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Abstract

Here, we aimed to identify and characterize genomic regions that differ between Groningen

White Headed (GWH) breed and other cattle, and in particular to identify candidate genes

associated with coat color and/or eye-protective phenotypes. Firstly, whole genome

sequences of 170 animals from eight breeds were used to evaluate the genetic structure of

the GWH in relation to other cattle breeds by carrying out principal components and model-

based clustering analyses. Secondly, the candidate genomic regions were identified by inte-

grating the findings from: a) a genome-wide association study using GWH, other white

headed breeds (Hereford and Simmental), and breeds with a non-white headed phenotype

(Dutch Friesian, Deep Red, Meuse-Rhine-Yssel, Dutch Belted, and Holstein Friesian); b)

scans for specific signatures of selection in GWH cattle by comparison with four other Dutch

traditional breeds (Dutch Friesian, Deep Red, Meuse-Rhine-Yssel and Dutch Belted) and

the commercial Holstein Friesian; and c) detection of candidate genes identified via these

approaches. The alignment of the filtered reads to the reference genome (ARS-UCD1.2)

resulted in a mean depth of coverage of 8.7X. After variant calling, the lowest number of

breed-specific variants was detected in Holstein Friesian (148,213), and the largest in Deep

Red (558,909). By integrating the results, we identified five genomic regions under selection

on BTA4 (70.2–71.3 Mb), BTA5 (10.0–19.7 Mb), BTA20 (10.0–19.9 and 20.0–22.7 Mb), and

BTA25 (0.5–9.2 Mb). These regions contain positional and functional candidate genes asso-

ciated with retinal degeneration (e.g., CWC27 and CLUAP1), ultraviolet protection (e.g.,

ERCC8), and pigmentation (e.g. PDE4D) which are probably associated with the GWH spe-

cific pigmentation and/or eye-protective phenotypes, e.g. Ambilateral Circumocular Pigmen-

tation (ACOP). Our results will assist in characterizing the molecular basis of GWH

phenotypes and the biological implications of its adaptation.
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Introduction

Traditional native breeds are an important source of genetic variability adapted to local envi-

ronments. They might harbor genetic variants unique to the breed due to ecosystem adapta-

tion and, e.g. provide resistance to local diseases and/or extreme climatic conditions. Detailed

analyses of the genomic structure of those native breeds can contribute to improving the

knowledge about breed formation, and identify genes and variants with a significant impact

on the adaptation processes that shaped animal phenotypes [1–4]. This information can be

used to set up optimum breeding programs for the management of livestock genomic

resources.

The skin and coat color variation in livestock breeds are important traits that impact the

adaptation of breeds to the environment [5–8]. In the past years, numerous research projects,

such as genome-wide association studies (GWAS) [9–11] and whole-genome selective sweeps

identification [3, 12] have been performed to pinpoint candidate genomic regions with signifi-

cant effects on skin and coat color variation [6, 9, 10, 13–15]. The combination of several

sources of information can improve the power of candidate gene identification by reducing

the number of QTLs and their intervals, as well as providing additional insights into the stud-

ied biological processes [16, 17].

The Groningen White Headed (GWH) breed, originated from the Groningen province of

the Netherlands, is a dual-purpose cattle known for its longevity, minimal veterinary costs,

and high fertility rate [18]. The first GWH animal was registered in the herd book in 1875, and

in 1999, the breed was considered to be endangered with approximately 830 purebreed ani-

mals [19]. Recent interest in functional traits such as fertility or resistance may open up new

opportunities for the expansion of this breed [18]. GWH animals are easily distinguished by

their phenotype, that is, solid black or red coat color, white face, and colored areas around the

eyes [18, 19].

In cattle, Ambilateral Circumocular Pigmentation (ACOP) can be distinguished by a white

face and colored areas around the eyes in breeds such as the GWH [19] and Fleckvieh [9]. The

presence of this phenotype can reduce the susceptibility to eye lesions [20]. It is well-known

that non-pigmented animals have a higher incidence of eye lesions than animals with eye mar-

gin pigmentation [9, 21]. A plausible explanation for this is that cattle with a non-pigmented

eye margin are exposed to more ultraviolet (UV) radiation in this region [9], which would be

more intense and harmful in the tropical areas [22].

The molecular genetic background of GWH breed has not been extensively studied [23].

Therefore, the goal of this study was to gain further knowledge on the genomic basis of the

GWH breed by analyzing whole-genome resequencing data to identify and characterize geno-

mic regions that differ between GWH and other cattle breeds, and in particular to identify can-

didate genes associated with coat color and/or eye protective phenotypes. We studied the

population structure of five Dutch traditional breeds, to evaluate the genetic distinction of the

GWH, using two approaches, which are, a model-based clustering admixture analysis and a

principal component study (PCA). Additionally, we implemented an integrative approach, to

reduce the number of false positive candidate genomic regions, taking into account the find-

ings from: a) a genome-wide association study using GWH with ACOP, breeds without the

white head phenotype (Holstein Friesian, Dutch Friesian, Deep Red, Meuse-Rhine-Yssel and

Dutch Belted) and other white headed breeds (Simmental and Hereford); b) scans for candi-

date selective sweeps in GWH cattle compared to those of four other traditional Dutch breeds

(Dutch Friesian, Deep Red, Meuse-Rhine-Yssel, Dutch Belted), and the transboundary Hol-

stein Friesian; c) identification of runs of homozygosity (ROH) in the GWH breed to reduce

the number of false positive candidate selective sweeps, and d) identification of functional
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candidate genes in the genomic regions commonly detected by GWAS, selective sweeps and

ROH hostpots.

