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Abstract

Diffusion MRI (dMRI) is sensitive to anisotropic diffusion within bundles of nerve

axons and can be used to make objective measurements of brain networks. Many

brain disorders are now recognised as being caused by network dysfunction or are

secondarily associated with changes in networks. There is therefore great potential

in using dMRI measures that reflect network integrity as a future clinical tool to help

manage these conditions. Here, we used dMRI to identify replicable, robust and

objective markers that meaningfully reflect cognitive and emotional performance.

Using diffusion kurtosis analysis and a battery of cognitive and emotional tests, we

demonstrated strong relationships between white matter structure across networks

of anatomically and functionally specific brain regions with both emotional bias and

emotional memory performance in a large healthy cohort. When the connectivity of

these regions was examined using diffusion tractography, the terminations of the

identified tracts overlapped precisely with cortical loci relating to these domains,

drawn from an independent spatial meta-analysis of available functional neuroimag-

ing literature. The association with emotional bias was then replicated using an inde-

pendently acquired healthy cohort drawn from the Human Connectome Project.

These results demonstrate that, even in healthy individuals, white matter dMRI struc-

tural features underpin important cognitive and emotional functions. Our robust

cross-correlation and replication supports the potential of structural brain biomarkers

from diffusion kurtosis MRI to characterise early neurological changes and risk in

individuals with a reduced threshold for cognitive dysfunction, with further testing

required to demonstrate clinical utility.

K E YWORD S

brain, cognition, diffusion kurtosis imaging, emotion, magnetic resonance imaging

1 | INTRODUCTION

A wide range of neurological and psychiatric conditions impact brain

function, causing measurable cognitive deficits and emotional dys-

function. Understanding and measuring the cause of these changesThomas Welton and Ben E. Indja contributed equally to this study.
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would help identify at-risk individuals, facilitate the development of

preventative therapies, and enable early intervention. Unfortunately,

psychometric testing is insensitive to early changes in cognition or

emotional dysfunction that may precede any formal diagnosis. As

such, there is a great clinical need for objective measures that reflect

the brain changes that drive cognitive or emotional dysfunction. Many

brain disorders are now recognised as being caused by (or are second-

arily associated with) network dysfunction; hence, there is great inter-

est in using diffusion MRI (dMRI) as a tool to measure these network

changes. dMRI is sensitive to anisotropic diffusion within bundles of

nerve axons (Beaulieu, 2002) and can be used to make objective mea-

surements of brain networks (Greicius, Supekar, Menon, & Dougherty,

2009; Mori, Crain, Chacko, & van Zijl, 1999). Recent work on this

topic shows disruption to brain connectivity networks at multiple

scales is related to emotional and cognitive (dys)function; for example,

with dMRI (Fornito, Zalesky, & Breakspear, 2015; Gong & He, 2015;

Petersen & Sporns, 2015) and, in combination with functional connec-

tivity using fMRI, multimodal imaging markers of cognition (Jiang

et al., 2018; Qi et al., 2018; Sui et al., 2018). Despite this potential and

many years of development, high resolution forms of dMRI remain a

research tool (i.e., high angular resolution diffusion imaging [Des-

coteaux, 1999] acquisition schemes or other forms of multi-shell

dMRI), with the only widespread, routine, substantive clinical applica-

tion being limited usage for surgical planning (Fernandez-Miranda

et al., 2008). The goal of this study was to use high angular resolution

dMRI to create a replicable, robust and objective marker of brain

changes relating directly to cognitive and emotional functions.

Despite a considerable volume of research, there is still no mean-

ingful clinical usage of multi-shell dMRI data, such as is collected as

part of large-scale initiatives such as Alzheimer's Disease Neuroimag-

ing Initiative and the Human Connectome Project (HCP). In the clinic,

the effects of acute or chronic brain injuries are measured by radiolo-

gists using “conventional” MRI techniques such as proton-density,

T2-weighted and T1-weighted imaging, with observations usually lim-

ited to qualitative grading of imaging features (i.e., normal, mild, mod-

erate, or severe). dMRI is part of this routine clinical imaging battery

but is restricted to diffusion weighted imaging (DWI), usually calcu-

lated as the trace from an axial low angular resolution single shell

dMRI dataset. Probably the most valuable clinical example of “conven-

tional” MRI is the routine use of DWI to detect ischaemic infarction,

where lesions with restricted diffusion (low ADC value) correspond

quite precisely to a pathologically accurate diagnosis of focal infarc-

tion. While this is an extremely important technique, it makes no use

of the higher order information available in a dMRI dataset and is only

really useful for detecting a stroke for a period of 2–3 weeks follow-

ing the infarction.

