

�, Ak
�) is the Pareto optimal solu-

tion of the multi-objective optimization problem in (21) with respect to O if another feasible

solution does not exist (Mi˚, Cj˚, Ak˚) such that objective values (α˚, β˚) dominate (α�, β�).
Definition 3: (Pareto front) The Pareto front for the optimization problem in (21) is

defined as Γ≜{(α�, β�)|(Mi
�, Cj

�, Ak
�). This is the Pareto optimal solution of the optimization

problem in (21) and (α�, β�) is generated by (Mi
�, Cj

�, Ak
�) subject to the LMIs in (18)–(20)}.

The design procedure for a QS-based metal ion biosensor is then summarized as follows:
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1. Provide user-defined design specifications as a desired reference model in (5) for the quo-

rum sensing-based metal ion biosensor.

2. Select an initial set S of promoter-RBS components from corresponding libraries, each of

which can be satisfied with the LMIs in (18)–(20) with P>0.

3. Sort the current set S into different fronts by Pareto dominance ranking and assign a

crowding distance to each of them.

4. Create an offspring set S using MOEA operators, such as reproduction, crossover, and

mutation.

5. Calculate the objective values of the new set S obtained by natural selection. Stop when the

Pareto front is achieved or an acceptable solution is obtained. Otherwise, create the next

generation and return to step 3.

Remark 8: In addition to the design of a QS-based metal ion biosensor, the proposed

method can be applied to the design of synthetic gene regulatory networks with any kind of

dynamic behavior.

Results

The design procedure begins by representing the nonlinear stochastic augmented system of a

metal ion biosensor and the desired reference model in (7) by the Takagi-Sugeno (T-S) fuzzy

model in (16) using the interpolation of linear stochastic systems. In particular, at steady state,

the desired fluorescence intensity of the metal ion biosensor to different metal ion concentra-

tions is described as follows:

Gref ðIMÞ ¼ 65þ
5000

1þ ð10� 1=IMÞ
2

ð22Þ

According to (5), at steady state, our design goal for the steady state in (5) is xr(t) = –Ar
–1r(t,

IM) and thereby yr = –CrAr
–1r(t,IM). In order to let the steady state yr in (5) match Gref(IM) in

(22), if we select the followings for the reference model in (5)

Ar ¼ � I; Cr ¼ ð0; 0; 0; 0; 1Þ; rðt; IMÞ ¼ ð0; 0; 0; 0;GðIMÞÞ
T

ð23Þ

then yr = Gref(IM) at the steady state of the reference model in (5). We suppose the quorum sens-

ing-based metal ion biosensor suffers from intrinsic parameter uctuations, with zero mean and

unit variance, as well as the external environmental noises v1, v2, v3, and v4 for the transcription

and translation processes, and noise v5 for mature reporter protein expression, are all Gaussian,

with zero mean and unit variance. In order to then efciently achieve the desired I/O response

matching design problem of the metal ion biosensor under intrinsic parameter uctuations and

external disturbances, the multi-objective H2/H1matching design in (9) is applied to the design

problem. Based on the design procedure, a MOEA-based library search method is employed to

search a set S from corresponding libraries in S1 File to minimize the objective values in (21) sub-

ject to P>0 and the LMIs in (18)–(20). From the Pareto front in Fig 2, there are six Pareto solu-

tions. The one with the red cross that makes a compromise between the optimal H2 solution and

H1 solution is selected for the multi-objective H2/ H1 I/O response of the metal ion biosensor.

In this design case, the components from the corresponding libraries are found to be M1, C3, and

A3. The desired response is shown in Fig 3, with the uorescence intensity values under different

Cu(II) ion concentrations. Clearly, at steady state, the metal ion biosensor can match the desired

I/O response in (22), despite the parameter uctuations and environmental disturbances.
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Discussion

With recent industrial expansion, heavy metal and other pollutants increasingly contaminate

our living surroundings [2–4]. Heavy metals are non-degradable and may accumulate in food

chains, where the resulting toxicity can damage organisms [6, 7]. Therefore, heavy metal detec-

tion techniques have gradually begun to receive attention.