Materials and methods

Ethics statement

This study was conducted following the animal experimentation policy of Wageningen Uni-

versity & Research. The cattle blood samples were collected by a veterinarian during yearly

routine health inspections with written informed consent by the owners. Therefore, no Ethics

Committee approval for animal care was needed for this research.

Animals. We used 170 animals from eight breeds. We first sampled 120 unrelated animals

as part of the LEAP-Agri project OPTIBOV (https://www.optibov.com/) and in collaboration

with the respective breed associations, including 5 Holstein Friesian; 21 GWH; 23 Meuse-

Rhine-Yssel; 23 Dutch Belted; 24 Dutch Friesian; and 24 Deep Red. In total, 92 cows and 28

bulls were included in this study (for more details see S1 Table). Secondly, white headed ani-

mals with no ACOP were retrieved from two more breeds (25 Simmental and 25 Hereford)

included in the 1000 Bull Genomes Project (Run9 version) [24, 25]. These 50 animals with

completely white heads (lacking ACOP) were used only for the genome-wide association anal-

ysis to contrast against the GWH breed, which exhibits ACOP.

DNA sample preparation and sequencing. The GENTRA Blood kit (Qiagen N.V.) was

used for the isolation of genomic DNA from EDTA blood samples. The quantification and

quality of the obtained DNA were assessed using the Qubit fluorometer (Qiagen N.V.). DNA

was paired-end sequenced (read length of 150 base pair) as single-indexed genomic libraries

using the Illumina Novaseq6000 (Illumina Inc., USA). Finally, raw reads were preprocessed by

trimming the adapter sequences and removing the reads with 50% of low-quality nucleotides

and fewer than 36 base pairs in length with fastp v0.23.1 [26].

Short read alignment, mapping, variant detection, and filtering. The mem option from

BWA v0.7.17-r1188 [27] was used to map the cleaned reads to the bovine reference genome

(assembly version ARS-UCD1.2) [28]. Aligned reads from each animal were stored in binary

BAM files using SAM tools v0.1.19 [29]. Freebayes software [30] was used for population-

based variant calling with default parameters except for: -min-alternate-count = 3, -haplotype-

length = 0, -ploidy = 2, -min-alternate-fraction = 0.2, and -min-base-quality = 30. Variants

with a phred-scaled probability < 20 and a depth of coverage by sample <5 were removed

using the Bcftools v1.9 [31] software.

Population structure assessment with principal component analysis and individual

ancestry estimation. We used PC analysis to assess the population structure of the Dutch

cattle breeds. This analysis was conducted using the variance-standardized relationship matrix

[32] with PLINK v1.9 [32]. We considered only autosomal and biallelic variants with an r2<

0.5 between variants within a window of 50 SNPs and with a genotyping rate > 0.95. The

results from the PCA were visualized using the R package ggplot2 v3.3.5 [33].

Individual ancestry was evaluated by a model-based clustering method with the ADMIX-

TURE software v1.23 [34]. This method used the allele frequencies and the proportions of the

ancestral populations in each sample to model the probability of the observed genotypes [34].

In the model, the K-value (optimal number of clusters) was estimated as the one with the low-

est cross-validation error (CV) [34]. The ADMIXTURE algorithm was performed using values

of K ranging between 2 and 6. The analysis was performed with a total of 120 unrelated ani-

mals from Dutch breeds and included 1,354,139 autosomal variants with a r2 < 0.5 within win-

dows of 50 variants over the genome and a minor allele frequency (MAF) > 0.05.
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Genome-wide association study. A genome-wide association study was used to identify

and characterize genome regions that differ between GWH and other breeds to find out candi-

date genes funtionally related with pigmentation and/or the eye protective phenotypes, e.g.

ACOP. We used a mixed-model approach developed by Zhou and Stephens [35] in the

Genome-wide Efficient Mixed-Model Association v0.98.1 [35] program. The mixed-model

approach accounted for the population structure by including in the random effect the covari-

ance structure from the genomic kinship matrix. In a first step, the association analysis was

performed between GWH and non-white headed Dutch breeds (5 Holstein Friesian; 24 Dutch

Friesian; 23 Meuse-Rhine-Yssel; 23 Dutch Belted; and 24 Deep Red). A total of 14,285,317

autosomal variants with a MAF > 0.05 were used to evaluate the relationship between each

variant and the GWH breed phenotypes:

y ¼Wα þ xd þ uþ ε

where y was the binary phenotype, one for the GWH individuals with ACOP and zero for

Dutch Belted, Deep Red, Meuse-Rhine-Yssel, Dutch Friesian, and Holstein Friesian; W the

matrix of incidence for the fixed effects; α the intercept vector of ones; x contains the vector

with SNP genotypes by sample; δ represents the marker effect size; u contains a vector with the

random genetic effects that follow a n-dimensional multivariate normal distribution with u*

MVNn (0, λ τ− 1 K) for n individuals and being λ the ratio from two components of variance,

τ− 1 is the variance of the residual error, and K the kinship matrix derived from the genotypes

from each sample; ε *MVNn (0, τ− 1 In) the vector containing the errors, with I representing

the identity matrix. The nominal p-values from the association study were corrected using the

false discovery rate (FDR) approach implemented in the R function p.adjust [36] and Benja-

mini & Hochberg [37] method. We considered those variants with a q-value (from the FDR

test) lower than 0.001 as significantly associated. Here, a QTL and the co-localization between

QTLs and significant selective sweeps were defined following the method reported by Gonza-

lez-Prendes et al. [38]. In brief, we considered only genomic regions with more than two sig-

nificantly associated variants as candidate QTL. The co-localization between QTLs or between

QTLs and selective sweeps was considered if the genomic regions overlapped by at least one

base pair.

