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Abstract. In this paper, we present MachSMT, an algorithm selection
tool for Satisfiability Modulo Theories (SMT) solvers. MachSMT sup-
ports the entirety of the SMT-LIB language. It employs machine learn-
ing (ML) methods to construct both empirical hardness models (EHMs)
and pairwise ranking comparators (PWCs) over state-of-the-art SMT
solvers. Given an SMT formula I as input, MachSMT leverages these
learnt models to output a ranking of solvers based on predicted run
time on the formula I. We evaluate MachSMT on the solvers, bench-
marks, and data obtained from SMT-COMP 2019 and 2020. We observe
MachSMT frequently improves on competition winners, winning 54 divi-
sions outright and up to a 198.4% improvement in PAR-2 score, notably
in logics that have broad applications (e.g., BV, LIA, NRA, etc.) in veri-
fication, program analysis, and software engineering. The MachSMT tool
is designed to be easily tuned and extended to any suitable solver appli-
cation by users. MachSMT is not a replacement for SMT solvers by any
means. Instead, it is a tool that enables users to leverage the collective
strength of the diverse set of algorithms implemented as part of these
sophisticated solvers.

Keywords: SMT Solvers · Machine Learning · Algorithm Selection

1 Introduction

Satisfiability Modulo Theories (SMT) solvers are tools to decide the satisfiability
of formulas over first-order theories such as bit-vectors, floating-point arithmetic,
integers, reals, strings, arrays, and their combinations [44,9,24,18,47,20,46]. In
recent years, SMT solvers have had a revolutionary impact on applications in
software engineering (broadly construed), such as software testing [17,48] and
verification [23,15,27,39], as well as in sub-fields of AI [53,35,30]. This impact is a
driver for an insatiable demand for evermore efficient solvers, not only to scale to
larger instances obtained from existing applications (e.g., automatic bug-finding
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in commercial software [26,4]), but also to solve problems from new application
domains (e.g., verification and synthesis of cryptographic primitives [13]).

Motivation for Algorithm Selection for SMT Solvers. In response
to this high demand, the SMT community has developed a plethora of solver
heuristics and configurations. For example, in the 2019 edition of the annual
SMT-COMP competition [10,31], more than 50 solvers and their configurations
were submitted. Many of these solvers implement very different algorithms to
tackle the satisfiability problem for (a combination of) first-order theories, with
significantly varying performance profiles. For example, in the quantifier-free
theory of floating-point arithmetic (QF FP), there exist several substantially
different decision procedures, e.g., bit-blasting [16], abstract CDCL [14], inter-
reduction methods [55], and reduction to global optimization [22,11]. In this
specific setting of floating-point solvers, input instances may be derived from
a variety of applications, such as software verification or analysis of machine
learning (ML) models [56]. In such a scenario, a very natural question arises:
which solver or configuration is best for a given input instance?

Another well-known issue with many SMT solvers (even state-of-the-art ones)
is that users may not know a priori which formula features or encoding would
make an instance easy to solve. This can be very frustrating for users as they
have to try a large number of different encodings with different solver configura-
tions before they can figure out which combination works best for their specific
scenario, which may result in a combinatorial explosion. Users have also noted
that as their applications change, what was once a great solver configuration
in an earlier setting is suddenly not very good in the newer one. One possible
approach to address this problem is to use a portfolio of solvers, just as has
been successfully done in the context of SAT solvers. Unfortunately, given the
plethora of solvers (more than 50 in SMT-COMP 2019 and 2020) and configura-
tions (CVC4 [9] alone utilizes 23 different configurations in a sequential portfolio
setting for quantified logics) such an approach becomes quickly infeasible in the
SMT solver setting.

