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Abstract: Lumacaftor/ivacaftor (LUMA-IVA) therapy is prescribed to people with cystic fibrosis
(pwCF) homozygous for the Phe508del-CFTR variant to restore CFTR protein function. There is,
however, large inter-individual variability in treatment response. Here, we seek to identify clinical
and/or genetic factors that may modulate the response to this CFTR modulator therapy. A total of
765 pwCF older than 12 years under LUMA-IVA therapy and with lung function and nutritional
measurements available before and after treatment initiation were included. Response to treatment
was determined by the change in lung function and nutritional status, from baseline and over the
first two years after initiation, and it was assessed by weighted generalized estimating equation
models. Gains in lung function and nutritional status were observed after 6 months of treatment
(on average 2.11 ± 7.81% for percent predicted FEV1 and 0.44 ± 0.77 kg/m2 for BMI) and sustained
over the 2 years. We observed that the more severe patients gained the most in lung function and
nutritional status. While females started with a nutritional status more impaired than males, they
had a larger response and regained BMI Z-score values similar to men after 2 years of treatment. We
observed no association between variants in solute carrier (SLC) genes and the respiratory function
response to LUMA-IVA, but the SLC6A14 rs12839137 variant was associated with the nutritional
response. Further investigations, including other genomic regions, will be needed to fully explore the
inter-individual variability of the response to LUMA-IVA.

Keywords: CFTR modulator therapy; long-term effect; lung function; nutritional status; modifiers
genes; solute carrier family genes; cystic fibrosis

1. Introduction

Cystic fibrosis (CF) is a rare, autosomal recessive, life-shortening genetic disease
that affects more than 90,000 people worldwide [1]. It is caused by variants in the gene
encoding the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride
channel expressed in epithelial cells throughout the body. Until one decade ago, only
symptomatic treatments were available for people with CF (pwCF). In the last decade,
considerable efforts have led to the development of therapies that target the CFTR protein
named CFTR modulators. Since 2012, pwCF carrying some CFTR gating variants can
be treated with ivacaftor, a potentiator therapy which increases the probability of CFTR-
channel opening.

Following this, lumacaftor, a CFTR corrector that improves the processing and traf-
ficking of the Phe508del-CFTR protein, was combined with ivacaftor to treat pwCF ho-
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mozygous for the Phe508del-CFTR variant. A phase 2 trial of this association, lumacaftor-
ivacaftor (LUMA-IVA), demonstrated improvements of the lung function, measured by
an increase of the percent-predicted forced expiratory volume in one second (ppFEV1),
and of the nutritional status, evaluated by the body mass index (BMI) [2]. Marketing
authorizations were granted in 2015.

Since then, clinical benefits of LUMA-IVA have been questioned, particularly because
of its high cost [3,4]. In addition, phase 3 trials and real-life studies over the first 2 years of
treatment demonstrated highly heterogeneous responses in lung function and nutritional
status [5–11]. These studies also highlighted the inter-individual variability of the airway re-
sponse and the limited tolerance to treatment, with high discontinuation rates ranging from
17.2% to 28.9% [5,7,9]. Predisposing factors for interruption and for the response variability
were shown to be baseline lung function, age at treatment initiation and gender [5,7–11].

In a previous study, we found that lung response variability to ivacaftor was associated
with variants in the Solute Carrier Family 26 Member 9 (SLC26A9) gene in a cohort of French
pwCF, confirming results observed in Canadians [12,13]. However, these results were
controverted in North American pwCF [14]. Nevertheless, this gene was also shown to
be involved in lung function variability [13,15] and to meconium ileus susceptibility in
pwCF [16]. Furthermore, other variants in the SLC gene family (SLC6A14 and SLC9A3)
have been shown to modify several CF phenotypes, suggesting a pleiotropic effect of this
gene family of genes [15–18].

Here, we analysed the evolution of pwCF treated with LUMA-IVA and included
the “French CF Gene Modifier Study” to identify clinical and/or genetic factors that may
change the response to this CFTR modulator therapy.