In a second step, variants from two additional breeds (25 animals from the Simmental

breed and 25 from Hereford) with white heads and no ACOP were retrieved from the 1000

Bull Genomes Project (Run9 version) [24, 25] to perform the GWAS between these and

GWH. We decided to keep the analysis with those two transboundary breeds separated from

the remaining five Dutch breeds because we used different approaches to detect variants from

whole genome resequencing data and we did not want to lose informative variants segregating

in the populations at low frequency for subsequent analyses. The Simmental and Hereford

sequence data, with a mean depth of coverage of 11.68 X (between 1.84 and 44.17) [24, 25],

were merged with the data obtained from the 120 animals in our study, including 21 GWH

individuals using PLINK v1.9 [32] with default parameters. The association study was per-

formed with a total of 9,655,666 variants with a genotype call rate above 0.9, a MAF higher

than 0.05 and using the model described above.

Identification and annotation of selective sweeps

The variants identified in each sample were used to explore the presence of genomic regions

under selection in each breed with two complementary methods. First, Sweep Detector

(SweeD) v3.0 [39] software, was applied using a composite likelihood ratio test to find candi-

date selective sweeps across the genome based on Site Frequency Spectrum patterns of
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variations [40]. We defined a window size of 5 kb across the genome to calculate the Site Fre-

quency Spectrum patterns, and the outlier regions falling within the top 1% of the composite

likelihood-ratio test distribution were selected as significant regions. Second, a complementary

approach based on linkage disequilibrium implemented in OmegaPlus v3.0.3 [41] was applied.

Here, the ω-statistic is calculated based on patterns of linkage disequilibrium close to a recently

fixed mutation. A high value of ω-statistic at a specific genomic location can indicate a geno-

mic region under selection. In this method, we used the same window size of 5 kb bins across

the genome and outlier regions with the highest values (top 1%) of ω-statistic were considered

significant. Finally, only candidate selective sweeps within the 1% of the highest scores

obtained by both methods were annotated using Ensembl 101 [42] database and used for sub-

sequent analyses.

Runs of homozygosity identification in the GWH breed. The detection of ROH in the

GWH breed was implemented with detectRUNS v0.9.6 [43] program. This analysis was used

as a complementary method to confirm and reduce the number of candidate genomic regions

that co-localize between the GWAS signals and selective sweeps. Genomic regions with ROH

hotspots were selected to control the number of false positive candidate selective sweeps and

GWAS signals by selecting only genomic regions that co-localize between them. A sliding win-

dow-based method was applied to detect regions with at least 15 variants in a run with 250 kb

as the minimum length and a maximum distance between consecutive variants of one Mb.

Additionally, we considered one variant per 10 kb as the lower density limit and only one miss-

ing or heterozygous variant per run. Potential ROH hotspots were identified by selecting only

genomic regions containing the most frequent (top 1%) variants in a run in the GWH popula-

tion [44–46].

Results and discussion

After the mapping of the Dutch cattle breeds and Holstein Friesian short read sequences to the

bovine reference genome (assembly ARS-UCD1.2), the depth of coverage across samples, in

average, was 8.7X ranging from 7X to 13X (S1 Table). The number of variants per breed, bial-

lelic variants and variants that are specific to each breed are shown in Table 1. The overall

number of annotated variants was 21,313,663, and the number of SNPs per animal (between 6

and 7 million, S1 Table) and per breed (between 13 and 17 million, Table 1) are within the

range of that obtained in other studies on B. taurus [47–53]. The breed with the highest num-

ber of breed-specific variants was Deep Red (558,909), whereas the Holstein Friesian showed

the lowest number (148,213). The low number of specific variants detected in Holstein Friesian

compared with the remaining breeds in this study is most likely because of the small effective

population size associated with a strong artificial selection pressure [54]. However, as the num-

ber of samples (n = 5) for Holstein Friesian is low, specific variants with low frequency may be

Table 1. Number of variants by breeds and breed-specific variants detected in 6 cattle populations.

Breeds Mean genome coverage Number of variants Number of biallelic variants Number of biallelic breed-specific variants

Holstein Friesian 9.20 13,218,695 12,376,751 148,213

Meuse-Rhine-Yssel 9.78 16,642,547 15,751,146 304,064

Groningen White Headed 8.19 15,554,352 14,675,130 368,389

Dutch Frisian 8.46 16,025,075 15,139,002 374,333

Dutch Belted 8.30 16,463,618 15,574,124 475,279

Deep Red 8.75 17,804,474 16,906,802 558,909

Mean 8.78 15,951,460 15,070,493 371,531

https://doi.org/10.1371/journal.pone.0276309.t001
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underestimated and the results must be taken with caution. Functional annotation analysis

revealed that the detected variants mapped to intronic (46.18%) or intergenic (42.61%)

regions. Only, 1.1% (389,472 variants) mapped to exonic regions, of which 146,057 were mis-

sense and 212,473 were synonymous variants (S2 Table).

