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In Vivo Voltage-Sensitive Dye 
Imaging of Subcortical Brain 
Function
Qinggong Tang1,*, Vassiliy Tsytsarev1,2,*, Chia-Pin Liang1, Fatih Akkentli2, 
Reha S. Erzurumlu2 & Yu Chen1

The whisker system of rodents is an excellent model to study peripherally evoked neural activity in 
the brain. Discrete neural modules represent each whisker in the somatosensory cortex (“barrels”), 
thalamus (“barreloids”), and brain stem (“barrelettes”). Stimulation of a single whisker evokes neural 
activity sequentially in its corresponding barrelette, barreloid, and barrel. Conventional optical 
imaging of functional activation in the brain is limited to surface structures such as the cerebral 
cortex. To access subcortical structures and image sensory-evoked neural activity, we designed a 
needle-based optical system using gradient-index (GRIN) rod lens. We performed voltage-sensitive 
dye imaging (VSDi) with GRIN rod lens to visualize neural activity evoked in the thalamic barreloids 
by deflection of whiskers in vivo. We stimulated several whiskers together to determine the 
sensitivity of our approach in differentiating between different barreloid responses. We also carried 
out stimulation of different whiskers at different times. Finally, we used muscimol in the barrel 
cortex to silence the corticothalamic inputs while imaging in the thalamus. Our results show that it 
is possible to obtain functional maps of the sensory periphery in deep brain structures such as the 
thalamic barreloids. Our approach can be broadly applicable to functional imaging of other core brain 
structures.

Localizing and real-time monitoring of neural activities evoked by peripheral stimulation are important 
steps in understanding the functional characteristics of neuronal circuits in the brain1. Imaging plays 
an important role in associating the activities of single neuron and cell ensembles with physiological 
and anatomical properties of the organism. Various optical imaging methods using either reflectance or 
fluorescence photons have shown to be very promising in functional brain mapping2. Intrinsic Optical 
Signal (IOS) imaging3,4, Diffuse Optical Imaging (DOI)5–7, Optical Coherence Tomography (OCT)8–12, 
Photoacoustic Tomography (PAT)13, as well as Multiphoton Microscopy (MPM)14,15, provide neurosci-
entists an opportunity to observe, noninvasively, the anatomy of the living brain, and to monitor its 
functions in vivo.

VSDi imaging offers an excellent opportunity to monitor the neural activity with high spatial and 
temporal resolution16–19. This method is based on the voltage-sensitive fluorescence probes, i.e., chemi-
cals that change their optical features in response to the changes of the transmembrane electric field. The 
dye molecules bind to the neuronal membrane and convert changes in the transmembrane voltage into 
changes in fluorescence2. These changes are recorded by the optical imaging system and can be used for 
functional brain mapping.

Topographic neural maps of the sensory periphery have been known for a very long time. However, 
in vivo functional imaging of these maps is relatively new. The rodent whisker-barrel system is an excel-
lent model to investigate the development, organization, function, and plasticity of mammalian sensory 
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pathways. In this system, neuronal modules, representing single whiskers on the snout, form at the 
brainstem (barrelettes), thalamic (barreloids), and neocortical (barrels) levels20,21. Because of their ease 
of access, identification and close to surface location, the barrel fields have been the subject of numerous 
imaging studies with a variety of approaches22–25. In contrast to imaging of the neocortex, functional 
mapping of the subcortical structures using optical methods was technically challenging and limited26. 
Currently, miniature endoscopic probes offer a solution for deep brain imaging by overcoming the lim-
ited depth of intravital microscopy27. Taking advantage of this, we built a functional imaging system, 
which combines VSDi with a 1 mm-GRIN rod lens to monitor temporal and spatial dynamics of neural 
activities in the thalamus following whisker stimulation. We imaged neural activity in the ventral pos-
teromedial (VPM) nucleus of the mouse thalamus responding to single whisker stimulation. With this 
approach, we were able to obtain a functional map of the thalamic barreloids.