2. Materials and Methods
2.1. Study Design and Patients

The “French CF modifier gene study” is a nationwide observational study of pwCF in
France with prospective data collection from participants. Here, we aimed to evaluate the
lung and nutritional response to LUMA-IVA over the first two years of treatment. As of
31 January 2021, 4975 pwCF attending one of the 47 French CF centres were included in
this national cohort (corresponding to ~70% of all French pwCF) [19].

Since 2001, neonatal CF screening has been underway in France and specialized care for
pwCF has been delivered in expert CF centres according to national recommendations [20,21].
Standardized longitudinal data have been prospectively collected for each pwCF, making
the current analysis possible. Data collected in electronic or paper medical records over
time in the participating CF centres were input in a national database.

All pwCF older than 12 years, homozygous for the Phe508del-CFTR variant and
treated by LUMA-IVA out of clinical trials were eligible for inclusion, provided they had at
least a 6-month follow-up after treatment initiation and had not received a lung or liver
transplant (n = 878) (Figure 1). We excluded pwCF without FEV1 and/or BMI values at
baseline (n = 22) and/or over the first 6 months after treatment initiation due to missing
data (n = 42) or early treatment interruption (n = 49). Finally, 765 pwCF were included in
the analyses (Figure 1).

2.2. Lung and Nutritional Response to Combined Lumacaftor/Ivacaftor Therapy

According to CF care recommendations, lung function testing including spirometry
and anthropometric measurements are performed at every visit in pwCF [21,22]. To assess
the lung function, measurements of FEV1 were expressed as percent-predicted values
using the Global Lung Function Initiative equations [23] or transformed to the Kulich
Normalized Mortality Adjusted CF-specific lung phenotype (SaKnorm Z-value) [24,25].
SaKnorm is a quantitative phenotype that allows the direct comparison of lung phenotypes
between pwCF and accounts for differential survival. To evaluate the nutritional response,
body mass index (BMI) measurements were Z-score transformed according to WHO Child
Growth Standards [26]. For each pwCF, SaKnorm Z-value and BMI Z-score baseline values
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were computed as the measurements’ average over the 6 months prior to the treatment
initiation.
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Figure 1. Flowchart of patient selection. Flowchart describing the selection of people with cystic fibrosis
included in the analysis of the lung and nutritional response to combined lumacaftor/ivacaftor therapy.

We classified the baseline values according to terciles as follows: (i) SaKnorm Z-values
from −1.620 to 0.168 (1st tercile), from 0.169 to 0.791 (2nd tercile) and from 0.792 to 2.520
(3rd tercile) for lung response analysis, (ii) BMI Z-score from −4.330 to −1.080 (1st tercile),
from −1.079 to −0.307 (2nd tercile) and from −0.306 to 2.890 (3rd tercile) for nutritional
response analysis.

Gender, age at treatment initiation, meconium ileus, CF-related diabetes (CFRD), CF-
related liver disease (CFLD) and presence of Pseudomonas aeruginosa chronic colonization
(Pa-CC) were analysed (see Supplementary Information for CFRD, CFLD and Pa-CC
definitions). Age at treatment initiation was categorized in 3 classes: “≤20” years old,
“20–30” years old, and “>30” years old. Changes in FEV1 and BMI courses over time
according to age at initiation was assessed relative to the “≤20” years old level, indicated
as the “reference” level.

2.3. Modifiers of Response to Combined Lumacaftor/Ivacaftor Therapy

We analysed single nucleotide polymorphisms (SNPs) located in or near SLC genes that
had already been shown to be associated with lung response variability to ivacaftor [12,13]
and/or several CF phenotypes [15–18]. Using Kompetitive Allele Specific PCR (LGC
Group, Teddington, UK), we genotyped 9 SNPs of the following genes: SLC26A9 (rs7512462,
rs1874361, rs4077468, rs4077469, rs7419153, rs12047830), SLC9A3 (rs57221529) and SLC6A14
(rs3788766 and rs12839137).