Genetic differentiation of the GWH breed

The genetic relationships between samples were evaluated using a PCA approach. As shown in

Fig 1A, the distribution of the samples is in concordance with the breed histories and in line

with previous results obtained for traditional Dutch populations [23]. While, Holstein Friesian

occupied the central position, PC1 separated the dual-purpose breeds Meuse-Rhine-Yssel and

Deep Red, which are genetically closely related [55], from all others. This is in agreement with

the history of these two breeds where Deep Red originated from the Meuse-Rhine-Yssel in the

east of the Noord-Brabant province following multiple generations of selection for coat color

[55]. The PC2 separated the GWH from other breeds, providing further support for the genetic

differentiation of this population. The model-based clustering analysis supported the PCA

results. We used the information obtained from the PCA, which showed six different clusters,

to run the model-based clustering analysis from K = 2 to K = 6, and the smallest CV error to

estimate the best number of K ancestral populations. The results (Fig 2) supported the high

differentiation of the GWH breed at K = 3 in an independent genetic cluster. The separation of

Dutch Friesian and Dutch Belted breeds occurred at K = 4, and finally the Meuse-Rhine-Yssel

and Deep Red formed two distinct clusters at K = 5, which had the smallest CV error (0.54),

reflecting their close genetic relationship [55]. In this analysis, we included the Holstein Frie-

sian breed, however, determining the extent of admixture in this breed requires further studies

of a larger sample size [56]. In the admixture analysis, populations with a low number of sam-

ples are less likely to be assigned to their own ancestral cluster and as a consequence, they are

depicted across multiple drifted groups [56].

With the separation of the GWH population from the non-white-headed breeds, we

decided to investigate if this breed, with ACOP, is also isolated from white headed breeds

Fig 1. Principal component analysis (A) 120 samples from six breeds (Holstein Friesian, Dutch Friesian, Dutch Belted, Deep Red, Meuse-Rhine-Yssel and

GWH); (B) The 70 animals from the three populations, GWH breed plus two white headed breeds (Hereford and Simmental) used for the GWAS in the second

step. Individuals from the GWH breed (red circle) are distantly positioned from all other breeds in both plots. The % symbol indicates the percentage of the

explained variance for the first and second components calculated from the eigenvalues.

https://doi.org/10.1371/journal.pone.0276309.g001
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without pigmentation around the eyes, that are, Hereford and Simmental (without ACOP).

The PCA separated the breeds into three clusters based on their genomic information (Fig

1B). Animals represented in Fig 1B were used for the GWAS in the second step. The PC1,

which explains 30% of the observed variation, divided the animals with and without ACOP

and confirms the genetic differentiation of the GWH breed. The PC2, divided the Hereford

and Simmental breeds into two clear clusters indicating two separate populations in accor-

dance with previous reports [57]. This pattern, which confirms the GWH differentiation was

also obtained when the five Dutch breeds and the three commercial populations (Holstein,

Simmental, and Hereford) were combined (S1 Fig).

Genomic regions showing significant association with the GWH breed

The GWA study was used to identify and characterize genome regions that differ between

GWH and other breeds to find candidate genes possibly associated with pigmentation and/or

eye protective phenotypes e.g. ACOP, which is typical of GWH breed. Animals with ACOP

(GWH) were classified as cases and animals of the Dutch Belted, Deep Red, Meuse-Rhine-

Yssel, Dutch Friesian, and Holstein Friesian breeds were considered as controls. At the

genome-wide level (q-val< = 0.001), 137 genome hits (S3 Table and Fig 3) with more than

one significantly associated variant were detected. The associated regions were distributed

across the 29 chromosomes (Fig 3) and the regions with the most significant associations (p-
value<-4.9E-14) and with the highest number of associated variants (>100 significant

Fig 2. Population structure plot determined by the model-based clustering analysis of ADMIXTURE. Samples are

represented by stacked columns of the 2 to 5 K-proportions and the number of clusters with the lowest cross validation

error (CV = 0.54) was obtained for K = 5.

https://doi.org/10.1371/journal.pone.0276309.g002
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associations) mapped to BTA4 (20.0–29.9 Mb and 116.8–118.8 Mb), BTA5 (10.1–19.7 Mb),

BTA12 (12.0–18.5 Mb), BTA15 (50.6–59.8 Mb and 60.3–67.8 Mb), BTA20 (10.2–19.9 Mb and

20.2–29.5 Mb) and BTA21 (0.4–8.8 Mb). A total of four genomic regions co-localized with

those detected by Pausch et al. [9] in Fleckvieh breed, which are, two regions located on BTA5

(10–19.7 Mb; 57.5–58.9 Mb), one on BTA13 (50.1–59.9 Mb) and one on BTA22 (30.4–32.5

Mb). The low coincidence between the studies may indicate that most associations are breed-

specific suggesting that this phenotype may have a different genetic background in these

breeds. However, multiple methodological and biological factors can influence these differ-

ences. Pausch et al. [9] used genomic information from a combination of SNP arrays (version

1 and 2 of Illumina BovineSNP 50K Bead chip1, and Illumina BovineHD Bead chip1 777k),

whereas we used whole-genome sequence variants. Additionally, Pausch et al. [9] used a quan-

titative trait (a proportion of progeny with ACOP) in the GWAS study while in the current

study we used the ACOP traits as a binary phenotype. Finally, while large sample sizes are

needed for GWAS of complex traits, the sample size can be dramatically reduced for a case

and control analysis in binary phenotypes [58, 59].