Many brain injuries do not confer observable signs or symptoms

by conventional clinical means. Even when imaging is performed, this

is often using computed tomography (CT) or conventional MRI. Such

conditions are most often reported as “normal,” contrasting with the

emerging consensus view that there is often (non-visualised) ultra-

structural damage in many cases. Indeed, the percentage of abnormal

CT scans following head injury is approximately 10% (Pandor et al.,

2011), despite post-injury cognitive or emotional dysfunction in these

cases occurring chronically at reported rates between 25 and 65%

(Dischinger, Ryb, Kufera, & Auman, 2009; Kreutzer, Seel, & Gourley,

2001; Seel et al., 2003). Even in the presence of visible changes

such as small embolic foci of restricted diffusion following surgical

cases, the DWI change does not accurately predict these outcomes,

likely because the extent of underlying damage is not strongly cor-

related to these “positive” imaging signs (Indja, Woldendorp, Val-

lely, & Grieve, 2019).

An emerging technique being applied to investigate brain struc-

ture is diffusion kurtosis imaging (DKI). DKI advances the conven-

tional model of dMRI by accounting for deviations from the normative

Gaussian pattern of diffusion (Steven, Zhuo, & Melhem, 2013; Wu &

Cheung, 2010). DKI-based metrics are therefore independent from

diffusion tensor-based measures and reflect heterogeneity of the tis-

sue. DKI has been shown to improve the sensitivity and specificity of

diffusion measurements in a range of diseases, including concussion

(Lancaster et al., 2016), motor neurone disease (Welton et al., 2019)

and depression (Kamiya et al., 2018). The improved ability of DKI to

detect variation in brain diffusion characteristics may enable new

effective imaging markers.

Here, we test the spatial covariance of cognitive and emotional

domains with brain structure in a large healthy population using DKI.

Using these data, we sought to form robust signatures of the struc-

tures that underpin normal cognitive and emotional function. We rea-

soned that such signatures may prove to be useful as a tool to

identify patients with an increased vulnerability to neurological injury,

early disease processes, or potentially to measure functionally mean-

ingful changes secondary to sub-clinical brain injury. We tested the

replicability and consistency of these structural brain signatures in

independent datasets since any potential clinical application mandates

robust and repeatable metrics.

2 | MATERIALS AND METHODS

2.1 | Participants

To test the robustness of our findings, we developed our analyses in a

“Discovery Cohort” and attempted to replicate the key outcomes in a

“Replication Cohort.” Our Discovery Cohort comprised 203 healthy

individuals drawn from the Chronic Diseases Connectome Project

(CDCP). Participants were free from psychiatric or neurological diag-

noses, and we included all ages, genders and levels of education in the

study. Written informed consent was obtained, and the study had

institutional ethics board approval (Macquarie Medical Imaging;

5201500943). The Replication Cohort comprised 1,064 healthy sub-

jects from the HCP (Young Adult Cohort; [Van Essen et al., 2013]).

2.2 | Cognitive and emotional testing

Neurocognitive testing was performed using the computer-based

WebNeuro battery (Brain Resource Inc., Sydney, New South Wales,

Australia; Silverstein et al., 2007). This validated battery of tests
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reports on 15 cognitive and emotional sub-scores derived from multi-

ple tasks: negativity bias, emotional resilience, social skills, depression,

anxiety, stress, motor tapping, impulsivity, attention, information

processing, memory recognition, executive function, verbal interfer-

ence, emotional identification and emotional bias.

2.3 | Magnetic resonance imaging

MRI was performed using a 3-Tesla GE Discovery MR750w MRI scan-

ner (General Electric Healthcare, Milwaukee, Wisconsin) at Macquarie

Medical Imaging, Macquarie University Hospital (Sydney, New South

Wales, Australia) using a 32-channel Nova head coil (Nova Medical,

Wilmington, Massachusetts). A contiguous AC-PC aligned sagittal

MPRAGE PROMO T1-weighted image was acquired with the follow-

ing parameters: TR = 8.39 ms, TE = 3.17 ms, TI = 900 ms, flip

angle = 8�, matrix = 256 × 256, 198 slices, voxel dimensions = 1 mm

isotropic. dMRI data were acquired with a multi-shell multi-band

blipped CAIPI (Setsompop et al., 2012) sequence with a phase offset

applied to each multi-band component and a reversed phase-encode

correction. The parameters were as follows: 140 unique gradient

directions (25 volumes at b = 700, 40 volumes at b = 1,000, 75 vol-

umes at b = 2,800) and eight interleaved b = 0 volumes,

TR = 3,245 ms, TE = 100 ms, flip angle = 90�, matrix = 128 × 128,

66 slices, 2 mm isotropic voxels, FOV = 240 mm, multi-band

factor = 3.