Brief Overview of MachSMT. One way to address the above-mentioned
problems is to use an automated algorithm-selection tool that can automati-
cally and with high accuracy predict the best algorithm from a given set of
algorithms for a specific input. Such a tool selects the best SMT solver from a
set of solvers for a given SMT formula. To this end, we introduce MachSMT,
a machine learning-based algorithm-selection tool. MachSMT supports the en-
tirety of the SMT-LIB language [8]. It takes as input an instance for a specified
theory of interest, and outputs a ranking of solvers predicted to have the lowest
runtime. Internally, MachSMT is a set of machine learnt models constructed by
analyzing the runtimes of solver configurations on benchmarks with respect to
the frequencies of grammatical constructs (e.g., predicates, functions, rounding
modes, etc.). Additionally, it defines other syntactical properties that can have
influence in performance (e.g., quantifier nesting levels).

At a high-level, MachSMT works as follows. At its core, MachSMT uses two
techniques to perform algorithm selection: empirical hardness models (EHMs)



MachSMT: A Machine Learning-based Algorithm Selector for SMT Solvers 305

and pairwise ranking comparators (PWCs). MachSMT uses frequencies of gram-
matical constructs from the SMT-LIB language [8], in addition to several other
syntactical metrics for features pipelined with Principal Component Analysis
(PCA) and AdaBoosting to construct its empirical hardness models and com-
parators.

An EHM for a given solver S is a mapping from an input instance I to a
predicted runtime of S on I. At runtime, given I, MachSMT queries all EHMs for
all solvers (that were considered during training) over I, and outputs a ranking of
solvers based on their predicted runtimes (top-ranked solver is predicted to solve
the input problem the fastest). By contrast, a learnt pairwise ranking comparator
(PWC) is a mapping that takes as input pair (S1,S2) of solvers and an input
instance I, and outputs a ranking over the input solvers based on which one of
them is predicted to have a lower runtime on I (denoted as S1 ≤ S2 or S1 ≥ S2).
During evaluation, given an input instance I, MachSMT uses the learnt PWC
as a comparator to rank the set of solvers.

While algorithm selection has been considered in the broad setting of solvers
(e.g., QBF solvers [50] and SAT solvers [67]) as well as certain specific SMT
theories [57,5,64], we are not aware of previous work on algorithm selection aimed
at the entirety of SMT-LIB [7]. Our results demonstrate that the MachSMT
algorithm selector is highly effective, in that it outperforms the competition
winners on the majority of tracks from the SMT-COMP in 2019 and 2020.

Perhaps the first algorithm selection tool in the context of logic solvers was
SATZilla [67]. Since its introduction, SATZilla has had a tremendous impact
on SAT solver research, winning multiple gold medals in the SAT competitions.
Having said that, there are several significant differences between MachSMT and
SATZilla. Briefly, SATZilla deploys a feature selection scheme to avoid the curse
of dimensionality, while MachSMT leverages a learnt dimensionality reduction
scheme, namely, Principal Component Analysis (PCA). In fact, a feature selec-
tion scheme would simply not scale in the context of SMT solvers given the very
large number of learnt models that are incorporated into MachSMT. We discuss
additional differences between SATZilla and MachSMT at length in Section 6.

It goes without saying that MachSMT is only as powerful as the underlying
solvers that it has access to. MachSMT is clearly not a replacement for any par-
ticular SMT solver, but rather a tool that enables users to leverage the collective
strength of the diverse set of algorithms and configurations implemented as part
of these sophisticated solvers.

Contributions.

We make the following contributions in this paper.

1. The MachSMT Algorithm Selection Tool. We present the MachSMT
tool, an algorithm selection tool for the entirety of SMT-LIB. MachSMT
uses machine learning (ML) to construct EHMs and PWCs of solvers for
algorithm selection. A key feature of MachSMT tool is that it is designed to
be easily tuned and extended by SMT solver users (Section 3).
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2. Analysis of MachSMT over SMT-COMP 2019 and 2020 Bench-
marks and Solvers. We perform an extensive experimental analysis of
MachSMT across all divisions from SMT-COMP 2019 and 2020. We observe
that MachSMT improves on competition winners in 54 divisions, with up to
198.4% improvement in performance for the QF BVFPLRA SQ ’20 and up
to 191.1% for the QF BVFP SQ ’20 division. We provide our learnt mod-
els, used in our experimentation, for ease of use and transparency. While
building learnt models for MachSMT can be computationally expensive
(a one time cost), installing, downloading, and using our models is easy
(Section 4). All source code and learnt models from our experience can be
found at: https://github.com/j29scott/MachSMT. The artifact is available
at: https://zenodo.org/record/4458699.