Results
Cortical signal recording. First we carried out an experiment to record the cortical signal corre-
sponding to single whisker stimulation using our GRIN-rod-lens VSDi system. The purpose of this 
experiment was to confirm the performance of the needle-based imaging system. For imaging, the distal 
end of the GRIN rod lens was positioned above the recording area and directed such that its optical axis 
was perpendicular to the cranial window. The focusing plane was set to 300 μ m below the dural surface. 
As illustrated in Fig. 1(a), C2 whisker was stimulated for a period of 10 ms. The signal appeared 20 ms 
after the stimulus onset, and reached its peak at about 40 ms after the stimulus onset. After reaching the 
maximum value, the activated signals decreased until returning to baseline [Fig. 1(b)]. The changes in 
activation area followed a pattern corresponding to the stimulation [Fig. 1(c)]. Blood vessels were visu-
alized due to different light absorption of the hemoglobin and the cortical tissue (labeled in red arrow 
in Fig.  1(c)). The results of cortical signal recording agreed well with the conventional VSDi system 
without GRIN rod lens, indicating that the GRIN-rod-lens imaging system is suitable for VSDi signal 
recording24. In addition, we imaged the cortex first with the conventional system and then the same area 
with the GRIN-rod-lens for comparison. As illustrated in Fig. 1(d), there was no notable difference in 
the boundary of the activity patterns.

Signal recording in the thalamus. Mapping VPM responses to stimulation of single whisker.  
Fig. 2(a) depictss C2 whisker stimulation. Fig. 2(b) shows changes in fluorescence (Δ F/F) in response to 
C2 whisker stimulation. Ipsilateral stimulation data was acquired as control. Fig. 2(c) shows the GRIN 
rod lens images of changes in fluorescence signals in response to contralateral C2 whisker stimulation. 
The signal appeared about 20 ms after the stimulus onset, and reached its peak at 55–60 ms after the 
stimulus onset. An interesting observation is that after reaching its maximum value, the activated areas 

Figure 1. (a) C2 whisker stimulation. (b) Change in fluorescence (Δ F/F(%), ordinate) in response to 
stimulation. Fluorescence signal was calculated from the ROI (small blue square: 5 by 5 pixels) shown in 
Fig. 1(c) at 35 ms post-stimulation. (c) Voltage-sensitive dye optical images showing single-whisker (C2) 
stimulation fluorescence changes in the cortex. The stimulus onset was 0 ms. Time period after stimulation is 
indicated at the bottom left corner of each image. (d) The same area with the GRIN lens superimposed with 
image taken by conventional system. The black circle is the field view of GRIN lens and the black contour is 
the boundary of the activated area imaged by GRIN lens.
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started to spread at 65 ms after the stimulus onset (indicated by the red arrows in Fig. 2(c)). Another peak 
appeared at 95 ms, which may be due to the whisker swinging back after the 10-ms air puff stimulation. 
After 110 ms, the activated signals disappeared gradually.

Mapping responses to stimulation of multiple whiskers. To further investigate whether the needle-imaging 
system could differentiate multiple whisker-evoked responses in the VPM, we performed a three-whisker 
stimulation experiment. C2, D2 and E2 whiskers were stimulated at the same time [Fig. 3(a)]. Ipsilateral 
stimulation data was acquired as control [Fig. 3(b)]. Fig. 3(c) shows the signal appearance and diminish-
ing in both activation area size and signal magnitude. At 50 ms, we can clearly see the three areas, which 
correspond to three different whiskers. In order to see the temporal response more closely, signals from 
the three “hot spots” areas28–30 were plotted in Fig. 3(d). There was a clear 5 ms peak delay between one 
area and the other two that may be due to the different whiskers lengths. Fig. 4 shows the result of such 
an experiment in which whiskers B2 and E2 were stimulated at nearly the same time. B2 and E2 whiskers 
have a larger spatial separation on the snout. In Fig. 4(c), we can clearly see two separate responses. There 
was also a clear peak delay of 10 ms between these two responses.

Mapping responses to stimulation of multiple whiskers at different times. To further investigate whether 
the imaging system could differentiate the responses in the VPM when whiskers are stimulated at differ-
ent times, we performed a time-difference stimulation experiment.