2.4. Statistical Analysis

Descriptive statistics were reported as mean ± standard deviation (SD) or ± standard
deviation of mean (SDM) or percentages and 95% confidence intervals (95% CIs), as
appropriate. The lung function and nutritional response over the first 2 years of LUMA-
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IVA therapy were analysed by generalized estimating equation mixed models adapted to
longitudinal data. Measurements of SaKnorm Z-value and BMI Z-score were averaged over
successive 6-month periods, starting 6 months before treatment initiation (baseline value)
and extending over the 2 years following treatment initiation. To account for missing data
in patients’ follow-ups, we used generalized estimating equations with weights according
to the probability of missingness [27,28]. The missingness model included 4 variables:
time since treatment initiation, age at treatment initiation, change in lung function in the
previous semester and the baseline lung function value. These criteria included factors
associated with treatment discontinuation [7].

For the genetic association study, we applied additive SNP coding, and reference
alleles were determined as those with the highest frequency in the European population
(http://www.ensembl.org (accessed on 1 June 2021)). SNPs in the chromosome X (SLC6A14
rs3788766 and rs12839137) were also additively coded (0 or 1 or 2 for women and 0 or 2 for
men). Fisher’s exact test was used to test the conformance of the allele frequencies with the
Hardy–Weinberg equilibrium.

All analyses were carried out using the R software (version 4.1.0, http://www.R-
project.org (accessed on 1 June 2021)) using the package “wgeesel”.

3. Results
3.1. Study Population

Demographics and baseline characteristics of the eligible pwCF on LUMA-IVA are
summarized in Table 1. Distribution is similar across the analysed and the excluded groups
by gender, origin, clinical characteristics, lung disease and nutritional severity. Compared
to analysed pwCF, excluded pwCF were older (p-value < 0.001). Among the 765 pwCF
analysed, 14.5% (111 pwCF) discontinued treatment.

Table 1. Demographics and baseline (prior to combined lumacaftor/ivacaftor therapy) characteristics
of the 878 eligible people with cystic fibrosis.

Patients
Analysed
n = 765

Patients
Excluded
n = 113

p-Value

Male, % (n) 56.21% (430) 46.02% (52) 0.042
Caucasian origin, % (n) 97.51% (745) 97.35% (110) 0.915
Age at treatment initiation (years), mean ± SD 22.2 ± 9.0 25.2 ± 9.4 <0.001
Age at treatment initiation (years), % (n)
≤20 50.07% (383) 31.86% (36) 0.001
20–30 28.37% (217) 38.05% (43)
>30 21.57% (165) 30.09% (34)

Presence of meconium ileus % (n) 16.57% (118) 25.47% (27) 0.025
Presence of CFRD *, % (n) 25.93% (195) 31.13% (33) 0.256
Presence of CFLD *, % (n) 36.04% (275) 45.54% (51) 0.052
Presence of Pa-CC *, % (n) 38.56% (295) 44.25% (50) 0.248
Lung disease severity ‡ (SaKnorm Z-value),
mean ± SD

0.447 ± 0.702 0.457 ± 0.710 0.942

Nutritional severity † (BMI Z-score), mean ±
SD

−0.677 ± 0.932 −0.807 ± 1.060 0.072

* Before treatment initiation; ‡ Over the past 3 years before treatment initiation, forced expiratory volume in one sec-
ond (FEV1) measurements were expressed as Kulich Normalized Mortality Adjusted CF-specific lung phenotype
(SaKnorm Z-value) (1,2); † Over the past 3 years before treatment initiation, body mass index (BMI) measurements
were Z-score transformed according to WHO Child Growth Standards (3). Among the 878 eligible patients, 1 had
missing data for ethnicity, 60 for meconium ileus, 20 for CFRD and 3 for CFLD. Abbreviations: CFRD: cystic
fibrosis-related diabetes, CFLD: cystic fibrosis liver disease, Pa-CC: Pseudomonas aeruginosa chronic colonization.