The rest of this paper is structured as follows. Section 2 provides the neces-
sary background, Section 3 gives a technical description of MachSMT, Section 4
gives an experimental evaluation of MachSMT over SMT-COMP 2019 and 2020,
Section 5 provides an analysis of the experimental results, Section 6 describes
related work, and Section 7 concludes the paper and discusses future work.

2 Background

In this section, we provide some background on algorithm selection via EHMs
and PWCs, and the machine learning methods we use, such as principal compo-
nent analysis (PCA) and k-fold cross validation.

2.1 A Brief Overview of Algorithm Selection

The idea of algorithm selection was first proposed and formalized by Rice et.
al. [51] in 1976. Researchers have long known that given a set of different algo-
rithms and implementations for the same specification or problem, it is often the
case that one of these implementations may perform poorly on a given class of
inputs while another might perform very well. This is especially true for prob-
lems believed to be computationally hard (e.g., NP-hard). The reasons for this
phenomenon could be as diverse as choice of data structures, fundamental differ-
ences between algorithms, or the fact that heuristics implemented as part of one
algorithm can exploit the input problem structure or the underlying hardware
better than the others.

It is natural to want to exploit the diversity in algorithmic approaches to
minimize the cumulative runtimes. However, in practice users often deploy greedy
algorithm selection – picking the best observed algorithm based on empirical
analysis and testing. However, greedy algorithm selection can be sub-optimal
when the best empirical algorithm has deficiencies relative to other algorithms
on certain families of inputs.

With the recent advances in AI and ML, researchers are beginning to lever-
age these new technologies to advance algorithm selection. To the best of our

https://github.com/j29scott/MachSMT
https://zenodo.org/record/4458699
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knowledge, there are two key approaches for ML-driven algorithm selection in
the context of constraint solvers: through the use of Empirical Hardness Models
(EHMs), and through Pairwise Ranking Comparators (PWCs).

Algorithm Selection via Empirical Hardness Models (EHMs): Let I be
an input in the language of S with a corresponding feature vector ~x ∈ Rn. For
an algorithm s ∈ S, an EHM is a learnt function fs : Rn → R that predicts the
runtime of s on I. An EHM is constructed with an ML regression model trained
on collected runtime data. The algorithm is then selected by computing:

argmin
s∈S

fs(~x)

Algorithm Selection via Pairwise Ranking Comparators (PWCs). Let
P be the set of all unique pair sets (sets of size two). For each p = (Si,Sj) ∈ P ,
construct a learnt comparator fp : Rn → {0, 1}, that returns 0 if algorithm Si
solves I faster than Sj , and 1 otherwise. For an input I with a feature vector ~x,
we compute a ranking of algorithms as a map r over S, where for s ∈ S, r[s] is
the ranking of solver s that represents: “how many solvers in S are faster than
s in solving the input S”, or more formally: r[s] = Σp:s∈pfs(~x). The selected
solver is then the minimum ranked solver, i.e.,

argmin
s∈S

r[s]

2.2 Supervised Learning, Adaptive Boosting, Curse of
Dimensionality, and K-Fold Cross-Validation

Supervised learning is one of the most predominant areas of ML. Supervised
learning takes as input a dataset of features X and labels Y , and each datapoint
~x ∈ X has a label y ∈ Y . A datapoint is a real valued vector ~x ∈ Rn describing a
sample. The learning problem is said to be a classification problem if the labels
y ∈ Y come from a fixed and finite set of classes C (e.g., a set of algorithms).
Alternatively, the learning problem is a regression problem if the labels are real
valued (e.g., runtimes).