B2 and D2 whiskers were used for stimulation [Fig.  5(a)]. Stimulation for B2 was set at 70th frame 
(350 ms) and stimulation for D2 was set at 120th frame (600 ms). The first response to B2 reached its 
maximum at 30 ms after B2 whisker stimulation, and the second response to D2 whisker reached its 
maximum at 35 ms after D2 whisker stimulation as shown in Fig. 5(b). The centers of the two response 
areas are separated by approximately 150 μ m [Fig. 5(c)], which agreed well with the anatomy31.

Exploring the effect of corticothalamic inputs to activities in thalamic barreloids. We performed imaging 
experiments in the thalamus of 4 mice following muscimol injection into the barrel cortex. Blocking 
cortical activity abolishes VSD signal in the cortex but not in the VPM. This is exciting new results which 
allows one to compare thalamic activation in the absence of corticothalamic inputs or when the cortex 
is silenced. Fig. 6(a) shows wave plot of the changes in fluorescence (Δ F/F(%), ordinate) in response to 
C2 whisker stimulation of the same area (5 by 5 pixels) in cortex before and after muscimol injection. 
We can clearly see that the responses in the cortex were inhibited by muscimol. In the following exper-
iment, we first inserted the GRIN rod lens to the VPM based on the same procedure described above. 

Figure 2. (a) C2 whisker for stimulation. (b) Changes in fluorescence (Δ F/F(%), ordinate) in response to 
C2 whisker stimulation. Fluorescence signal was recorded from the small blue square (5 by 5 pixels) marked 
on the image shown in Fig. 2(c) at 60 ms. (c) Voltage-sensitive dye optical images showing single-whisker 
(C2) stimulation fluorescence changes in the thalamus. Time period after stimulation is indicated at the 
bottom left corner of each image.
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Then the fluorescence signals in VPM before and after muscimol injection in response to contralateral 
C2 whisker stimulation were acquired as shown in Fig. 6(c). Compared to the signal without silencing 
the cortex, we observed that the activation area is much wider and scattered. Fig.  6(b) shows changes 
in fluorescence (Δ F/F(%), ordinate) in response to C2 whisker stimulation before and after muscimol 
injection. Fluorescence signal was recorded from the small blue and green squares marked on the images 
shown in Fig.  6(c) at 30 ms. We can see the signal magnitude is relatively low compared to the signal 
magnitude before muscimol injection. To quantify the effect of corticothalamic inputs to activities in 
the thalamic barreloids, the signal amplitude and activated area during stimulation were determined as 
shown in Fig. 7(a). The group with muscimol injection consisted of 3 data sets from 3 different animals. 
Control experiments (without muscimol injection) were performed on 4 data sets from 4 different ani-
mals. The signal amplitude in the group with muscimol injection was statistically smaller compared with 
the control group (P =  0.0176). And activated area in the group with muscimol injection was nearly twice 
wide as the control group (P =  0.0041). We conclude that our data may provide evidence indicating that 
feedback from the cortex plays a crucial role in shaping thalamic responses32.

Fig. 7(b) shows the GRIN rod lens track to the VPM in brain slice. Red color indicates RH-1691 dye 
fluorescence spread from the track of the GRIN probe. The positions of VPL,VPM and PO are labeled. 
While the GRIN rod lens causes a large area of damage to the brain, the barrel field of the somatosensory 
cortex and thalamocortical pathway are spared. This is mainly due to an angled approach to the VPM 
medially from the cortex and hippocampus. We can see the dye spread to VPM clearly and the GRIN 

Figure 3. (a) C2, D2 and E2 whiskers for stimulation; (b) Changes in fluorescence (Δ F/F(%), ordinate) in 
response to whiskers stimulation. Fluorescence signal was recorded in the small blue square (5 by 5 pixels) 
marked on the image shown in Fig. 3(c) at 40 ms. (c) Voltage-sensitive dye optical images showing three 
whiskers stimulation fluorescence changes in thalamus. Time period after stimulation is indicated at the 
bottom left corner of each image. (d) Three areas chosen to plot the time course. (e) Changes in fluorescence 
(Δ F/F(%), ordinate) in response to whiskers stimulation. Fluorescence signal was recorded in the small 
squares marked on Fig. 3(d).
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Figure 4. (a) B2 and E2 whisker stimulation. (b) Changes in fluorescence (Δ F/F(%), ordinate) in response 
to whiskers stimulation. Fluorescence signal was recorded in the small blue and green squares (5 by 5 pixels) 
marked on the image shown in Fig. 4(c) at 20 ms. (c) Voltage-sensitive dye optical images showing two 
whisker stimulation fluorescence changes in the thalamus. Time period after stimulation is indicated at the 
bottom left corner of each image.