3.2. Overall Changes in Lung Function and Nutritional Status with LUMA-IVA

Following the initiation of LUMA-IVA, the lung function and nutritional status im-
proved with gains in SaKnorm Z-value of 0.106 ± 0.015 (p-value < 0.0001) and in BMI
Z-score of 0.108 ± 0.017 (p-value < 0.0001). Improvements were sustained over the 2 years

http://www.ensembl.org
http://www.R-project.org
http://www.R-project.org
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of treatment with change slopes of 0.054 ± 0.010 (p-value < 0.0001) for the lung function
and of 0.057 ± 0.015 (p-value = 0.0001) for the nutritional response. In the first semester,
the average absolute gains from baseline were 2.11 ± 0.14% predicted for ppFEV1 and
0.44 ± 0.01 kg/m2 for BMI (Table S1).

Treatment response was similar according to age at initiation, presence of meconium
ileus, CFRD, CFLD or Pa-CC status, but changed by pre-treatment values. Indeed, pwCF
with the lowest SaKnorm and BMI baseline values had the greater gains in lung function
and nutritional status (Table 2 and Figure 2).

Table 2. Lung function and nutritional response of combined lumacaftor/ivacaftor therapy, according
to clinical and demographic characteristics in 765 people with cystic fibrosis.

Change in
SaKnorm(Z-Value) ‡ ± SD p-Value Change in

BMI(Z-Score) † ± SD p-Value

Female −0.015 ± 0.023 0.5203 0.069 ± 0.034 0.0415
Age at initiation (Years)
≤20 Reference Reference Reference Reference
20–30 0.011 ± 0.026 0.6748 0.006 ± 0.037 0.8705
>30 −0.068 ± 0.023 0.0029 −0.048 ± 0.038 0.2047

Presence of meconium
ileus −0.019 ± 0.031 0.5401 0.010 ± 0.048 0.8407

Presence of CFRD * −0.003 ± 0.023 0.9066 −0.011 ± 0.039 0.7698
Presence of CFLD * −0.004 ± 0.024 0.8839 0.003 ± 0.036 0.9414
Presence of Pa-CC * 0.018 ± 0.023 0.4380 −0.022 ± 0.034 0.5116
Baseline

3rd tercile Reference Reference Reference Reference
2nd tercile 0.105 ± 0.027 0.0001 0.080 ± 0.036 0.0273
1st tercile 0.145 ± 0.028 <0.0001 0.237 ± 0.040 <0.0001

‡ Forced expiratory volume in one second (FEV1) measurements were expressed as Kulich Normalized Mortality
Adjusted CF-specific lung phenotype (SaKnorm Z-value) (1,2); † Body mass index (BMI) measurements were
Z-score transformed according to WHO Child Growth Standards (3); * Before initiation of lumacaftor/ivacaftor
combination therapy. Abbreviations: CFRD: cystic fibrosis-related diabetes, CFLD: cystic fibrosis liver disease,
Pa-CC: Pseudomonas aeruginosa chronic colonization.
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Figure 2. Change according to baseline terciles following initiation of combined lumacaftor/ivacaftor
therapy with 95% CIs in (A) lung function (SaKnorm Z-value), and (B) nutritional status (BMI Z-
score), in 765 people with cystic fibrosis (pwCF). For lung response analysis, the baseline SaKnorm
(Z-value) terciles were from −1.620 to 0.168 (1st tercile in red), from 0.169 to 0.791 (2nd tercile in
orange) and from 0.792 to 2.520 (3rd tercile in green). For nutritional response analysis, the baseline
BMI (Z-score) terciles were from −4.330 to −1.080 (1st tercile in red), from −1.079 to −0.307 (2nd
tercile in orange) and from −0.306 to 2.890 (3rd tercile in green). The black dotted lines show the
model predicted change and the grey dotted lines the overall change in the 765 pwCF.
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At 6 months post-treatment, the pwCF in the baseline 1st tercile had an increased
ppFEV1 of 2.68 ± 0.25% predicted and of 0.49 ± 0.02 kg/m2 for BMI (Table S1). Gender
was not associated with lung function response, but females had a higher nutritional
response (p-value = 0.04) (Table 2 and Figure 3A). At initiation of LUMA-IVA, the baseline
nutritional status of women (−0.805 ± 0.992 of BMI Z-score) was more impaired than men
(−0.642 ± 0.931 of BMI Z-score). After 2 years of LUMA-IVA, both men and women had a
similar nutritional status (−0.511 ± 0.931 and −0.522 ± 0.922 for BMI Z-score for men and
women, respectively) (Figure 3B).
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from baseline, (B) mean of BMI Z-score, in 765 people with cystic fibrosis (pwCF). Men are in blue,
women in orange and the dotted lines show the overall change in the 765 pwCF.