One efficient and effective approach to supervised learning is Adaptive Boost-
ing (AdaBoost). AdaBoost is an ensemble approach to machine learning invented
by Freund and Schapire et. al. [21], which won the Gödel Prize in 2003. In ensem-
ble learning, a set of learning algorithms (e.g., weak learners) are trained, and
predictions are made diplomatically across the set. In this paper, we exclusively
consider AdaBoost to solve both the classification and regression problems for
algorithm selection. We use an ensemble of 200 decision trees in the AdaBoost
algorithm. For more, we refer to Drucker et al. [19].

While supervised learning has had tremendous impacts in several areas of
research, there are pitfalls, such as the curse of dimensionality (CoD). Consider
the convex polytope P formed around the convex hull of X. The volume of P
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increases exponentially with the dimensionality of X requiring an exponential
amount of datapoints to avoid extreme sparsity in X. Sparsity in datasets is
one of the leading causes of poor performances in learnt models [28]. There
is a large literature on managing the CoD. In this paper, we discuss feature
selection and deploy dimensionality reduction solutions. In feature selection, a
new dataset X ′ is computed from X by selecting the subset of features that are
the most performant on a validation dataset. Feature selection was deployed in
the successful SATZilla algorithm selection tool for Boolean satisfiability.

Despite the success of feature selection in SATZilla, feature selection does
have some flaws. First, there is a significant loss of information. In the case of
SATZilla, a feature vector composed of more than a hundred values describing
an input is reduced to just five values. Second, the total number of feature
subsets is exponential in the number of features. While there has been a great
deal of research in reducing the time spent searching for high performing subsets
[65,36], in our experiments, we found it to be the most computationally taxing
component of the SATZilla framework.

When evaluating the performance of a supervised learning model, a training
set is used to construct the learnt model and a testing set is set aside to evaluate.
However, this method alone can be prone to overfitting and selection bias [54,43].
Instead, researchers often use k−fold cross-validation to evaluate their learnt
models. In k−fold cross validation, the dataset is split into k sets, and the learnt
model is trained on k − 1 sets and is evaluated on the set that is left out. This
process is repeated k times so each set gets evaluated.

2.3 Unsupervised Learning and Principal Component Analysis

Unsupervised learning, in contrast to supervised learning, is the study of detect-
ing patterns in an unlabelled dataset X. Applications of unsupervised learning
include dimensionality reduction [66,63], clustering [29,72], and anomaly detec-
tion [38,1]. Principal Component Analysis (PCA) is an unsupervised learning
dimensionality reduction technique. PCA computes an orthogonal transforma-
tion of a dataset X composed of points in Rn to a new data set X ′ composed
of points in Rn′

where n′ < n. PCA is an incremental algorithm, wherein, each
iteration a new component (or dimension) is computed. On the first iteration,
a hyperplane is fit around the dataset X and its corresponding spanning vector
is the first element of the basis around the transformation onto X ′. On each
subsequent iteration, a new hyperplane is computed under the additional con-
straint of it being orthogonal to its predecessors. This process is repeated until
the desired number of iterations is achieved [32,66].

3 An overview of MachSMT

In this section, we provide an overview of the MachSMT tool. The architecture
diagram of MachSMT is presented in Figure 1.
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Feature ID Description

1–4 Frequency of problem description grammatical
constructs (e.g., assert, check-sat, etc.)

5–13 Frequency of declaration/definition grammatical constructs
(e.g., declare-const, define-fun, declare-sort, etc.)

14–15 Frequency of the echo/exit grammatical constructs
16–27 Frequency of the get-* grammatical constructs (e.g.,

get-model, get-unsat-core, etc.)

28–29 Frequency of the push/pop incremental benchmark
grammatical constructs

30–31 Frequency of the reset/reset-assertions
grammatical constructs

32–35 Frequency of the set-* grammatical constructs
(e.g., set-logic)

36–37 Frequency of the forall/exists quantifiers

38 Frequency of let bindings

39–49 Frequency of core/Boolean constructs,
sorts, and literals (e.g., true, Bool, and, =>,
ite, distinct, etc.)

50–52 Frequency of grammatical constructs of the
theory of arrays (e.g., select, store, etc.)

53–88 Frequency of grammatical constructs of the
theory of bit-vectors (e.g., BitVec, bvor, bvuge,
bvsge, bvult, etc.)