Figure 5. (a) B2 and D2 whisker stimulation; (b) Change in fluorescence (Δ F/F(%), ordinate) in response 
to whiskers stimulation. Fluorescence signal was recorded in the small blue and green squares (5 by 5 
pixels) marked in Fig. 5(c), B2, 20 ms; (c) Voltage-sensitive dye optical images showing whisker (B2 and D2) 
stimulation fluorescence changes in the thalamus. Time period after stimulation is indicated at the bottom 
left corner of each image. The first row showing fluorescence response to B2 stimulation, the second row 
showing fluorescence response to D2 stimulation which was set 250 ms after B2 stimulation.
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rod lens is right above the VPM, which indicates that the stereotaxic coordinates we used allowed for 
precise location of the VPM.

Discussion
Brain optical imaging has developed considerably within the last few decades2. Optical methods can 
offer both high spatial and temporal resolutions and are therefore particularly promising for measuring 
the hemodynamic, metabolic, and neuronal activity in vivo7,8,13,33,34. VSDi, which utilizes a high-speed 
CCD camera, offers an opportunity to study the activity of neuronal ensembles in vivo with relatively 
high spatial (up to 20 μ m) and temporal resolution (up to few milliseconds, which is comparable to elec-
trophysiology)35,36. However, since CCD cameras integrate the back-scattered light from various depths, 
VSDi cannot detect depth-resolved functional activation37. In contrast with the single photon imag-
ing, multi-photon microscopy has been used for functional neuronal imaging, and recent developments 
extend the penetration depths up to 1.6 mm in a mouse33. On the other hand, light penetration is funda-
mentally limited by scattering in the tissue. To overcome this limitation, several groups explored optical 
endoscopes. Miniature optical endoscopes are typically based on commercially available gradient-index 
(GRIN) rod lenses or imaging fiber bundles. GRIN rod lenses, which are typically 350–2,000 μ m in 
diameter, can provide relatively high resolution, and have been used in deep brain imaging with relatively 
little injury27,38–43.

Many studies investigated information processing along the whisker-barrel system, using electrophys-
iological and morphological techniques. However, imaging studies in normal laboratory rodents and 
transgenic mice have been limited to the barrel cortex due to accessibility issues24,35,44–47. Light penetra-
tion and scattering limits the usage of the optical imaging methods in subcortical structures. Our present 
in vivo results show that the combination of VSDi and GRIN optical probe can be utilized in imaging 
deep brain structures and can be adopted for use in freely moving animals through flexible imaging 
fiber bundle48.

Figure 6. (a) Changes in fluorescence (Δ F/F(%), ordinate) in response to C2 whisker stimulation of 
the same area (5 by 5 pixels) in cortex before and after muscimol injection. (b) Changes in fluorescence 
(Δ F/F(%), ordinate) in response to C2 whisker stimulation of the same area (5 by 5 pixels) in VPM before 
and after muscimol injection. Fluorescence signal was recorded from the small blue square marked on 
the image shown in Fig. 6(c) at 30 ms. (c) Voltage-sensitive dye optical images showing single-whisker 
(C2) stimulation fluorescence changes in thalamus before and after muscimol injection. Time period after 
stimulation is indicated at the bottom left corner of each image. Different color maps were shown at the 
bottom of each images sequences.
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It is important to note the limitations of VSDi imaging at multiple levels of a sensory system. A nota-
ble one is the temporal resolution. The temporal resolution of the system we used is 5 ms, which is much 
longer than synaptic relays from the brainstem to cortex. Thus, we were not surprised that the latency of 
the VSDi signal, obtained from the VPM, and the time courses were similar for the optic signals recorded 
from the barrel cortex. In this regard, VSDi approach is not as sensitive as standard electrophysiological 
recording techniques because of the limited temporal resolution. The time differences between neural 
responses in the VPM and the barrel field can be just few milliseconds, which is shorter than our tem-
poral resolution.