3.3. Genetic Analysis

Genotype distributions and results of weighted generalized estimating equation mixed
models are shown in Table 3. There was no evidence of association between lung function
response to LUMA-IVA and variants of SLC26A9, SLC9A3 or SLC6A14 genes.

Table 3. Lung function and nutritional response of combined lumacaftor/ivacaftor therapy, according
to SLC26A9, SLC9A3 and SLC6A14 variants, in 765 people with cystic fibrosis.

Position £ Alleles * MAF
EUR

MAF
Cohort HWE ** Change in SaKnorm

Z-Value ‡ ± SD p-Value Change in BMI
Z-Score † ± SD p-Value

SLC26A9
rs1874361 1:205939058 A/C 0.48 0.46 0.419 −0.006 ± 0.017 0.7338 0.009 ± 0.022 0.6919
rs4077468 1:205945629 A/G 0.41 0.41 0.406 −0.011 ± 0.016 0.4976 −0.019 ± 0.023 0.4178
rs4077469 1:205945757 C/T 0.41 0.41 0.496 −0.013 ± 0.016 0.4177 −0.023 ± 0.023 0.3350
rs7419153 1:205948181 G/A 0.38 0.41 0.033 0.011 ± 0.017 0.4894 0.015 ± 0.024 0.5456
rs7512462 1:205930467 T/C 0.41 0.41 0.451 −0.006 ± 0.017 0.7102 −0.023 ± 0.023 0.3166
rs12047830 1:205947571 G/A 0.49 0.47 0.501 −0.011 ± 0.017 0.5290 −0.017 ± 0.024 0.4936

SLC9A3
rs57221529 5:586509509 A/G 0.21 0.20 0.735 0.029 ± 0.019 0.1256 0.022 ± 0.029 0.4564

SLC6A14
rs3788766 X:116435671435671 G/A 0.36 0.37 0.388 0.000 ± 0.014 0.9719 0.008 ± 0.019 0.6797
rs12839137 X:116434382 G/A 0.22 0.21 0.862 0.000 ± 0.017 0.9852 0.045 ± 0.020 0.0276

£ Physical position according to Ensembl GRCh38 (www.ensembl.org (accessed on 1 June 2021)); * Minor allele in
European Population are in bold; ** Hardy–Weinberg equilibrium (HWE) p-values were computed by Fisher’s
exact test and among women for SLC6A14; ‡ Forced expiratory volume in one second (FEV1) measurements were
expressed as Kulich Normalized Mortality Adjusted CF-specific lung phenotype (SaKnorm Z-value) (1,2); † Body
mass index (BMI) measurements were Z-score transformed according to WHO Child Growth Standards (1). MAF:
minor allele frequency.

www.ensembl.org
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For SLC26A9 rs7512462 variant and for each additional C-allele, the model estimated a
decreased gain in SaKnorm Z-value of −0.006 (±0.017) (p-value = 0.71) and in BMI Z-score
of −0.023 (±0.023) (p-value = 0.32) (Table 3 and Figure 2A). In the case of TT, TC and CC
genotypes, over the 6 months post-treatment, the predicted average ppFEV1 absolute gains
from baseline were 1.95 ± 0.25%, 2.13 ± 0.20% and 2.40 ± 0.32%, respectively (Table S1).