2.4 | Image processing

First, non-brain tissues were removed from the images using BET

(Smith, 2002). TOPUP was used to correct susceptibility-induced off-

resonance field artefacts using the reverse phase-encoded images

(Andersson, Skare, & Ashburner, 2003). Artefacts from eddy currents

and subject head motion were removed (Andersson & Sotiropoulos,

2016). Then, diffusion and diffusion kurtosis parametric maps were

created from tensors estimated using Diffusion Kurtosis Estimator

(Tabesh, Jensen, Ardekani, & Helpern, 2011). These parameters were:

axial diffusivity (DAxial), radial diffusivity (DRadial), fractional anisot-

ropy (FA), axial kurtosis (KAxial), radial kurtosis (KRadial), kurtosis FA

(KFA), mean diffusivity (MD) and mean kurtosis (MK).

Fractional anisotropy data were then aligned to a common space

(the MNI152 average brain Mazziotta, Toga, Evans, Fox, & Lancaster,

1995) using the nonlinear registration tool, FNIRT (Andersson,

Jenkinson, & Smith, 2007). We performed tract-based analysis of dif-

fusion kurtosis scalars and their covariance with each cognitive com-

ponent using tract-based spatial statistics (TBSS; Smith et al., 2006).

In short, a mean FA image was created and thresholded using default

settings (0.2) to create a mean FA “skeleton,” which represents the

centres of all tracts common to the group. Each subject's aligned dif-

fusion and kurtosis data were projected onto this skeleton and the

resulting data fed into voxelwise cross-subject statistics.

T1-weighted images were analysed using voxel-based morphome-

try (VBM; Douaud et al., 2007). The grey matter was segmented from

these images using FAST (Andersson et al., 2007) and, as above, non-

brain tissues were removed before registering the images to the MNI

brain. A study-specific, symmetric template was created by averaging

these images and flipping them along the x-axis. Then, all grey matter

images were nonlinearly registered to the template and corrected for

local expansion or contraction from the nonlinear component of the

registration. The corrected grey matter images were then smoothed

with an isotropic Gaussian kernel with a sigma of 3 mm.

2.5 | Statistics

The significance threshold for all tests was set at 0.05. We initially

excluded subjects who were outliers in any cognitive test (±10 SDs

relative to the WebNeuro normative cohort [n > 10,000], Silverstein

et al., 2007) or who had missing or incomplete cognitive or

imaging data.

Raw neurocognitive tests scores were transformed into Z-scores.

Where multiple measures were reported for a single test (i.e., the con-

tinuous performance test consisted of response time plus number of

errors) a composite score was calculated, as was the case where multi-

ple tests measured a single neurocognitive domain, based on previous

work by Goodkind et al. (2015). This resulted in 15 individual scores

which underwent further data reduction using principal component

analysis with a varimax rotation. One-sample t-tests employing the

WebNeuro normative cohort were used to test whether subjects

were cognitively normal.

For TBSS and VBM analyses, a voxelwise general linear model was

applied, using permutation-based non-parametric testing in randomise/

PALM (Winkler, Ridgway, Webster, Smith, & Nichols, 2014). Across

space, the family-wise error rate was controlled, and threshold-free

cluster enhancement applied to account for multiple comparisons. The

family-wise error rate was also controlled across contrasts (Winkler

et al., 2016).

2.6 | Construction and validation of structural brain
signatures

Based on the results of the above analyses, we used the Discovery

Cohort to combine the best identified features to form potential

“structural brain signatures” sensitive to functional measures. To

define the signatures, we combined the significant findings from the

tract-based analyses of the emotional bias and emotional memory

components: at the local peak coordinates of the clusters which were

strongly significant (p < .01), we extracted the mean value in each

cluster and multiplied them together. Linear regression of this score

against the cognitive and emotional measures was used to test

sensitivity.

A “sham signature” was also created from the left corticospinal

tract using the same methods, an anatomically proximal white matter

tract with a low probability of structure–function correlation. This

was used to test specificity (anatomically and pertaining to the cog-

nitive components). A mask was placed along the corticospinal tract

from the level of the cerebral peduncles to the precentral gyrus

white matter and transformed to the individual subjects' space.
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These voxels were identified from probabilistic diffusion tractography

performed in a single high resolution diffusion dataset gathered using

a head-only MRI scanner with high-performance gradients (Foo et al.,

2018) and registered to the individual subjects' brain images

(Callaghan et al., 2018; Maller et al., 2019). To form the sham signa-

tures, the relevant mean diffusion metrics were extracted from these

regions and multiplied together, as described above (Supporting

Information S1).