In order to more easily design a QS-based metal ion biosensor, a multi-objective H2/H1

performance criterion is derived to infer a sufficient condition required for user-oriented spec-

ifications using a direct method by minimizing the upper bound of H2 and H1 performance

simultaneously. Based on the multi-objective design criterion, a metal ion biosensor can then

be designed by solving an associated HJI-constrained optimization problem. However, the

HJI-constrained optimization problem is difficult to solve directly by any analytical or numeri-

cal method because of the complexity of nonlinear dynamics. Therefore, a Takagi-Sugeno

(T-S) fuzzy model is employed here to solve the HJI easily and indirectly. The T-S fuzzy model

has been widely applied to approximate nonlinear systems by interpolating several local linear-

ized stochastic systems. By using a T-S fuzzy model and choosing an appropriate Lyapunov

function, the HJI-constrained multi-objective optimization problem in (14) for solving the H2/

H1 I/O response matching of a nonlinear stochastic metal ion biosensor is reduced to an

equivalent LMI-constrained multi-objective optimization problem in (21), which can be

solved efficiently by an MOEA algorithm with the help of MATLAB’s LMI toolbox. Thus,

according to the LMI-constrained criterion, the multi-objective metal ion biosensor design

Fig 2. Pareto front obtained by solving the multi-objective problem in (21) through the proposed MOEA-

based library search method from Tables A–C.

doi:10.1371/journal.pone.0165911.g002

Systematic Design of a Metal Ion Biosensor: A Multi-Objective Optimization Approach

PLOS ONE | DOI:10.1371/journal.pone.0165911 November 10, 2016 12 / 16



can be constructed by evaluating and selecting adequate promoter-RBS components from cor-

responding libraries within a feasible range of metal ion concentrations.

However, because the multi-objective design problem has no unique solution, a problem

remains in dealing with the tradeoff between H2 and H1 performance. In light of natural

selection on traits best-suited for environmental change being an important mechanism

for determining evolutionary trade-offs, a similar strategy seems to be adaptable for the

multi-objective design problem. Inspired by biological evolution, the MOEA is a popula-

tion-based method to determine non-dominated Pareto optimal solutions. Unlike the

necessity for complicated computations in conventional design strategies, only simple

operators (e.g., selection, crossover, and mutation) and some simple calculations are

required for the iterative selection of adequate components. Therefore, MOEAs are useful

when considering design problems, in particular for assessing tradeoffs between the design

factors under consideration. Consequently, according to the user-specified criteria, this

method may offer possible design guidelines for selecting adequate components for a QS-

based metal ion biosensor from the corresponding libraries. When the component libraries

are more complete, a more precise detection performance of metal ion biosensor can be

achieved. In fact, in addition to the QS-based metal ion biosensor, the proposed method

can be applied to the design of synthetic gene regulatory networks with any kind of

dynamic behavior.

Fig 3. The resulting metal ion biosensor. The adequate set S = (M1, C6, A3) is selected from the corresponding

libraries in S1 File. The green points are the experimental results (mean of three trials) by S = (M1, C6, A3). The gray

solid line is the desired I/O response in (22).

doi:10.1371/journal.pone.0165911.g003
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Conclusion

In this study, a nonlinear stochastic system is introduced to model a synthetic metal ion biosen-

sor with intrinsic parameter fluctuations and extrinsic molecule noise. A multi-objective H2/

H1 I/O response matching performance criterion is derived here for the design specifications

of the metal ion biosensor in order to simultaneously achieve the optimal H2 matching of the

desired I/O behavior and the optimal H1 filtering of parameter fluctuations and cellular noise.

An indirect method is proposed to solve the multi-objective H2/H1 I/O response matching

design by minimizing their upper bounds simultaneously. Further, based on a fuzzy interpola-

tion technique, the HJI-constrained multi-objective design problem for the metal ion biosensor

is transferred to a more simple LMI-constrained multi-objective design problem. According to

the LMI-constrained multi-objective design criterion, a metal ion biosensor can be constructed

with a desired I/O response by evaluating and selecting adequate components from the corre-

sponding promoter-RBS libraries. The proposed MOEA-based search method provides syn-

thetic biologists with a useful tool for the design of gene circuits, particularly in regards to

tradeoffs between the design factors under consideration. The experimental results verify that

the design can optimally match the specified reference I/O response and can optimally filter

parameter fluctuations and environmental disturbances simultaneously.
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