We observed that only the SLC6A14 rs12839137 variant was associated with the nutri-
tional response to LUMA-IVA (Table 3). In the first semester, the absolute BMI gains were
0.38 kg/m2 (±0.02) and 0.63 kg/m2 (±0.03) for the homozygous genotypes GG and AA,
respectively, and of 0.47 kg/m2 (±0.04) for the GA heterozygous genotypes (Table S1).

4. Discussion

LUMA-IVA was the first promising targeted therapy available for the management of
pwCF homozygous for the Phe508del-CFTR variant, the most common CF genotype world-
wide. Its use in real life has shown a heterogeneous and relatively modest improvement in
lung function with limited tolerance. This study analysed clinical factors as well as solute
carrier variants, located on SLC26A9, SLC9A3 and SLC6A14 genes, as predictors of lung
function and nutritional response to LUMA-IVA.

At 6 months post-treatment, we observed gains of lung function and nutritional
status very close to findings of clinical trials that led to the marketing of the therapy [2].
Improvement in lung function severity was sustained over the first 2 years of treatment.
The positive slope (+0.054± 0.010 of SaKnorm Z-value by year) was reflected in a reduction
of ppFEV1 decline over the 2 years post-treatment (Table S2), again observed in clinical
trials [6]. Among the 878 pwCF who started LUMA-IVA, 19.7% (173 pwCF) interrupted
the treatment, similarly to a previously reported rate of discontinuation of 17.2% due to
adverse effects [5].

Since 2016 in France, LUMA-IVA treatment can be prescribed to pwCF homozygous
for the Phe508del-CFTR variant without baseline ppFEV1 requirements. We observed that
pre-treatment lung function and nutritional status were predictors of treatment response.
Indeed, as the severity of pwCF decreased, so did the gain in lung function. The absolute
mean change in ppFEV1 after 6 months of treatment was +2.68% in the more severe patients
(1st SaKnorm Z-value tercile), and +1.89% and +1.77% for patients in the 2nd and 3rd terciles
of SaKnorm Z-value, respectively. This pattern was observed in the efficacy analysis, in
which improvement in ppFEV1 after 6 months of treatment was +3.30% (95% CI: 0.20 to
6.40) in pwCF with baseline ppFEV1 < 40% and +2.80% (95% CI: 1.70 to 3.80) in pwCF
with baseline ppFEV1 ≥ 40% [11]. However, it was also reported that, after 6 months
of LUMA-IVA, pwCF with baseline ppFEV1 < 40% had a non-significant loss of lung
function of −0.40% (−1.90 to 1.10) [8], while those with baseline ppFEV1 ≥ 90% had an
unchanged lung function of 0.15% [10]. The differences in lung function improvement
in these reports and our findings may be due to airways’ response assessment. We used
ppFEV1 transformed in SaKnorm Z-value to classify pwCF at baseline. This adjustment
is an indicator of lung function severity and provides for the direct comparison of pwCF
of various ages. We used this specific phenotype to account for age-dependent clinical
variables (CFRD, CFLD and Pa-CC). In addition, it should be noted that previous studies
included fewer than 50 pwCF, whereas the current study analysed 765 pwCF of the “French
CF modifier gene study”, which includes more than 85% of all French adult pwCF [29].

Apart from baseline lung function, no demographic or clinical factors were found to
be associated with the respiratory response to treatment. Only gender was associated with
the nutritional response, with a statistically significant greater change in BMI Z-score in
women after LUMA-IVA initiation. This result is in part related to a difference in nutritional
severity between men and women before treatment initiation. Indeed, we observed that
women gained the same level of nutritional status as men after 2 years of treatment. All
studies agree that there is a significant gain in BMI, ranging from 0.21 to 0.96 kg/m2,
irrespective of the LUMA-IVA dose, lung function severity or treatment duration [2,6–8,11].
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However, none of these studies showed differences in gender for the nutritional status
response. So far, female gender was only associated with a higher discontinuation rate [5].