2.7 | Replication analysis

Emotional bias and recognition were assessed in the Replication

Cohort using the Penn Emotion Recognition Test (ER40; number of

correct responses; Gur et al., 2001), which we interpreted as an ana-

logue to our emotional bias and emotional memory components.

The same initial processing steps as in the Discovery Cohort were

followed (estimation of diffusion and kurtosis scalars, removal of

non-brain tissues, registration to a standard space) but using the

TBSS skeleton from the Discovery Cohort for consistency. Then,

the structural brain signatures identified in the Discovery Cohort

were applied to obtain a score for each signature and linear regres-

sion was performed to test whether the same finding could be

replicated.

3 | RESULTS

3.1 | Demographics and cognition

Characteristics of the Discovery Cohort are shown in Table 1. After

the removal of extreme outliers in cognition (n = 20) and subjects with

incomplete data (n = 11), 172 subjects remained for full analysis.

There was a wide spread of ages centred on 40 years (median; 27–53

interquartile range) and a slight female gender bias (60%; Figure 1).

Our sample was considered normal for cognition and emotion, as

demonstrated by the distributions of age- gender- and education-

corrected scores (one-sample t-tests: p > .05; Supporting Informa-

tion S2).

The cognitive and emotional data were used to derive five princi-

pal components which, together, explained 66% of total variance.

Based on their component loadings (Supporting Information S3), we

named these “negative affect,” “emotional bias,” “executive,” “emo-

tional memory” and “verbal,” and used them as the independent vari-

ables for the following spatial analyses of brain structure.

The negative affect component was positively weighted toward

greater stress, negative emotional bias, depression and anxiety, and

negatively weighted for emotional resilience and social skills. The

emotional bias component was non-specific and was weighted toward

emotional recognition and bias. The executive component was equally

TABLE 1 Demographic and cognitive
characteristics of the discovery
cohort (n = 172)

Count Mean SD Median Interquartile range

Demographic

N 172

Gender, % female 60.50

Age, years 40.34 14.97 39.00 26.00

Education, years 15.70 2.89 17.00 4.00

Cognitive

Negativity bias 0.01 1.02 −0.13 1.27

Emotional resilience 0.00 1.00 0.05 1.26

Social skills 0.03 1.00 0.11 1.43

Depressed mood 0.00 1.00 −0.44 0.82

Anxiety 0.03 1.02 −0.31 0.72

Stress 0.02 1.01 −0.23 1.46

Motor tapping 0.02 1.15 0.01 1.58

Impulsivity −0.06 1.86 −0.33 2.06

Attention −0.09 2.13 −0.59 2.47

Information processing −0.25 2.16 −0.66 2.20

Memory 0.13 2.13 0.54 1.88

Executive −0.41 2.55 −0.63 3.50

Verbal interference −0.11 1.42 −0.62 0.93

Emotional identification −0.39 3.84 −0.60 5.10

Emotional bias −0.40 3.12 −0.85 3.62

Note: Cognitive data are from the WebNeuro computerised test battery and are unadjusted for any

demographic variable. Some measures are expressed as Z-scores, while others are composites, thus the

centre and spread are often 0 and 1, respectively. All cognitive data are arranged such that a positive

score indicates better performance.
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F IGURE 1 Histograms for each of the demographic (blue) and cognitive variables used in the study, and the results of principal components
analysis (orange)

TABLE 2 Tests with significant
findings and the direction of the effect
for the tract-based and whole-brain
analyses

Component DAxial DRadial MD FA KAxial KRadial MK KFA

Tract-based

Negative affect

Emotional bias + + − − − − −

Executive

Emotional memory − − −

Verbal

Whole-brain

Negative affect + + +

Emotional bias + + − − − − −

Executive

Emotional memory − − − +

Verbal

Note: Significance was determined by a voxelwise p-value <.05 (corrected for the family-wise error rate

within clusters formed using a threshold-free approach [Smith & Nichols, 2009]). “+” indicates a direct
relationship, that is, a higher diffusion metric relating to a higher component score and, vice-versa, “−”
indicates an inverse relationship.

Abbreviations: FA, fractional anisotropy; KFH, kurtosis FA; MD, mean diffusivity; MK, mean kurtosis.
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weighted for executive performance in a maze task and attentional

switching, and negatively weighted for memory. The emotional mem-

ory component was weighted toward both memory and emotional

resilience and might therefore be specific to emotional memory.