QTL detection in white headed cattle with and without ACOP. As there were no GWH

animals with a completely white head and without ACOP, 50 animals from Hereford and Sim-

mental breeds were selected from the 1000 Bull project [24]. These data were merged with var-

iants from our GWH to carry out a GWAS analysis using a total of 15,751,624 variants to: 1)

detect GWAS signals associated with the phenotype variation of GWH breed to find candidate

genes related with pigmentation and/or eye protection phenotypes, e.g. ACOP, by contrasting

breeds with ACOP (GWH) and without ACOP (Hereford and Simmental) and completely

unpigmented area around the eyes; and 2) to reduce the number of candidate genomic regions

by retrieving the QTLs overlapping with the GWAS (breeds without white head vs GWH). A

total of 187 genomic significant hits with at least two significant SNPs were detected (S4

Table), and 100 (53.4%) co-localized with the QTLs identified when the six breeds were

included in the analysis (S4 Table). This result may suggest that those regions specifically affect

the GWH breed and may be associated with its color phenotype. Interestingly, the QTL on

BTA5 (region, 10.1–19.7 Mb), was also identified by contrasting GWH vs breeds without

white head (BTA5, region 10.0–13.7 Mb). Pausch et al. [9] reported the same QTL earlier at

BTA5 (15.6–20.6 Mb, remapped to ARS-UCD1.2 assembly) which explained around 7.9% of

the total phenotypic variation of ACOP in the Fleckvieh breed [9].

Our GWAS analyses were limited by the fact that significantly associated genomic regions

can be observed due to the different genetic backgrounds between the breeds. This confound-

ing effect should either be eliminated through a better study design (e.g. F2 crosses with

another white face breed that does not show ACOP) [60–62] or by reducing the number of

false positives using a combined approach in a downstream analysis [17, 63]. For example, the

Fig 3. Manhattan plots showing the GWAS results from contrasting GWH animals with the ACOP phenotype and those of the Dutch Belted, Deep Red,

Meuse-Rhine-Yssel, Dutch Friesian, and Holstein Friesian breeds without white head and non-ACOP phenotype. The y-axis of the plot represents the

-log10 (P-values) from the GWAS and the x-axis shows the genomic location of each variant. The horizontal red line indicate the significant association (q-value
�0.001) at the genome-wide level.

https://doi.org/10.1371/journal.pone.0276309.g003
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application of complementary methods to investigate whether loci significantly associated

were recently selected in the population [16], the description of functions of the genes in can-

didate regions, and finally the experimental validation. As we did not have animals from the

GWH breed without ACOP we decided to investigate if our significantly associated genomic

regions were recently selected in our GWH population to detect positional candidate genes

functionally associated with pigmentation, eye disease, and/or UV protection.

Detection of a breed-specific selective sweeps in GWH

We used the whole genome resequencing data from six cattle breeds (GWH, Dutch Belted,

Deep Red, Meuse-Rhine-Yssel, Dutch Friesian, and Holstein Friesian) to find out breed-specific

selective sweeps (BSSS) in the GWH breed with two complementary methods: SweeD, which

detects selective sweeps based on the variant frequencies using a composite maximum likeli-

hood approach [39]; and OmegaPlus, that identifies patterns of linkage disequilibrium using the

ω statistic [41]. Only significant genome regions (top 1% of the empirical distribution) in both

algorithms (SweeD [39] and OmegaPlus [41]) were selected for furher analysis. With this

approach, 257 breed-specific putative genomic regions under selection were detected (Fig 4, S5

Table). The candidate regions were distributed across the 29 autosomes (Fig 4) with sizes that

ranged from 3.4 kb to 140.4 kb and a mean of 17.8 kb. The breed with the lowest number of can-

didate regions was GWH (31), followed by Meuse-Rhine-Yssel (40), Dutch belted (41), Dutch

Friesian (46), Holstein Friesian (48), and Deep Red (51). The highly significant BSSS migth indi-

cate “divergence signals” between breeds [3]. Thus, the BSSS might be an indicator of genomic

regions affecting unique phenotypic characteristics for which the selection signal was detected

[3] and therefore can be used to validate the GWAS signals for the phenotypic variation of the

GWH breed. The regions with the most significant associations obtained by both methods were

found on BTA5 (12 Mb) and BTA20 (14–20 Mb) in GWH; BTA3 (115–118 Mb) on Dutch

Belted and BTA3 (12–13 Mb), BTA11 (93–94 Mb) and BTA22 (45–48 Mb) on Holstein Friesian

(Fig 4). When we evaluated the co-localization between the BSSS (±500 kb up-and downstream)

in GWH and QTLs detected by GWAS, eight genomic regions were also mapped with all meth-

ods (S3–S5 Tables) as follows: one on BTA4 (70.2–71.3 Mb), one on BTA5 (10.0–19.7 Mb), one

on BTA10 (26.9–29.4 Mb), one on BTA13 (60.0–61.4 Mb), one on BTA15 (55.5–59.8 Mb), two

on BTA20 (10.0–19.9, 20.0–22.7 Mb) and one on BTA25 (0.5–9.2 Mb).