89–135 Frequency of grammatical constructs of the
theory of floating-point (e.g., fp.add, Float32,
RNE, fp.eq, fp.isNaN, fp.to real, etc.)

135–150 Frequency of grammatical constructs of the
theory of integers and reals (e.g., Int, Real,
∗, +, to real, is int)

151 Average number of selects per array

152 Average store chain depth per array

153–155 Average/Median/Deviation of BV adder chains

156–158 Number of forall/exists variables and their ratio

159 Average quantifier nesting level

160–161 Average arity and applications of
uninterpreted functions

162 Size of the smt2 file in bytes

Table 1: Complete list of the 162 features used in MachSMT
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Fig. 1 Architecture of MachSMT.

3.1 Features, Preprocessing, and Learning

MachSMT uses a feature vector with 162 entries (i.e., dimensions). A complete
description of each feature is provided in Table 1. We deploy two strategies to
mitigate taxing feature calculation times, which can severely impair algorithm
selection solutions. First, all features are entirely syntactical properties of the
input. This is a major difference between MachSMT and other algorithm se-
lection solutions, such as SATZilla. Second, all features are calculated within a
strict and user-adjustable timeout (default 10s). On a timeout, the feature value
is recorded as −1.0.

MachSMT performs three key preprocessing steps before constructing any
learnt models over a given dataset. We describe each subsequently. First, all
feature values are scaled to zero mean and unit variance3. This data normal-
ization technique is common in ML research and applications to improve both
model efficiency and numerical robustness. The second step in the preprocessing
pipeline is computing the polynomial interaction terms of degree two on the re-
sultant normalized feature vector. These polynomial features make interacting
correlations of features explicit. These first two preprocessing steps are included
in the SATZilla preprocessing pipeline [71].

As discussed in Section 2, ML in a high dimensional space is prone to the
curse of dimensionality. While other algorithm selection solutions (e.g., SATZilla)
commonly implement feature selection solutions, we propose the use of learnt
dimensionality, namely PCA. As discussed above, feature selection can be a
proactive solution to the curse of dimensionality but presents many challenges
when applying to SMT. Internally MachSMT manages more than a thousand
learnt models, and calculating optimal feature subsets for each one is infeasible.

3 x−µ
σ

, where x is a feature sample, µ is the mean across the specific feature on the
training set, and σ is the deviation across the specific feature on the training set.
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The third and final preprocessing step is applying PCA on the resultant
polynomial features. The final feature vector is composed of the first 35 principal
components. PCA is the final step in the MachSMT preprocessing pipeline. The
resultant feature set is used when constructing the learnt models with AdaBoost.
We use AdaBoost for both regression in the EHMs and classifications in the
PWCs. We configure AdaBoost with 200 decision tree estimators and linear
loss. MachSMT uses scikit-learn and numpy as its ML backend and the entire
tool is written in Python [49]. MachSMT is easily extensible and supports any
ML model/pipeline under scikit-learn syntax.

3.2 Variants of MachSMT

MachSMT implements the following algorithm selection solutions.

1. MachSMT-SolverEHM – This variant of MachSMT is analogous to the
algorithm selection approach taken by SATZilla. As described in Section 2,
an EHM is constructed for each solver, and the selected solver is computed
by taking an argmin over all predictions.

2. MachSMT-SolverLogicEHM – This approach is similar to MachSMT-
SolverEHM, with the key difference being an EHM is constructed for every
solver, logic pair. As state-of-the-art SMT solvers implement significantly
different algorithms depending on the logic of the input problem, datapoints
from different logics could negatively skew predictions.

3. MachSMT-SolverPWC – This variant of MachSMT deploys the PairWise
comparator approach as described in Section 2. In this variant of the PWC,
comparators are trained for every pair of solvers across all provided data.

4. MachSMT-SolverLogicPWC – This variant of MachSMT is analogous to
MachSMT-SolverPWC, with the key difference that solver-wise comparators
are constructed by only training on the benchmarks of a common logic.