Lastly, the verbal component was primarily weighted toward perfor-

mance in a verbal interference test. The negative affect component

was inverted so that higher values reflected better performance.

3.2 | Voxelwise analysis of diffusion kurtosis scalars

In the tract-based analysis of diffusion kurtosis scalars and their covariance

with each of the five cognitive-emotional components, we found two main

significant clusters across multiple diffusion and kurtosis scalars for two

components: emotional bias and emotional memory (Table 2; Figure 2).

A significant emotional memory-related cluster was identified that

extended along the entire left medial temporal lobe and left posterior

limb of the internal capsule at the level of the thalamus (upper row,

Figure 2, Table 3). This cluster was significant for the DAxial, DRadial

and MD scalars, varying from 1.4 to 3.4 ml in volume across diffusion

scalars (Table 3), representing an inverse relationship.

A single large cluster was associated with emotional bias and,

while it varied in extent across scalars (1.8 ml in KFA to 73.7 ml for

KRadial; Table 3), the cluster was primarily distributed across the fron-

tal lobe, extending into the parietal and temporal lobes. At p < .05, this

cluster was significant in all diffusion and kurtosis scalars except

DAxial and, at p < .01, only in the MK (r = −.34), KRadial (r = −.38) and

FA (r = −.51) scalars.

No significant tract-wise clusters were identified for the negative

affect, executive or verbal components. Inspection of the unthresholded

distributions of t-statistic maps for these components revealed two

non-significant trends (t > 2.5). First, the DAxial, DRadial, FA, KRadial,

MD, MK and KFA scalars covaried with the negative affect component

in the thalami and posterior cingulate (Supporting Information S4). Sec-

ond, the MD, MK and KAxial scalars covaried directly with the verbal

component in the anterior commissure.

As a confirmatory test, we performed a similar analysis including all

intracranial voxels (again, using threshold-free cluster enhancement and

p < .05). In addition to the clusters identified in the tract-based analysis

described above, we found one cluster reflecting grey matter volume.

This cluster involved the right hippocampus fimbria and right thalamus,

exhibiting direct covariance with the negative affect component in the

DAxial, DRadial andMD scalars (Table 2, Supporting Information S5).

The location of the identified emotional memory cluster was consistent

with the known role of themedial temporal lobe in both emotion andmem-

ory function, and that of sensory fibres derived from the thalamus and its

interconnectivity with the hippocampus (Maller et al., 2019). Similarly, the

specific role of the frontal lobe in emotional bias and identification is well

established (Phillips, Drevets, Rauch, & Lane, 2003). Therefore, we sought

to test the functional relevance of the identified clusters against known

functional hubs for the respective cognitive and emotional functions.

F IGURE 2 Results of the tract-based
spatial statistics analysis using diffusion
kurtosis scalars. Significant clusters
(in red–orange) have been enlarged for
clarity. The FA skeleton is shown in green,
overlaid on the MNI average FA image.
Scatter plots are only shown for metrics
with clusters having p < .01. FA, fractional
anisotropy
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To do this, we used each of the significant clusters to seed probabilistic

diffusion tractography on a single ultra-high angular resolution diffusion

dataset, gathered using a head-only MRI scanner with high-performance

gradients (Supporting Information S6). We visualised the result alongside

automated meta-analytic topic maps gathered from NeuroSynth, to show

grey matter regions associated with emotion and memory (neurosynth.org;

[Yarkoni, Poldrack, Nichols, Van Essen, &Wager, 2011]; emotional memory

topic number 272 [501 studies]; emotional bias topic number 20 [669

studies]; version 5, July 2018). Qualitatively, the visualised tracts had good

correspondence with these identified grey matter regions, attesting to the

functional relevance of our clusters (Figure 3).

3.3 | Voxel-based morphometry

We detected no clusters of significant voxels representing covariance

of the cognitive-emotional components with grey matter volume.

Inspection of the non-thresholded t-statistic maps revealed a sub-

threshold trend (t > 2.5) in the negative affect component for greater

grey matter volumes symmetrically in the hippocampi (Supporting

Information S7).

3.4 | Construction and validation of structural brain
signatures

The emotional bias signature was normally distributed (Shapiro–Wilk

test: W = 0.99, p = .55) and uncorrelated with age (r = −.14, p = .14),

gender (r = −.06, p = .51) and education (r = −.13, p = .17). Inspection

of a scatter plot suggested that the relationship between the signa-

ture and the component was approximately linear. Linear regression

analysis of the signature against the component scores revealed a

moderate but significant inverse relationship (F[1,172] = 25.67,

R2 = −.18, p < .001, Supporting Information S8). When adding age,

gender and education by backward selection, none were included in

the model.