This study, with a very large cohort of pwCF homozygous for the Phe508del-CFTR
variant, did not show any evidence of association between SLC genes’ family and respira-
tory response to LUMA-IVA therapy. The SLC26A9 gene was suggested to modulate the
airway response to ivacaftor in pwCF who harbour at least one of the targeted CFTR gating
variants [12–14]. Moreover, ex vivo experiments with nasal epithelial cells from pwCF
showed that the SLC26A9 rs7512462 variant was associated with CFTR function in response
to LUMA-IVA [30]. However, we observed no association of this variant with either the
respiratory or the nutritional response to LUMA-IVA. Among the variants analysed, only
the SLC6A14 rs12839137 variant was associated with the nutritional response. Interestingly,
two studies in Finnish and French showed that several SLC6A14 variants were associated
with obesity [31,32]. As the amino acid transporter SLC6A14 could modulate tryptophan
availability for serotonin synthesis, authors hypothesized that these variants might affect
perception of hunger and satiety. Miranda et al. also showed that other SLC6A14 variants
were associated with food intake in children at 7–8 years of age [33]. Finally, an in vitro
study highlighted that the obesity-associated rs2011162 variant, located in the 3′UTR of
the SLC6A14 gene, reduces the expression of the transporter and that Slc6a14−/− mice
develop obesity, fatty liver and metabolic syndrome when fed with a high-fat diet [34].
These findings support the hypothesis of the involvement of SLC6A14 in the regulation of
the nutritional status in pwCF.

Our study has several limitations. First, missing information led to the exclusion
of pwCF from the analysis of FEV1 and BMI change. According to French CF care rec-
ommendations, lung function and anthropometric measurements are measured every
quarter in pwCF [21], and, following recommendations of the French CF Learning Society,
each pwCF who initiates LUMA-IVA has systematic visits at treatment initiation and at
1, 3, 6 and 12 months after initiation (with clinical assessment and a pulmonary function
test) [9]. Missing data could be due to the collection date from patients’ paper and electronic
medical records. However, we did not observe any clinical differences between included
and excluded patients. Secondly, we observed a 14.5% treatment interruption among the
765 pwCF analysed, of which 10.81% (n = 12) could be attributed to a lack of observed
benefits by the patient and/or physician. It was also shown that the risk of discontinuation
increased with age and severity of lung function [7]. However, to account for this selection
bias and shorter follow-up times, we used weighted statistical models to estimate the
probability of missing data, as a function of age at treatment initiation, change in lung
function at the prior semester and the baseline lung function value.

5. Conclusions

LUMA-IVA shows modest benefits in terms of lung function and nutritional status in
pwCF. However, benefits in quality of life should not be overlooked, as well as the reduction
of respiratory exacerbations, which have a major role in the CF management. We showed
that variants located in the SLC gene family (SLC26A9, SLC9A3 and SLC6A14) were not
predictors of the airway treatment response and further investigations, including of other
genomic regions, are needed to better explain inter-individual variability. Nevertheless, we
observed that the variant rs12839137 of the SLC6A14 gene was associated with the nutri-
tional response, which will be important to further explore. With the development of the
next-generation CFTR modulators, such as the elexacaftor/ivacaftor/tezacaftor tritherapy,
identifying genetic modifiers involved in the response to treatment is an opportunity to
achieve predictive and personalized medicine in CF.



J. Pers. Med. 2022, 12, 252 9 of 11

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jpm12020252/s1, Supplementary Information (phenotype defini-
tion, Analysis). Table S1: Mean of lung and nutritional response to combined lumacaftor/ivacaftor
therapy within 6 months following initiation, in 765 people with cystic fibrosis. Table S2: Lung
function decline in people with cystic fibrosis according to lumacaftor/ivacaftor status. Reference [35]
is cited in the Supplementary Materials.
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