MachSMT by default creates models for all aforementioned approaches to
algorithm selection. In evaluation, MachSMT evaluates each approach’s perfor-
mance on each logic. In deployment, MachSMT uses the approach that had the
best-observed performance in evaluation.

3.3 Using MachSMT

MachSMT consists of three core tools, which are used to build, evaluate, and
deploy MachSMT, respectively.

1. machsmt build – This tool is the interface for building MachSMT’s database
around the solvers and benchmarks provided by the user. It takes as input
a csv data file denoting the columns ‘solver’, ‘benchmark’, and ‘score’. The
output is a library directory containing the resultant database, and learnt
models under default settings.

machsmt build -f data.csv -l /path/to/lib/dir
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Logic, Track, Year Winner
Improvement over Distance from

Random [%] Winner [%] VBS [%]

QF BVFP, SQ’20 Bitwuzla 195.1 191.1 86.2
QF BVFPLRA, SQ’20 MathSAT5 199.1 198.4 34.0
QF UFBV, SQ’19 Yices 153.5 113.3 95.3
NRA, SQ’19 Vampire 169.6 114.0 99.2
QF NRA, SQ’19 Yices 101.3 71.5 52.1
QF UFNRA, SQ’19 Yices 148.1 77.1 36.1
QF LIA, SQ’20 MathSAT5 132.6 71.5 46.4
QF UFBV, SQ’20 Yices 137.8 67.4 109.4
QF UFNRA, SQ’20 Yices 151.3 47.9 42.6
QF ABV, INC’20 Yices 169.4 50.8 114.6
QF NRA, SQ’20 Yices 82.5 41.2 46.5
QF AUFLIA, SQ’20 Yices 200.0 37.2 27.9
BV, SQ’20 CVC4 112.1 30.6 117.8
QF LRA, SQ’19 SPASS-SATT 89.3 28.4 59.5
QF UFLRA, INC’20 Z3 133.3 26.2 19.9
QF ANIA, SQ’20 MathSAT5 199.0 26.1 61.6
QF LIA, SQ’19 SPASS-SATT 161.5 29.8 66.3
BV, SQ’19 Q3B 91.8 25.0 83.7
LIA, SQ’20 CVC4 172.5 22.3 19.6
QF UFNIA, SQ’20 CVC4 125.6 21.9 105.0
UFDTNIRA, SQ’20 Vampire 123.9 24.0 92.6
QF UFLRA, INC’19 Z3 110.0 19.6 22.0
QF FP, SQ’19 COLIBRI 41.6 18.4 62.8
QF AUFBV, SQ’20 Yices 82.0 20.4 3.6

Table 2: Selected results of MachSMT on data from SMT-COMP 2019 and
2020. All numbers are percent differences of PAR-2 scores across all benchmarks.
Columns 3 and 4 show the improvement over random selection and competition
winners (higher is better). Column 5 shows the PAR-2 difference to the VBS
(lower is better).

2. machsmt eval – This tool takes as input the library directory generated by
machsmt build and evaluates it under k-fold cross validation and provides
a summary of results. It further tunes MachSMT to use the best empirically
observed variant based on the logic and track of the input benchmark.

machsmt eval -l /path/to/lib/dir

3. machsmt – This tool is the primary interface to MachSMT’ algorithm se-
lection. Provided an input benchmark and its library files, it will output a
ranking of solvers that are predicted to solve the benchmark the fastest.

machsmt benchmark.smt2 -l /path/to/lib/dir
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Fig. 2 Plot for BV in the Single Query (SQ) Track in SMT-COMP ’19.

3.4 User-defined Features

We include a simple interface for users to extend the considered features in
MachSMT’s algorithm selection. All that is required is to create a Python
method that returns a single floating-point number (or an iterable object thereof)
representing the feature. As input, the user enters the path of the SMT-LIB
input, as well as its logic and track. If a user feature is to be considered by
MachSMT, the user-defined procedure should return its floating-point represen-
tation; otherwise, it returns none. All user-defined features are automatically
included in building MachSMT. These custom features in principal can signif-
icantly affect the accuracy of MachSMT when engineered to target a specific
class of benchmarks.