The emotional memory signature was not normally distributed,

having a slight positive skew (Shapiro–Wilk test: W = 0.97, p = .02)

and was correlated with age (r = .35, p < .01) but not with gender

(r = .002, p = .98) or education (r = −.05, p = .63). Inspection of a

scatter plot suggested that the relationship between the signature

and the component was approximately linear. Linear regression anal-

ysis of the signature against the component scores revealed an

inverse relationship (F[1,172] = 14.38, R2 = −.12, p < .001,

Supporting Information S8). When age, gender and education were

added to the model (by backward stepwise selection), none were

included in the final model.

3.5 | Specificity of the structural brain signatures

To demonstrate selectivity of the two signatures to their respective

cognitive components, we repeated the regression analyses using

each of the other cognitive components. Regression analyses of the

emotional bias signature using the negative affect, executive function,

TABLE 3 Information for significant clusters identified in the tract-based spatial statistics and whole-brain spatial statistics analyses

Cluster name
Diffusion/
kurtosis scalar

Extent
(ml)

Peak coordinate
(MNI-space) t (peak) t (mean) p (FWE-corrected)

Tract-based diffusion/kurtosis

Left medial temporal—emotional memory

DAxial 1.38 22, 51, 36 −4.56 −2.57 .03

DRadial 1.59 27, 51, 35 −4.87 −3.05 .02

MD 3.36 27, 56, 31 −5.29 −2.79 <.01

Frontal—emotional bias

DRadial 28.06 38, 65, 52 4.79 1.89 .02

MD 4.45 38, 66, 52 3.67 2.22 .04

FA 44.96 25, 78, 41 −5.01 −1.70 <.01

KAxial 3.68 62, 78, 44 −4.68 −2.35 .02

KRadial 73.695 63, 76, 45 −5.22 −1.86 <.01

MK 71.15 59, 75, 45 −5.31 −2.03 <.01

KFA 1.78 62, 77, 45 −4.16 −2.21 .02

Whole-brain diffusion/kurtosis

Thalamus/fimbria—Negative affect

DAxial 0.19 52, 51, 41 5.42 4.83 .04

DRadial 2.20 52, 51, 41 5.60 4.15 .04

MD 1.11 52, 51, 41 5.50 4.47 .04

Whole brain (grey matter volume)

None

Abbreviations: FA, fractional anisotropy; KFH, kurtosis FA; MD, mean diffusivity.
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emotional memory and verbal components were all non-significant

(p = .26, .21, .92 and .75, respectively; Supporting Information S9).

Regression analyses of the emotional memory signature using the

negative affect, executive function, emotional bias and verbal compo-

nents were also all non-significant (p = .23, .22, .30 and .11, respec-

tively; Supporting Information S10). This supports the selectivity of

the signatures for their respective emotional domains.

To demonstrate selectivity of the signature to the identified

anatomical regions, we repeated the regression analyses using the

sham signature. Linear regression of the sham signature against

the emotional bias component showed no significant relationship

(F[1,172] = .10, R2 = .03, p = .75), illustrating selectivity of the signature

to the frontal white matter pathways. Similarly, the emotional memory

sham signature regression was not significant (F[1,172] = .42, R2 =

−.01, p = .82). Neither age, gender nor education were selected for

either model.

3.6 | Replicability of the structural brain signatures

We then tested whether the same associations between our struc-

tural brain signature and emotional bias were replicable in a second,

independent, large, healthy Replication Cohort. This cohort had a

median age of 29 years (6-year interquartile range) and a slight female

bias (54% female). The ER40 correct responses score (reflecting emo-

tional bias) distribution was negatively skewed (skewness: −0.88;

Shapiro–Wilk test: W = 0.94, p < .01), with a median of 36.0 and an

interquartile range of 3.0. Linear regression of the emotional bias sig-

nature against the ER40 score, age, gender and education revealed a

modest but significant direct effect in the same direction as was

observed in the Discovery Cohort (F[3,1,061] = 27.28, R2 = .07,

p < .001; age, gender, education not selected). Residuals were approx-

imately normally distributed. We did not test for replicability of the

emotional memory component because there were no comparable

cognitive data (i.e., testing emotional resilience) available for the Repli-

cation Cohort.