The VSDI signal and the physical relationship to barreloids in each experiment is not feasible at the 
moment. However if we express GFP or other fluorescent tags in barreloid neurons and activate them we 
might be able to pick up individual barreloids and specific activity patterns in relation to them. At the 
present time we can only compare the size of the activated areas in the VPM with respect to stained brain 
sections after imaging. Another limitation in imaging from deep brain structures is that the barreloids 
in the VPM are not all in the same plane from the tip of the GRIN-lens. The axes of the barreloids rows 
are not orthogonally located to the focal plane, and many of them are located slightly above or below the 
focus. Thus, the system we used does not have depth resolution for three-dimensional (3-D) neuronal 
maps. Lastly, the source of the fluorescence also has its own 3D structure located at an undetermined 
distance from the focal plane is projected as 2D optical patterns. 3D imaging through GRIN-rod-lens 
needle microscope is also feasible using advanced image reconstruction algorithms49. Nonetheless, the 
compact size and functionality of GRIN optical devices in combination with VSDi are enabling imaging 
deep brain structures and functions in the mammalian brain in vivo.

Figure 7. (a)Statistics of signal amplitudes and activated areas in VPM before and after muscimol injection. 
The signal amplitude of the group with muscimol injection (n =  3, from 3 different animals) was statistically 
(P <  0.05) smaller compared to control group (without muscimol injection: n =  4, from 4 different animals). 
The activated area in the group with muscimol injection was statistically (P <  0.05) larger than control 
group. (b) Brain slice taken 2.0 mm posterior from bregma and superimposed with the brain atlas50 
(outlined and labeled areas). VPM—ventral posterior medial nucleus, PO—posteromedial thalamic nucleus, 
VPl—ventral posterolateral thalamic nucleus, S1- primary somatosensory cortex. Red color indicates RH-
1691 dye fluorescence spread from the track of the GRIN probe and RH-1691 injection.
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Methods
The experimental procedures were all in accordance with the National Institute of Health guidelines for 
the care of experimental animals (National Institute of Health, Committee on Care and Use of Laboratory 
Animals, 1996) and the Animal Use and Care Committee of the University of Maryland approved all 
experimental protocols.

Animal preparation. We imaged voltage-sensitive dye optical signals in eight adult mice (B6 male and 
female, 20–30 g body weight, age 5–10 weeks). All animals were anesthetized with urethane (1.15 g/kg)  
with body temperature maintained at 37 °C with a heating blanket. The animal’s head was placed in 
a stereotaxic frame. For surgical preparation, the head was shaved, and a midline cutaneous incision 
was made. The skin over the skull was retracted, and a cranial window, 1.5 mm in diameter, was made 
using a dental drill1. A 10 μ L Hamilton syringe, outer needle diameter 0.3 mm, was used to inject 0.3–
0.5 μ L voltage-sensitive dye RH-1691 (Optical Imaging Ltd, 1.0 mg/mL in the artificial cerebrospinal 
fluid (ACSF)) into the VPM using stereotaxic coordinates (− 1.7 posterior, 1.6 lateral and 3.1 mm below 
dura mater )50 over 5 minutes. The cranial opening was covered by a drop of high viscosity silicone oil 
to prevent drying and decrease brain pulsation35. Imaging was started 15–20 minutes after dye loading.