We also evaluated if the candidate selective sweep co-localized with known bovine QTLs

deposited in the AnimalQTLdb [64] database. A total of 4,558 different QTLs affecting 260

traits were found within 257 candidate BSSS (S6 Table). Several of the candidate selective

sweeps highlighted loci which were mainly associated with milk quality, milk production, feed

efficiency, body weight, and several meat-related phenotypes. To be noted, these results are in

line with the economic objective established for the studied breeds; Dutch local cattle (Meuse-

Rhine-Yssel, Deep Red, and GWH) have been selected for dual-purpose characteristics includ-

ing milk production. Although our candidate selective sweeps were selected as unique in each

breed, we still can find BSSS affecting the same trait. This can be explained by the fact that in

livestock populations, including traditional cattle breeds, the selection for economically impor-

tant traits, e.g. complex traits, might happen across many loci with small effects [2, 65]. The

successful identification and characterization of those BSSS that are associated with economi-

cally relevant traits can be used to: 1) improve the knowledge about the processes influencing

the genetic diversity of each breed; and 2) identify candidate genes and/or causal variants

affecting phenotypes under selection. Thus, further studies are encouraged to explore the rela-

tionship between our candidate BSSS and the impact that they may have on economically rele-

vant traits in detail as this was not an objective of the current study.
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Several ROH hotspots map to QTLs and putative selective sweeps

The identification of the genomic regions in ROH in the GWH breed was implemented as a

complementary method to confirm and reduce the number of candidate genomic regions that

co-localize between the GWAS signals and BSSS. We found 4,911 ROH regions that cover on

average a total of 207.4 Mb of the genome. Of these ROH regions, around 73% (3,615) can be

classified as small (0.5–1 Mb) regions, indicating more ancient consanguinity or population

founder effects [66]. This result is common in cattle populations, where longer ROH regions

Fig 4. Genome-wide selective sweep scans using SweeD in each breed. Manhattan plots representing the composite

likelihood ratio values (y-axis) from SweeD for each marker across the genome (x-axis). The threshold of the

significant association (top 1% of the highest composite likelihood ratio values) for declaring candidate selective

sweeps is indicated by the red line. Red points indicate candidate genomic regions detected by both the SweeD and

OmegaPlus methods.

https://doi.org/10.1371/journal.pone.0276309.g004
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have been found less frequently than shorter ones [67]. To reduce the number of identified

genomic regions in ROH, the ROH hotspots were defined by identifying genomic regions con-

taining the variants with the highest frequency (top 1%) in a ROH across the GWH population

(Fig 5, S7 and S8 Tables). With this approach, 57 genomic regions were detected as ROH hot-

spots. With their genomic coordinates, we were able to reveal genomic regions that co-localize

with the previously detected BSSS and GWAS signals. Five genomic regions that mapped to

BTA4 (70.2–71.3 Mb), BTA5 (10.0–19.7 Mb), BTA20 (10.0–19.9 Mb and 20.0–22.7 Mb), and

BTA25 (0.5–9.2 Mb) were overlapped between the three methods, and thus genes on those

regions are probably under selection in the GWH breed [68, 69].

Positional and functional candidate genes associated with pigmentation

and retinal diseases

We also investigated whether the function of the positional candidate genes are specifically

associated with pigmentation and/or metabolism of melanocytes. First, we focused on genes

that mapped to regions that overlapped between ROH hotspots, BSSS, and the GWAS signals

(GWH vs other Dutch breeds, and GWH vs Hereford and Simmental breeds) (Fig 5). These

regions included 141 genes (S9 Table), of which some are functional candidate genes. For

example, on BTA 5 (12–17 Mb), the transmembrane o-mannosyltransferase targeting cadher-

ins 2 (TMTC2) located at 12.2 Mb, is associated with calcium ion homeostasis [70]. Calcium

homeostasis is of major importance in melanocytes and is suggested to be regulated by mela-

nosomes [71]. The KIT Ligand (KITLG) locus (BTA 5, 18.2–18.3 Mb), which encodes a ligand

for the receptor-type-tyrosine kinase KIT and contributes to coat color in various species,

including cattle [72, 73]. On BTA20 (10.9–20 Mb), the region with the most significant SNPs

contains the DEPDC1B (DEP domain-containing protein 1B) gene at position 18.5–18.6 Mb,

which is associated with the hyperproliferation of abnormal melanocyte cells [74]. This gene is

overexpressed in melanoma and encodes DEPDC1B protein that contains a DEP domain [75,

76], which plays an active role in controlling cell functions, including specific signal of retinal

photoreceptor and cell polarity [76, 77].

Interestingly, there are two genes (S7 Table) in our list related with retinal diseases, for

example CWC27 (CWC27 Spliceosome Associated Cyclophilin) associated with Retinitis Pig-

mentosa [78]; on BTA25 (1.1–1.2 Mb) the function of the Clusterin Associated Protein 1

(CLUAP1) in the vertebrate eye is important for ciliogenesis and photoreceptor maintenance

[79]. Although only few cases of eye degenerative diseases with a genetic background have

been reported in cattle [80–82], recently Michot et al. [83] evidenced a group of mutations

related with eye diseases that are segregating in European cattle breeds with direct impact on

animal health e.g., the recessive frameshift mutation on RP1 gene that causes loss of vision in

cattle populations.

Fig 5. Genome-wide ROH hotspots disribution in GWH breed. The y-axis represents the percentage (%) of animals with SNPs in ROH regions and the x-

axis the genomic coordinate of each variant. The significance threshold indicating the genomic regions (ROH hotspots) containing the variants present in more

than 99% of a ROH region across the samples is indicated by the red line. Green dots represent genomic regions on BTA4 (70.2–71.3 Mb), BTA5 (10.0–19.7

Mb), BTA20 (10.0–19.9 Mb and 20.0–22.7 Mb), and BTA25 (0.5–9.2 Mb) that co-localize with significant SNPs commonly detected by the GWAS, selective

sweeps and ROH hotspots.