4 Experimental Evaluation of MachSMT on SMT-COMP
2019 and 2020 Data

In this section, we present the evaluation of our MachSMT tool (refer to Ta-
ble 2 and CDF plots in Figures 2–6), specifically with the benchmarks, solvers,
and solver runtime analysis from SMT-COMP 2019 and 2020. The artifact is
available at: https://zenodo.org/record/4458699.

https://zenodo.org/record/4458699
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Fig. 3 Plot for NRA in the Single Query (SQ) Track in SMT-COMP ’19.

4.1 Experimental Setup and Methodology

In this experiment, we used the benchmarks, timing analysis, and solvers pro-
vided by the organizers of the SMT-COMP 2019 and 2020 competitions [31,6]. In
both years, all solver input queries were performed on the StarExec computing
service [58], which consists of a cluster of 2.4 GHz Intel Xeon machines running
Red Hat Enterprise Linux 7.2. Each solver/benchmark pair was configured to
have 4 cores and 60GB of memory available. The time limit for each pair was
2400 seconds in 2019, and 1200 seconds in 2020.

We evaluate MachSMT and all of its variants using k-fold cross validation
(with k = 5). In cross validation, the dataset is randomly partitioned into k
subsets per division. A model is then trained over k − 1 subsets and makes pre-
dictions over the subset that is excluded from training. This process is repeated
to obtain fair predictions for each subset. Cross validation is commonly deployed
to analyze machine learning models. For more details, please see Section 2.

4.2 Experimental Results

For every division, we evaluated MachSMT by checking whether we beat the
competition winner from each division. For the sequential tracks, we evaluate
solvers across, according to PAR-2 scores (i.e., the wallclock runtime on success-
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Fig. 4 Division QF BVFPLRA in the Single Query Track in SMT-COMP 2020.

ful termination, otherwise twice the wallclock timeout)4 [42]. For incremental
tracks, we use the following formula:

w + (2 ∗ t/n) ∗ (n−m)

where w is the wall clock runtime, t is the wallclock timeout, n is the total
number of check-sats in the benchmark, and m is the total number of check-sats
successfully solved.

We present select results in Table 2. We consider three baselines when evalu-
ating MachSMT, namely: random algorithm selection, the competition winner,
and the virtual best solver (VBS) (note, VBS is perfect algorithm selection and
cannot be beaten). We consider all divisions of at least 25 benchmarks and ob-
serve MachSMT to improve on the competition winner in 54 out of 85. We report
the results for MachSMT-SolverLogicEHM in the table as it is by far the most
performant, dominating in all divisions except for 4.

We present select CDF plots in Figures 2-6. A CDF plot is a visualization
of how a solver performs on a database of inputs. A point (X,Y) denotes that a
solver S solves Y inputs within X seconds each.

4 In case of an incorrect answer, the score is recorded as 10 times the wallclock timeout.
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Fig. 5 Division QF LIA in the Single Query Track in SMT-COMP 2020.

5 Analysis and Discussion of Results

In Section 3.2, we describe four formulations of MachSMT. In our evaluation
(see Table 2), we observe MachSMT-SolverLogicEHM to be significantly more
performant than all other formulations. When evaluating over SMT-COMP, in
all divisions that MachSMT improved over the competition winner, MachSMT-
SolverLogicEHM was the most performant in all except for three (which were
won by MachSMT-SolverLogicPWC).

Our experimental results validate the idea that algorithm selection (in par-
ticular through the use of EHMs) can be a powerful way to address the com-
binatorial explosion that solver users face when trying to decide which solver-
configuration pair is best suited for their application. We note that MachSMT is
particularly powerful in the context of logics, such as QF UFBV, that are derived
from a diverse set of applications and a wide variety of algorithms have been
designed to solve them. As has been noted in previous work, algorithm selection
methods work well for non-homogeneous benchmarks, especially where there is
no single algorithm (solver) that performs the best across the board. EHMs are
an effective way to distinguish between such algorithms given a problem instance
and predict which one might perform the best on said instance.