Experimental setup. Figure  8 illustrates the schematic of the needle-based VSDi imaging system. 
The system is equipped with a 1-mm diameter GRIN rod lens (NA 0.113; Go Foton Corporation), 
which provides an imaging field-of-view (FOV) of ~0.9 mm and relays the image from the mouse brain 
at the distal end of the needle probe back to the focal plane of the objective (Leica Objective Planapo 
2.0 × , M-series). The system utilizes a 637 nm laser diode as its light source, which is coupled with a 
single-mode fiber to shape its light beam. A diffuser is used to make the light more uniform. The light 
is collimated by an objective and goes through a dichroic mirror (650 nm, single edge dichroic beam 
splitter; FF650-DiO1-50 ×  70 mm; Andover Corporation). A shutter is applied to control the excitation 
light state and avoid dye photobleaching. The light is then coupled to the GRIN rod lens by the micro-
scope objective. A custom-built motorized 3D micro-stage facilitates accurate light coupling between 
the objective and GRIN rod lens. The emitted fluorescent light is collected back through the GRIN rod 
lens, objective, dichroic mirror, an emission filter (695 nm, 695FG07-50, Andover Corporation), and 
finally imaged on a high-speed CCD camera (MiCAM02-HR, SciMedia, Ltd). For deep tissue imaging, 
after aligning the GRIN rod lens to the objective, the GRIN-rod-lens probe was gently inserted into the 
anesthetized mouse thalamus by moving up the animal stage slowly and using stereotaxic coordinates50.

Stimuli and data acquisition. Each experimental session consisted of 10–30 trials, with 200 frames 
per trial. Data acquisition rate was 5 ms/frame (200 Hz). For single stimulus experiments, the stimulus 
(whisker deflection) was presented at the 100th frame (one stimulus per trial). For dual stimulus experi-
ment, the two stimuli were set at the 70th frame and the 120th frame, respectively. The pause between tri-
als was 10 seconds. Fluorescence changes were calculated as Δ F/F (%) in the recording area using Brain 
Vision Analyzer (Brain Vision Inc., Tokyo, Japan). Before stimulation, all whiskers, with the exception 

Figure 8. Schematic of the VSDi needle system. O: objective lens; S: shutter; D: diffuser; F: filter; DM: 
dichroic mirror; GL: GRIN rod lens. Bottom left inset shows barreloid organization with respect to the 
whisker pad (circled photo). Cytochrome oxidase stained section, dorsal is up, lateral is to the left. Whisker 
rows A–E are indicated.
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of the designated whiskers used for experiment, were clipped close to the skin. To perform stimulation, 
a glass pipette (1.0 mm in diameter) fitted on an XYZ manipulator was aimed at the designated whisker. 
Air-puff stimulus (duration 10–20 ms) was applied through a Picospritzer pressure valve connected to the 
glass pipette35. The Picospritzer was coupled to the imaging system through the MiCAM-02 controller, 
so the air could be puffed onto the whiskers at precisely controlled time points. Trains of whisker stimuli 
were delivered and the associated changes in fluorescence signals were recorded in the contralateral thal-
amus. In addition, we also performed ipsilateral stimulation as control21. In some experiments muscimol 
(0.1 μ l, 10 mM in ACSF), a selective GABAA receptor agonist, was injected at a depth of 300 μ m below 
the cortical surface51. The injection was performed with a glass pipette (20 μ m tip diameter) attached to 
a Nanojet II injector (Drummond Scientific, USA)52

Data analysis. For single stimulation experiments, the final ten pre-stimulus frames (i.e., 90–99th 
frame) were averaged as the baseline image. The baseline image was then subtracted from each sub-
sequent frame to obtain changes in fluorescence signals. For dual stimuli experiments, the final ten 
pre-stimulus frames, i.e., 60–69th frame and 110–119th frame were averaged as the baseline for the 1st and 
2nd stimulus, respectively. Pixels which exhibited a change in fluorescence (Δ F/F) greater than 50% of 
the maximum change were identified as activated regions24. Subsequently, we obtained pseudocolor maps 
of the areas activated by whisker stimulation. In the experiment exploring the effect of corticothalamic 
inputs, obtained data were expressed as mean ±  standard deviation. Statistical analyses were then carried 
out using MATLAB. Student t-test was used to compare the signal amplitude and activated area (pixel 
number) in VPM before and after muscimol injection. P <  0.05 was considered to indicate a statistically 
significant difference.

Histology. After the experiment, the animal was euthanized by barbiturate overdose and perfused by 
4% paraformaldehyde and decapitated. The brain was extracted and sliced coronally (0.3 mm thickness) 
using a vibratome. The slice was photographed using fluorescence microscope. The probe track was 
superimposed50.
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