https://doi.org/10.1371/journal.pone.0276309.g005
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The most significant SNPs on BTA20 mapped to genes related with UV

protection and melanocyte differentiation

The analysis of the whole genome resequencing data allowed to identify variants within candi-

date genomic regions that can help to clarify the cause of the phenotypic differences that exist

between GWH and the remaining breeds. We investigated the genomic regions on BTA20

(10.0–19.9 Mb and 20.0–22.7 Mb) because those regions contained the most significant associ-

ations at three levels (GWAS, Fig 3; BSSS, Fig 4; and ROH, Fig 5). We studied the top ten sig-

nificant SNPs in these regions to identify putatively associated genes. Nine of these SNPs

mapped to four genes (RAB3C, NDUFAF2, ZSWIM6, and PDE4D; Table 2), and 11 of them to

intergenic regions (Table 2). The linkage desequilibrium between those SNPs was high, rang-

ing from r2 = 0.91 to one (Table 2), and one of these SNPs (rs381052637, p-value = 8.64E-22)

mapped to the 30UTR of the PDE4D gene. SNPs located in 30-UTR sequences may abolish or

create a microRNA target and consequently may lead to different activities of the gene thereby

contributing to interindividual variability [84, 85].

Four of the most significant SNPs (Table 2) mapped to the Phosphodiesterase 4D (PDE4D)

gene. PDE4D is involved in the degradation of the Cyclic AMP. In humans, the skin pigment

production and its protection against the UV radiation improved with the up-regulation of

cAMP in melanocytes [86]. However, the function of PDE isoforms in pigmentation and mela-

nocyte biology has not been extensively studied. Khaled et al. [87] reported that the up-regula-

tion of PDE4D loci mediated by the MC1R-cAMP-MITF pathway led to a reduced melanocyte

pigmentation in mice [88–90]. Interestingly, genes in the MITF pathway have been linked in

many cattle breeds with coat color phenotypes [11, 91, 92], and also in other species [93]. As far

as we know, there is no evident relationship between the Ubiquinone Oxidoreductase Complex

Assembly Factor 2 (NDUFAF2) or Related Protein Rab-3C (RAB3C) genes with coat color or

melanogenesis. However, the RAB3C gene is part of the Rab GTPases proteins, which were

involved in cell membrane trafficking and associated with melanosomes [94]. Finally, another

interesting candidate gene that maps to 40 kb downstream of the rs381810091 SNP (p-value =

1.74E-24) is the ERCC Excision Repair 8 (ERCC8) gene, involved in protein ubiquitination and

UV response. In humans, the ERCC8 gene is associated with Ultraviolet-sensitive syndrome

[95] a genetic disorder characterized by cutaneous photosensitivity that causes differentiated

skin pigmentation and greater freckling, without an increased risk of skin tumors [95, 96].

Table 2. Genomic localization of the most significant SNPs on BTA20.

GWAS results Candidate Genes

BTA Position (bp) SNP ID Localization p-value BTA Gene Start Gene End Gene Symbol

20 17,974,182 rs382263925 intronic 5.89E-23 20 17,842,584 18,052,859 ZSWIM6
18,330,187 rs381810091 intronic 1.74E-24 18,210,359 18,370,943 NDUFAF2
20,044,595 20:20044595 intronic 8.64E-22 20,014,955 20,315,593 PDE4D
20,044,910 rs380360322 intronic 8.64E-22

20,278,747 20:20278747 intronic 8.64E-22

20,314,517 rs381052637 3 prime UTR 8.64E-22

20,524,538 20:20524538 intronic 8.64E-22 20,440,181 20,735,999 RAB3C
20,542,032 20:20542032 intronic 8.64E-22

20,598,559 20:20598559 intronic 8.64E-22

1BTA: Bos taurus chromosomes, Position (bp): position in base pair of SNP, SNP ID: Variant displaying the significant association with GWH breed, p-value: nominal

p-value.
�Linkage disequilibrium based on the squared correlation (r 2) from genotypic allele counts was higher than 0.91 between presented SNPs.

https://doi.org/10.1371/journal.pone.0276309.t002
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Conclusion

The used integrative approach based on the combined use of GWAS, selective sweep and

ROH analyses identified several regions of the cattle genome (BTA4,70.2–71.3 Mb;

BTA5,10.0–19.7 Mb; BTA20,10.0–19.9 Mb, and 20.0–22.7 Mb; and BTA25,0.5–9.2 Mb) as can-

didates to explain phenotype variation in the GWH breed. Importantly, those regions con-

tained breed-specific genetic markers and candidate genes that are functionally related with

pigmentation (e.g. PDE4D), UV protection (e.g. ERCC8), or retinal degeneration (e.g. CWC27,

and CLUAP1). This finding contributes to characterizing the genetic background of the GWH

breed and provides insights to further investigate the biological pathways and causative muta-

tions influencing skin pigmentation and/or eye protective phenotypes e.g. Ambilateral Circu-

mocular Pigmentation, and the biological implications of skin pigmentation for animal

adaptation.

Supporting information

S1 Fig. Principal component analysis of the 170 cattle samples from five local Dutch

Breeds (Dutch Belted, Dutch Friesian, Meuse-Rhine-Yssel, Deep Red, and GWH) and

three commercial breeds Holstein Friesian, Hereford and Simmental. Individuals from the

GWH breed (red circle) were distantly positioned from all other breeds.

(TIF)

S1 Table. Read coverage and number of variants by animals and breeds from five local

Dutch Breeds (Dutch Belted, Dutch Friesian, Meuse-Rhine-Yssel, Deep Red, and GWH)

and the commercial breed Holstein Friesian.