One major threat to the validity of any ML solution is the generalizability of
the learnt models on unseen data. It has been noted in previous work that a prac-
tical way to address this issue is to use k−fold cross validation scheme [54,43],
thus motivating our use of this approach in our experiments. We further note
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Fig. 6 Division QF UFBV in the Single Query Track in SMT-COMP 2020.

that our evaluation of MachSMT includes decades of runtime analysis and more
than 100 GB of benchmarks spanning numerous applications, giving us greater
confidence in the robustness of our results.

6 Related Work

In this section we provide an overview of previous work on algorithm selection
in the context of constraint solvers and contrast it with MachSMT.

6.1 Key differences between SATZilla and MachSMT

As mentioned above, SATZilla was the first algorithm selection method in the
context of logic solvers [67]. While our work is inspired by SATZilla, MachSMT
differs from SATZilla in several key ways. First, SATZilla deploys a feature
selection scheme to avoid the curse of dimensionality. While good in practice for
the SAT setting, feature selection does lose significant amounts of information.
Further, it can be very expensive to compute optimal feature subsets.

By contrast, MachSMT leverages a learnt dimensionality reduction scheme,
namely, Principal Component Analysis (PCA). The key advantage of PCA is
that it does not perform a search for optimal feature subset (like one has to do
in the context of feature selection), and hence is significantly more efficient. In
fact, a feature selection method is unlikely to scale for SMT solvers, unlike SAT,
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simply because of the significantly larger number of features, logics, and solvers
that one has to contend with. Second, MachSMT deploys a modern ML pipeline,
including an ensemble learning approach, namely Adaptive Boosting [21].

6.2 Algorithm Selection for Logic Solvers and Their Applications

Algorithm selection tools have a rich history and have been around since at least
1976 when Rice et al. were the first to propose it [51]. Algorithm selectors have
been extensively used in many contexts, e.g., classifiers for machine learning [2],
combinatorics [37], and other NP-hard optimization problems [60,62]. Within
the context of solvers, algorithm selectors have been proposed for QBF [50,41],
SAT [67,68,69], CSP solvers [25,3,34], and recommenders for ATP tools [59,61].

In the setting of SMT solver applications, symbolic execution tools have used
algorithm selection strategies [64] and portfolio strategies [33] for the specific
classes of instances within the context of the bit-vector theory. This would be
an ideal use case of MachSMT, since we provide a more complete solution.

There have been other works using machine learning to improve the perfor-
mance of SMT solvers. Balunovic et al. [5] use neural networks and synthesis
to find tactics and strategies for three SMT-LIB theories. A previous version of
our work proposed an algorithm selection tool for the QF FP theory [57]. To
the best of our knowledge, MachSMT is the first publicly available tool for the
entirety of SMT-LIB. Other works have leverage machine learning to improve
internal heuristics in solvers [12,52,40]

Pairwise ranking has been used in algorithm selection in the latest versions
of SATZilla [70], as well as in other settings such as variable selection in the
context of splitting heuristics in divide-and-conquer parallel SAT solvers [45].

7 Conclusions and Future Work

In this paper, we presented MachSMT, the first algorithm selection tool that
spans the entirety of the SMT-LIB logics. MachSMT is designed to be user-
friendly and easily modifiable by users for their specific application and SMT
solvers of interest.

Using MachSMT, we observe improvement in 54 out of 85 divisions in all
tracks from the SMT-COMP 2019 and 2020, with up to a 198.4% improvement
for the QF BVFPLRA SQ ’20 division in PAR-2 score. Most of the logics on
which we don’t see improvement are ones for which we have very few benchmarks.

For future work, we plan to extend our scoring scheme to take into account
model validation and unsat core divisions. We further plan to extend our feature
set with more (theory-)specific features based on feedback from the SMT com-
munity. It is very likely that users may have domain-specific knowledge about
certain features that might be most predictive of solver runtime for their par-
ticular application. Hence, we have provided an interface to easily extend and
specialize MachSMT to a user’s specific setting.
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