4 | DISCUSSION

The clinical applications of MRI are predominantly limited to the diag-

nosis of acute injuries or gross physical abnormalities. Even in cases

where “changes” are detectable using conventional MRI, these data

are not easily quantifiable or predictive of progression to formal cog-

nitive decline or mood disorder. New MRI acquisition and analysis

F IGURE 3 Probabilistic diffusion tractography of the identified tracts. In blue are the probabilistic streamlines generated using the significant
clusters as a seed region. The orange regions are gathered from automated NeuroSynth meta-analyses of functional MRI studies of emotional
memory or emotional bias. The subfigures are as follows: (a, b, c) medial prefrontal cortex emotional bias-related cluster with intersecting tracks
bilaterally mostly via the corpus callosum superior genu in order of coronal, sagittal and axial views, (d, e, f) hippocampal emotional bias clusters
intersected in the right hemisphere by tracks primarily from the uncinate and inferior longitudinal fasciculi in order of axial, coronal and sagittal
views, (g, h) left middle temporal gyrus emotional memory cluster intersected by tracks from the inferior longitudinal fasciculus from axial and
sagittal views, and (i) left hippocampus-amygdala emotional memory cluster intersected by inferior longitudinal fasciculus tracks in a sagittal view
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techniques can measure brain networks, so have some potential to

change this. In particular, dMRI is the focus of much research, includ-

ing the HCP which has, to date, generated more than 340 papers from

members of the HCP consortium alone (Van Essen & Glasser, 2016).

Despite this activity, there is currently no clinically meaningful use of

high resolution dMRI. In this article, we aimed to develop objective,

replicable dMRI measurements of brain tissue diffusion that predict

brain function and that might therefore form candidate markers for

objective measurements of brain integrity with further testing in the

future.

We applied DKI, a promising dMRI analytical approach sensitive to

brain ultrastructure, to map how cognitive function relates to brain

structure. Our analysis reflects the most comprehensive and highly

powered analysis of this type to date. Our key findings were: (a) the

identification of two structural brain signatures which are sensitive and

specific to emotional bias and emotional memory; (b) demonstration

that these signatures involve white matter pathways, which closely

relate to functionally relevant cortical regions linked to these emotional

domains; and (c) replication of the primary finding in a second large,

independently acquired normal cohort. In identifying associations

between microstructural white matter changes and normal variations in

neurocognitive function, we show new evidence to support diffusion

tensor and kurtosis techniques forming a basis for developing sensitive

and specific biomarkers that can readily identify and characterise struc-

turally based brain dysfunction, such as may occur after injury, or in

early psychiatric or neurological diseases. Our data were derived from

healthy cohorts, and the most realistic potential application is, there-

fore, as a test to objectively quantify injury and identify subjects who

may be more vulnerable to future emotional and cognitive dysfunction.

Further work is clearly required to demonstrate utility in the setting of

injury or disease.

The identified structural brain signatures were derived from two

main clusters, the first of which related to emotional bias and was

located throughout the frontal lobe, as well as extending to the parie-

tal and temporal lobes. Emotional dysregulation associated with the

frontal lobe (Phillips et al., 2003) is a frequent morbidity observed in

many neuropathological states, such as dementia (Goodkind, Gyurak,

McCarthy, Miller, & Levenson, 2010), traumatic brain injury (van der

Horn, Liemburg, Aleman, Spikman, & van der Naalt, 2016) and surgical

brain injury (Indja et al., 2017). Mood disorders and emotional dys-

function are extremely difficult aspects of such conditions to manage

and contribute significantly to impaired quality of life. In our data, the

emotional bias score was negatively related to the FA and kurtosis-

based metrics, and positively related to the mean and radial diffusivity

metrics across the frontal lobe clusters. The direction of this effect

suggests that greater performance in our emotional tests (i.e., less bias

toward negative emotions) corresponds to greater diffusivity, reduced

tissue integrity and reduced cellular complexity in these specific

regions (Steven et al., 2013). The neurobiological mechanisms

governing these effects may related to the structural integrity of mye-

lin, a theory supported by previous studies of cognitive decline in nor-

mal healthy individuals (Madden et al., 2012).