(XLSX)

S2 Table. Variant effect predicted from whole-genome variant from Dutch Belted, Dutch

Friesian, Meuse-Rhine-Yssel, Deep Red, Holstein Friesian, and GWH breeds.

(XLSX)

S3 Table. Genome-wide significant QTL for GWH and five cattle breeds without white

head (Dutch Belted, Deep Red, Meuse-Rhine-Yssel, Dutch Friesian and Holstein Friesian).

(XLSX)

S4 Table. Genome-wide significant QTL for phenotypic variation of GWH from contrast-

ing Simmental, Hereford white headed breeds.

(XLSX)

S5 Table. Breed-specific selective sweep regions detected in Dutch Belted, Dutch Friesian,

Meuse-Rhine-Yssel, Deep Red, GWH, and Holstein Friesian breeds.

(XLSX)

S6 Table. Quantitative trait locus, from the Animal QTL database, in breed-specific selec-

tive sweeps detected in Dutch Belted, Dutch Friesian, Meuse-Rhine-Yssel, Deep Red, Hol-

stein Friesian and GWH breeds.

(XLSX)

S7 Table. Genomic distribution of SNPs in RHO hotspots in GWH breed.

(XLSX)

S8 Table. Genomic coordinates of RHO hotspots in GWH breed.

(XLSX)
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S9 Table. Genes that mapped to genome regions on BTA4 (70.2–71.3 Mb), BTA5 (10.0–

19.7 Mb), BTA20 (10.0–19.9 Mb, and 20.0–22.7 Mb) and BTA25 (0.5–9.2 Mb).
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89. Delyon J, Servy A, Laugier F, André J, Ortonne N, Battistella M, et al. PDE4D promotes FAK-mediated

cell invasion in BRAF-mutated melanoma. Oncogene. 2017; 36: 3252–3262. https://doi.org/10.1038/

onc.2016.469 PMID: 28092671

90. Bogunovic D, O’Neill DW, Belitskaya-Levy I, Vacic V, Yu Y Lo, Adams S, et al. Immune profile and

mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival.

Proc Natl Acad Sci U S A. 2009; 106: 20429–20434. https://doi.org/10.1073/pnas.0905139106 PMID:

19915147

91. Liu L, Harris B, Keehan M, Zhang Y. Genome scan for the degree of white spotting in dairy cattle. Anim

Genet. 2009; 40: 975–977. https://doi.org/10.1111/j.1365-2052.2009.01936.x PMID: 19531114

92. Fontanesi L, Scotti E, Russo V. Haplotype variability in the bovine MITF gene and association with pie-

baldism in Holstein and Simmental cattle breeds. Anim Genet. 2012; 43: 250–256. https://doi.org/10.

1111/j.1365-2052.2011.02242.x PMID: 22486495

93. Baxter LL, Hou L, Loftus SK, Pavan WJ. Spotlight on spotted mice: A review of white spotting mouse

mutants and associated human pigmentation disorders. Pigment Cell Res. 2004; 17: 215–224. https://

doi.org/10.1111/j.1600-0749.2004.00147.x PMID: 15140066

94. Fukuda M. Rab GTPases: Key players in melanosome biogenesis, transport, and transfer. Pigment

Cell Melanoma Res. 2021; 34: 222–235. https://doi.org/10.1111/pcmr.12931 PMID: 32997883

95. Nardo T, Oneda R, Spivak G, Vaz B, Mortier L, Thomas P, et al. A UV-sensitive syndrome patient with a

specific CSA mutation reveals separable roles for CSA in response to UV and oxidative DNA damage.

Proc Natl Acad Sci U S A. 2009; 106: 6209–6214. https://doi.org/10.1073/pnas.0902113106 PMID:

19329487

96. Laugel V, Dalloz C, Durand M, Sauvanaud F, Kristensen U, Vincent MC, et al. Mutation update for the

CSB/ERCC6 and CSA/ERCC8 genes involved in Cockayne syndrome. Hum Mutat. 2010; 31: 113–126.

https://doi.org/10.1002/humu.21154 PMID: 19894250

PLOS ONE QTL mapping and selection signatures in Groningen White Headed cattle

PLOS ONE | https://doi.org/10.1371/journal.pone.0276309 October 26, 2022 19 / 19

https://doi.org/10.1038/onc.2016.469
https://doi.org/10.1038/onc.2016.469
http://www.ncbi.nlm.nih.gov/pubmed/28092671
https://doi.org/10.1073/pnas.0905139106
http://www.ncbi.nlm.nih.gov/pubmed/19915147
https://doi.org/10.1111/j.1365-2052.2009.01936.x
http://www.ncbi.nlm.nih.gov/pubmed/19531114
https://doi.org/10.1111/j.1365-2052.2011.02242.x
https://doi.org/10.1111/j.1365-2052.2011.02242.x
http://www.ncbi.nlm.nih.gov/pubmed/22486495
https://doi.org/10.1111/j.1600-0749.2004.00147.x
https://doi.org/10.1111/j.1600-0749.2004.00147.x
http://www.ncbi.nlm.nih.gov/pubmed/15140066
https://doi.org/10.1111/pcmr.12931
http://www.ncbi.nlm.nih.gov/pubmed/32997883
https://doi.org/10.1073/pnas.0902113106
http://www.ncbi.nlm.nih.gov/pubmed/19329487
https://doi.org/10.1002/humu.21154
http://www.ncbi.nlm.nih.gov/pubmed/19894250
https://doi.org/10.1371/journal.pone.0276309