The second cluster was related to emotion and memory and was

located along the left medial temporal lobe and left posterior limb of

the internal capsule. In contrast, the direction of the effect was differ-

ent for the emotional memory and MD, axial diffusivity and radial dif-

fusivity relationships: better memory performance corresponding to

lower diffusivity consistent with greater density of membranes. The

role of the medial temporal lobe and hippocampus in memory (Maller

et al., 2019) has been studied extensively; and, in dementia, there is

strong evidence of an association with grey matter atrophy (Zakzanis,

Graham, & Campbell, 2003). Whilst hippocampal atrophy occurs early,

in the case of the medial temporal lobe, grey matter atrophy is often

not seen until disease is well established (Zakzanis et al., 2003). The

lack of any significant association between grey matter volume and

cognition is not surprising given that grey matter volume change is a

gross, non-specific measure which is impacted by many complex fac-

tors. Such atrophy is typically regarded as a downstream consequence

of neurological and psychiatric dysfunction, whereas white matter

changes are hypothesised to be recognisable early in a disease's

course (Agosta et al., 2011; Zhuang et al., 2013). This has been dem-

onstrated in the superior ability of the volume of white matter hyper-

intensities to predict the onset of Alzheimer's disease over

hippocampal atrophy (Brickman et al., 2012). Diffusion tensor imaging

has also been shown to accurately estimate the presence and timing

of traumatic brain injury over traditional imaging techniques (Mac

Donald, Dikranian, Bayly, Holtzman, & Brody, 2007).

Following identification and validation of these emotion-related

clusters, we showed that our finding regarding the relationship between

emotional bias and diffusion kurtosis characteristics of the matching

cluster was replicable in a second, larger cohort. The need for replication

of neuroimaging findings has come to the forefront in recent years

(Poldrack et al., 2017), spurred by concerns about reliability in psychol-

ogy research (Simmons, Nelson, & Simonsohn, 2011) and concerns

about false positives in fMRI studies (Eklund, Nichols, & Knutsson,

2016). This is exacerbated by the cost of data acquisition and the wide

variety and complexity of analyses in the neuroimaging field. In

response, practical guidelines for replication in neuroimaging studies

have been published (Bakken, 2019; Gorgolewski & Poldrack, 2016),

journals have accommodated replication studies (Picciotto, 2018), for

example, the Human Brain Mapping Replication Award and the creation

of a replication category in NeuroImage: Clinical (Fletcher & Grafton,

2013), and an educational course to teach computation reproducibility

has been trialled (Millman, Brett, Barnowski, & Poline, 2018). Successful

application of replication analysis principles has provided key advances

in the neuroimaging of speech perception (Evans, 2017). We attempted

to apply the same principles of throughout our analysis by performing a

large scale, powered replication analysis of the key finding, in full com-

munication of methods and availability of data used.

One limitation of this study is that our analysis only included

healthy individuals (i.e., those who are assumed not to have sub-

clinical or clinical brain damage), limiting the generalisation of our find-

ings to clinical cohorts. There is a paucity of available high-quality

imaging data in this vulnerable population. A second limitation is that

our Replication Cohort did not closely match the Discovery Cohort in
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terms of age, with a difference in medians of 10 years; they also used

different tests of emotional function. This was due to the limited avail-

ability of datasets which have both multi-shell diffusion data and

detailed neurocognitive testing. While the regression model in the Repli-

cation Cohort was still significant, the magnitude of the regression slope

was smaller than that observed in the Discovery Cohort. However, this

is not unexpected: in psychology, effect sizes reported in replication

studies are generally half of that reported in original studies (Open Sci-

ence Collaboration, 2015; van Aert & van Assen, 2018). Further, the sig-

nificant replication of results, despite the age mismatch between the

Discovery and Replication cohorts, may suggest that the observed

effects are robust to differences in age. Our approach using a specific,

pre-defined composite cluster was not subject to the “model degrees of

freedom” which purportedly have driven false-positive replications in

neuroimaging (Hong, Yoo, Han, Wager, & Woo, 2019). Last, our study

did not make use of multivariate data mining or machine learning

approaches which are gaining popularity with application in prediction

studies, and show high levels of accuracy (Benedict et al., 2004; Dyrba

et al., 2015; Moradi, Pepe, Gaser, Huttunen, & Tohka, 2015).

5 | CONCLUSION

We identified structural brain signatures of white matter structure

which are sensitive to and specific for cognitive function. The tracts

involved are both anatomically-precise and correspond to functional

hubs derived from a meta-analysis of all available functional neuroim-

aging literature. The association of our emotional performance signa-

ture was replicated in a large independently acquired cohort. These

results provide convergent evidence of a significant structural contri-

bution to emotional and cognitive performance, even in normal

healthy people. While our findings raise the possibility that MRI may,

with further testing, be able to provide objective and quantifiable indi-

cators of subclinical brain changes (e.g., in psychiatric illness, concus-

sion or early dementia), there is a long way to go in bringing dMRI to

clinical utility. Developing such markers could be a useful first step

toward transforming dMRI into a clinical tool to track brain changes,

relating directly to function, in a way that matters to patients.
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